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ABSTRACT

Excitation of soliton in superlattice has been investigated theoretically. It is noted

that the soliton velocity u and the length L depend on the amplitude Eo and that an

increase in the amplitude causes soliton width L to approach zero and the velocity u to

that of light V in homogeneous medium. The characteristic parameters of soliton u, L

and Eo are related by expression j^r = |^ which is constant depending only on the SL

period d. It is observed also that the soliton has both energy E — 8V2 (1 — -^J and

momentum P = ^ E which makes it behave as relativistic free particle with rest energy

8V2. Its interaction with electrons can cause the soliton electric effect in SL.
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I INTRODUCTION

Superlattices are solid state structures in which electrons experience the periodic potential

of the lattice and also an additional potential with a period considerably greater than the

lattice constant [1]. The study of synthetic superlattices was first put forward by Keldysh

in 1962. He suggested that a periodic potential could be produced artificially by a periodic

deformation of a sample by the field of a high-power ultrasonic standing wave. Since then

studies on superlattices have been intensified and other methods of production suggested.

This includes the use of standing light waves, diffraction gratings and thin films with

periodically varying thickness [2].

Esaki and Tsu suggested the use of a periodic alternation of different semiconductor

films to produce superlattices. In the last few years, with the advent of new growth

techniques like the molecular beam epitaxy (MBE) in an ultrahigh vacuum [3] and metal

organic chemical vapour deposition (MOCVD) [4] the study of the transport [5-10] optical

[11-14], acoustic [15-18], and the thermomagnetic [19-21] properties of this novel material

has received a lot of attention.

In this paper, we will study the soliton excitation in SL. It is already hackneyed to refer

to the growth of soliton applications in condensed matter physics as "remarkable". What

is even more astonishing is that these applications have arisen (or at least become widely

appreciated in the physics community) in recent years; for example in the theories of Bloch

walls [22] which separate domains in magnetic materials, structural phase transitions [23],

liquid 3He [24], Josephson transmission lines [25], in the theory of the low-temperature

conductivity of "one-dimensional" Frohlich charge-density-wave condensates [26] and

most recently in the optical fibre communication [27].

The fundamental solition is spatially localized, highly stable, and has finite energy. It

is a localized nonlinear wave that regains asymptotically (t —> oo) its original (t —>• —oo)

shape and velocity after interaction with a localized disturbance. Due to this property,

it moves through a fibre without dispersion and so it is used to transmit information

through the process called modulation.

This paper will be presented as follows: Section II, Solitons in a Superlattice; Section

III, Discussion and Conclusion.



II SOLITONS IN A SUPERLATTICE

Superlattice semiconductor is strongly anisotropic. This accounts for the splitting of the

conduction band into narrow minibands and also the generation and propagation of the

soliton wave.

We shall assume that, the characteristic length in which there is a significant change

in the electromagnetic field is large compared with the de-Broglie wavelength of electrons

or with the SL period.

The electron current density can then be written as

( ) (i)
p \ C /

where A(r, t) is the vector potential of the field; /(p) is the distribution function and v(p)

is the electron velocity.

The energy e(p) of the SL in the lowest miniband is given by

i ( f) (2)
Here p± is the transverse momentum, pz is the electron momentum along the SL axis

(oz axis), 2A is the miniband width, m is the effective mass of electron in the transverse

plane and Ti is the Planck's constant divided by 2%. The electron velocity along oz axis

is given by
T . , . de Ad . pzd . .
VMW, = Tsmir (3)

Taking into consideration the fact that the characteristic time for the charge in the

field is short compared with the mean free time of electrons, we shall ignore collisions

between electrons and the lattice. We shall also consider the the fact that nonlinearity of

the high frequency conductivity is mainly due to the nonlinear dependence of the electron

velocity on the quasimomentum, then substitute the equilibrium distribution fo(p) for the

f{p) in Eq.(l).

Inserting Eq.(2) and Eq.(3) into Eq.(l) and solving we get
eAd . e ,-> . . pzd . .

3z = jr- sin — Azd Y, /o(p) cos — (4)

Assuming that the electron gas is nondegenerate, we obtain for longitudinal component

of the current density after some manipulation the following

en Ad h[i?f
3z =



where n is the conduction electron density, h{x) is a modified Bessel function. Substi-

tuting Eq.(5) into the vector potential equation

V%-i|U = - ^ (6)
where V is the velocity of the electromagnetic wave in the absence of electrons we get

^ - ^ V V + c^sinV; (7)

here
(

and Up is the Langmuir frequency. Eq.(7) is the usual Sine-Gordon equation. We shall

consider a one-dimensional case and seek directly the solution of Eq.(7) for an electric

field Ez = - i f .

Consider a wave traveling at right angles to the superlattice axis (along the x-axis)

at a constant velocity u such that x — ut = £ and vanishes at £ = ±00.

Eq.(7) becomes

—5- (1 — 62) — - = sin^ (8)

where 8 = -̂  < 1.

The solution of (8) is given by

where

77 = ±1; 7 = -

Evaluating the integral for E = 1 for the purpose of this work. We obtain

•0(O = 4tan-1[exp(7?7e)] (10)

Finally

gives the final result as

Ez = *ZI!l Sech (rryO (12)
ea

which is a soliton wave propagating in the x direction. Given the width of the soliton

wave to be L = ~Vl — d2 Eq.(12) can be rewritten as

Ez = EQ sech (7770 (13)



where the amplitude EQ = ^M. Eq.(13) is a single phase solition of the Sine-Gordon

equation; 77 = +1 (kink soliton) 77 = —1 (antikink soliton).

The total energy E of the soliton wave can be obtained from the expression

E= [ H dx (14)
J00

where H is the Hamiltonian density given by

\ [tf + «V2 2wo(l - cos

here tpi means the differentiation of ip with respect to i.

Besides the energy Eq.(14), the integrals of motion provide also the momentum

/•oo

p = - / dxtptipx (15)

The total energy and momentum were found after integrating Eq.(14) and Eq.(15) to be

8V2 , x

(16)

(17)

III DISCUSSION AND CONCLUSION

The equation Ez = Eo sech (777̂ ) describes a soliton wave whose velocity u and width L

are related to the amplitude EQ by

aV V

CJQVI + a2

where a = fj~^.

An increase in the amplitude causes the soliton width L to approach zero and the velocity

u to that of light V in a homogeneous medium.

The characteristic parameters of the fundamental soliton must satisfy some relation

between the amplitude, width and velocity e.g. a solitonic wave propagating in a fibre

with width To and the peak power po of a solitonic pulse with a hyperbolic secant profile

are in a relation of the type ToPo = numerical dimensional constant depending on the

characteristics of the fibre at the working wavelength [22]. In the case of the SL the

amplitude, width and velocity of a soliton wave is related in the form

u ed
L EQ~ 2h



which is also a constant depending only on the SL period d.

It can be noted from Eq.(15) that the generation of the soliton wave can be optimized

by changing the period "d" of the SL. This in our opinion may be useful in the fibre optics

communication.

Another interesting property of the soliton wave is that it has an energy E = £^3

and momentum P = ^ and therefore behaves as a relativisitc free particle with rest

energy 8V2. Its interaction with electrons can generate the effect called soliton electric

effect.

In conclusion, we have theoretically studied the generation and propagation of soliton

wave in semiconductor SL. It is noted that the relation that exists among the amplitude,

velocity and width is dependent only on the SL period d. It is also observed that the

soliton wave has both energy and momentum and therefore can behave as quasi-particle.

Its interaction with electrons can cause the soliton electric effect in SL.
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