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Abstract

We study theoretically the electron transport prbee in carbon nanotubes under the
influence of an external electric fielH(t) using Boltzmann’s equation. The current-density
equation is derived. Negative differential conditt is predicted wherwt « 1 (quasi-static
case). We observed this in the neighbourhood wtereonstant electric field, is equal to the
amplitude of the AC electric fielf; and the peak decreases with increasingrhis phenomenon
can also be used for the generation of terahediatian without electric current instability.
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1. Introduction
Carbon nanotubes (CNs) were first discovered inlJ2B and since then great deal of

interest has been focused on these quasi-one-dion@hs monomolecular structure because of
their unique electrical, mechanical, and chempcaperties. Nonlinear effects in CNs are of great
interest for potential applications in hanoelpics.

Negative differential conductivity (NDC) has beamdgicted in CNs at room temperature
under the condition, whetryT > €., Ac in a certain range of electric field strength [Bhe NDC
is believed to provide current instability in CN#$igh is destructive for the formation of terahertz
(THZz) radiation as in semiconducting superlatticgisaultaneously applied both dc-and ac-fields
will result in nonlinear phase of the instability @ observed in semiconducting superlattices (SL).
Mensah [3] studied the negative differential effeca semiconductor SL in the presence of an
external electric field. The theory indicated thla¢ current-density electric field characteristic
shows a negative differential conductivity whem <« 1 and this occurs in the neighbourhood
where the constant electric fielfjis equal to the amplitude of the ac electric fig|dand the peak
decreases with increasifig The theory agrees fairly well with an experimgfitthat indicated
“right shift” of the IV maximum, which is typicalofr a SL without domain formation. Reference
[4] demonstrated ultrafast creation and annihifatdd space-charge domains in a semiconductor
superlattice observed by use of Terahertz fields.

Up to now, NDC has been observed only in a d.cteteéeld in both doped and
undoped CNs. We shall, in this paper, show thatgbssible in a d.c and a.c electric fields.



This work will be organised as follows: sectioddals with introduction; in section 2, we
establish the theory and solution of the probleattisn 3, we discussion the results and draw
conclusion.

2. Theory
We consider a response of electrons in an undopegiesvall achiral CNS (ie zigzag or
armchair ) to the action of a strong pump field.
E(t) =E, + E;coswt )
Where the dc biag,is small and the ac field is quasistatia, < 1.

The investigation is done within the semiclassaggbroximation in which the motion of
7 —electrons are considered as classical motion ef dueasi-particles in the field of crystalline
lattice with dispersion law extracted from quanttimeory. Taking into account the hexagonal
crystalline structure of a rolled grapheme in anfoof CNs and using the tight binding
approximation, the energy dispersion is expressed a
a

V3

a

e(sApy,p;) = &(p) = 1vo [1 + 4cos(apz)cos( Spr) + 4cos? (\/§5Ap(p)]l/2 @

for the zigzag CNs and
A = Tyo|1+4 ? A 4cos? ? A & 3
£(sApy.p,) = &(P,) = tv, [ + 4cos(ap,)cos (ﬁs pq)) + 4cos <ﬁs Pq,)] 3
for the armchair CNs [2].
Wherey,~3.0eV is the overlapping integrap, is the axial component of quasimomentup,, is
transverse quasimomentum level spacingsaiscan integer. The expression om Egs. (2) and
(3) is given asa = 3b/2h, b = 0.142nm is the C-C bond length. The — and + signs cornegpo
to the valence and conduction bands respectivelg. tb the transverse quantization of the quasi-
momentum, its transverse component can taélscrete valuess, = sAp, = mv3 m/an (s =
1....,n). Unlike transverse quasimomentyry, the axial quasimomentup} is assumed to vary
continuously within the ranggé < p, < 2m/a , which corresponds to the model of infinitely dpn
CN(L = ). This model is applicable to the case under camattbn because of the restriction to
the temperatures and /or voltages well above tred Bpacing [5], iekgT > ., Ae , whereky is
Boltzmann constantf; is the temperature, is the charging energy. The energy level spaging
is given by
Ae = mhug /L 4)
wherev; is the Fermi velocity and is the carbon nanotube length [6]
Employing Boltzmann equation with a single relasattime approximation

af (p) af (p) [f () — fo()]
gt TeEO = T
wheree is the electron chargé,(p) is the equilibrium distribution functionf(p, t) is the
distribution function, an# is the relaxation time. The electric fiel is applied along CNs axis.
In this problem the relaxation termis assumed to be constant. The justificatiort foeing
constant can be found in [7]. The relaxation tefria. (5) describes the effects of the dominant
type of scattering (e.g. electron-phonon and edeetwistons) [8]. For the electron scattering by
twistons (thermally activated twist deformationglué tube lattice); is proportional ton and the
I —V characteristics have shown that scattering bytbwssincreaseB™**and decreases
|0j,/0E,| in the NDC region; the lesser, the stronger this effect. Quantitative changethef
I —V curves turn out to be insignificant in comparisdth the case of = const [7, 8].
Expanding the distribution functions of interesHourier series as;
n

)

fo(p) = Bp,, Z 3(p, — sAp,) Z fs €197Pz )

and s=1 r0
F0.6)= 80y ) 5(pp = 58Dg) ) fis €400 %

s=1 r+0



Where the coefficienf(x) is the Dirac delta functiorf, is the coefficient of the Fourier series
andg@, (t) is the factor by which the Fourier transform o tionequilibrium distribution function
differs from its equilibrium distribution countenpa

2
a

a e—iarpz
frs = Znqu,sf T+ exp(e, () /n T) P ®

0

Substituting Egs. (6) and (7) into Eq. (5) , anlvimg with Eq. (1) we obtain

WO D D T et kP ®

k=—o00 m=—oo

wheref = T—E Jx(B) is the Bessel function of thig" order and) = eak,.
1
Similarly, expandinge.(p,)/y, in Fourier series with coefficients,

Ss(ps,Squa) — gs(pz) — Z grseiearpz (10)
Yo r+0
Where
2n
Ers = H gs(pz)e—iearpz dp, an
0 0
and expressing the velocity as
9¢&5(p,) . ;
R O (12)
z 0

We determine the surface current density as

. 2e e
Jo = e || FOYv0),

or

2m

jz :(Zf[—il)ZZf f(Pz, SAp(p' (Z)v(t))vz(pz'SAp(p)de (13)
s=1p

and the integration is taken over the first Brillozone. Substituting Egs. (7), (9) and (12) into
(13) we find the current density for the zigzag Citer averaging over a period of timgwe
obtain

8ey, i - JE(rB)(@r + kw)T Zn:

2 = 14
/ V3hna,_,. ~ " L1+ ((ar+ ka))r)z pr a
Forwt < 1, Eqg. (14) can be re-written in the form of Ref. §3;
__Bn S (G 2y - g2 -1\
2= Jahna,_. & [1+ @+ B2 + 2 - B)?]]
X Y frstrs (15)
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3. Results, Discussion and Conclusion

The current density expression in zigzag CNs stbjeio dc bias field, and quasistatic
ac field(wt « 1) is obtained by using the solution of the Boltzmaguoation with constant
relaxation timer.

We observed that the current dengitig a function of the electric fielff, andE;. We
illustrated how these parameters affgctising Matlab. Fig. 1 represents the graph, 6f,
on E, for =2, 4, and 8 at wt =0.2. Fig. 1(a) represents the armchair CNs and (b)
superlattices.. The figures show the linear depecelef j, onE, at weak strengths of the electric
of the external field (i.e. the region of ohmic dawtivity). As E,increases, the current density
Jj./J, increases and &, = E,”"** the current density reaches a maximum valy¢j,)™**.
Further increase df,results in the decrease of th€j,> Thus, the region of negative differential
conductivity (NDC) wheréj,/dE, < 0. We noted that in the case investigated theresisifa of
the maximum of the current density electric fieldhes towards largeE, values. This “right
shift” is caused by a nonliearity of the Esaki-Taharacteristics which is very strong in CNs
because of the high stark component (summationmgvdihe role of the high stark components in
CNs is essential and intergral nonlinearity of @Ns is much higher than in SL [9, 10].The shift
increases with increasing the amplitude of theeld.f

Thel —V curves are qualitatively similar for the CNs ahe superlattices (see Fig.1).
However, the NDC effect in SL appeared at largeldfstrengths comparing with the CNs.

The estimations of the restrictions of the theesdtiapproach used can be found in
[11]. From expression (15) a graphjofj, — E, is plotted and it is observed thgt assumes its
maximum value in the vicinity of. = g for any given value of. This indicates that NDC is
observed where the constant fidigl is approximately equal to the amplitude of the @l€ctric
field E;. It is quite interesting to note that the graphexgbression (14) and (15) are qualitatively
the same fowt < 1. See Fig. 2 and the peaks of the curves decreatfescreasing; .

In conclusion we have studied theoreljddle current-density electric field charactedsti
the presence of ac-dc driven field and negativieidifitial conductivity was observed. The
current-density electric field characteristic shavsegative differential conductivity when
(wt « 1) (quasi-static case). This occurs in the neighbamarhwhere the constant electric field
E, is equal to the amplitude of the AC electric fi€ldand the peak decreases with increaging
We suggest that this phenomenon can also be us#tefgeneration of terahertz radiation without
electric current instability.
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Fig. 1: j,/j, — E, curves for (a) armchair and (b) superlattice wHerJwz = 0.2,a = 2; ()
wr=02a=4 (—Jwt=02a=8.
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Fig. 2: j,/j, — E, curves for (a) Expression (14); whén)wt = 0.2,a=2; (- Jwr =
0.2,a = 4; [—]wr = 0.2,a = 8 and (b) Expression (15); Wheﬁw:—]ﬁ =0.2; [ ]B = 0.4; and
(—)B =08
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