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Abstract: We study theoretically a multi-frequency response of electrons
in confined graphene subject to dc-ac driven fields. We explore the pos-
sibility for using graphene nanoribbons (GNRs) to generate and amplify
terahertz (THz) radiations in electric field domainless regime. We discover
two main important schemes of generation; when the frequencies are com-
mensurate, THz generation is due to wave mixing and when they are non-
commensurate, a single strong field suppresses space charge instability and
any weak signals can get amplified. The use of graphene as a best substitute
for semiconductor nanoelectronic devices is suggested.
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1. Introduction

Graphene is a monolayer of one atom thick with fascinating carrier trans-
port properties. Especially, its high current density and high carrier mobil-
ity of 44000cm2V −1s−1 [1]. But attempts to utilize these unique properties
in graphene devices is posing some difficulties. The limitation is probably due
to several factors including; lack of bandgap in graphene sheets, edge defects,
disorder, among others. To overcome some of these obstacles, the dimention of
graphene sheets has to be reduced or the geometry altered. After all, new physics
(quantization) emerge when dimensions of materials are reduced. An infinite 2D
graphene could become 1D + quantization along one other direction opening
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a gap. The resulting material is known as graphene nanoribbon (GNR). De-
pending on the nature of the edges, one can get two symmetry groups from this
GNR; armchair graphene nanoribbon (aGNR) or zigzag graphene nanoribbon
(zGNR). Electron dynamics of both aGNR and zGNR have different electronic
properties, mostly due to the berry phase and pseudospin [2]. Edge states have
significant contribution to graphene properties, because in a nanometer size rib-
bon, massless Dirac fermions can reach the edges within a femto-second before
encountering any other lattice effects, like electron-electron interaction, electron-
phonon interaction, etc.

In this paper, we study the phenomenon of generating frequencies in the ter-
ahertz (THz) range. The development of sources and sensors emitting and de-
tecting electromagnetic waves in the terahertz regime has been the subject of
interest for some time now. And holds great promise for graphene based THz
metamaterials, optoelectronic devices, THz lasers, fast switching mechanisms,
spectroscopy, wireless communication [5]. Recently, THz generations are studied
in graphene by resonance tunneling-like configuration [6], by tunable plasmon
excitations and light-plasmon coupling [7] and by optical pumping of graphene
[4, 11, 8]. Bloch oscillations up to 10 THz can be generated in periodic graphene
structures [9]. Today, semiconductor superlattices are used as sources for THz
radiation and detection. However, GNRs are better candidates because of their
low dimensionality, striking electronic properties and the possibility of control-
ling these properties via applied gate voltage. Graphene is also relatively easy
to fabricate in laboratory.

The physical mechanism governing THz generation in graphene, when subject
to applied electric field, can be understood in terms of ballistic trajectories of
electrons in the quasi-momentum space. When graphene is subject to an electric
field, ballistic acceleration of charge carriers generates to-and-fro motion of the
whole distribution function, which varies from zero to several electron volts. It
is a collective motion of these charges that manifest THz oscillation of carriers
in graphene. The highly nonlinearity of graphene as a carbon allotrope and
the fact that it has non-parabolic energy spectrum can also account for THz
production in the material. This last effect is more applicable if the frequencies
are commensurate. When two or more commensurate frequencies interfere in
a region they could result in creation of fields with zero frequencies, i.e static
fields. These bias fields are responsible for Bloch oscillations at THz frequencies
[16].

The remaining of this paper is organized as follows; In section 2, we introduce the
current density of aGNR and zGNR and imposed certain conditions to reduce
the equations to simple forms appropriate for our systems under discussion. By
limiting the harmonics fields to only two terms, we deduce I-V characteristic
equations for describing THz generations in section 3. The equations obtained
in the preceding section are plotted and discussed in section 4, with conclusion
and some recommendations for future applications in section 5.
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2. Current density equation

For detailed calculation of current density for GNR, see our recent paper [12].
To avoid book keeping, we state without repetition of the proof, the relation for
the sheet current density when graphene is subject to an external field of the
form E(t) = E0 +

∑

j Ejcos(ωjt+ αj) as

j(t) = i

∞
∑

r=1

j0r





∞
∑

nj , νj=−∞

n
∏

j=1

Jnj
(rβj)Jnj−νj (rβj)

eiνjωjt+iνjαj

1 + iτ(rβ0 + njωj)
+ c.c



 .

(2.1)
Where j0r is the peak current density, Jn(β) is a Bessel function of order n and
argument β = elτE/~ω and β0 = elE0/~. For the rest of this paper we will
consider a maximum of two harmonic frequencies ω1 and ω2. Because n = 2,
the above equation will look like

j(t) = i

∞
∑

r=1

j0r

∞
∑

n1 n2, ν1 ν2=−∞

Jn1
(rβ1)Jn1−ν1(rβ1)Jn1

(rβ2)Jn2−ν2(rβ2)

1 + iτ(rβ0 + n1ω1 + n2ω2)

×ei(ν1ω1+ν2ω2)t+iν1α1+iν2α2 + c.c, (2.2)

where

j0r =
2gsgveγ0

πl~
∆θ

n
∑

s=1

rErsfrs

and gs, gv are the spin and valley degeneracies. l =
√
3a/2, ∆θ = πs/(n+1) for

aGNR and l = a/2 and ∆θ = π(s+ 1/2)/(n+ 1) for zGNR.

3. Current generation and THz amplification

When the electric field is applied to graphene, there naturally arises two schemes
of generation and amplification. (a) unbiased, E0 = 0 at even harmonics with
commensurate frequencies and (b) biased, E 6= 0 at non-commensurate frequen-
cies. In the following sections, we study both scenarios in details.

3.1. Commensurate frequencies

If one averages out Eq.(2.2) over a period of the GNR in both sides of the
equation, we get 〈j(t)〉 = j and in the right hand side a delta function emerges
which ensures that ν1 = −ω2

ω1

ν1. Further, we consider an applied field consisting
of purely periodic multiple harmonic frequencies, i.e ω2 = µω1, ω1 = Ω with
µ being an integer or fraction. Taking the sum over n2 after linearizing with
respect to E2 in the weak field β2 << 1 limit. This restricts the order n2 of
the Bessel function to take only small values ±1. The real part of the current
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density then becomes

j = i

∞
∑

r=1

j0,r

∞
∑

n1=−∞

J0(rβ2)
∑

n2=±1 Jn2
(rβ2)Jn1

(rβ1)Jn1+µn2
(rβ1)

1 + iτ(rβ0 + [n1 + µn2]Ω)
ein2α.

(3.1)

The integer µ can take even or odd values. Odd integer values will yield an imagi-
nary current density. This means that odd harmonics are not very interesting for
THz generations but can still exhibit NDC [13]. Substituting J0(rβ2)J+1(rβ2) ∼
rβ2/2 in the preceding equation we arrived at

j = j0
elτ

µ~Ω
E2cosα

∞
∑

r=1

N
∑

s=1

r2Ersfrs

×
∞
∑

n=−∞

[

Jn(rβ1)Jn+µ(rβ1)

1 + iτ(rβ0 + [n+ µ]Ω)
− Jn(rβ1)Jn−µ(rβ1)

1 + iτ(rβ0 + [n− µ]Ω)

]

. (3.2)

We have obtained this equation due to wave mixing of commensurate frequen-
cies. Direct Bloch oscillations could still be induced even for zero static field,
but for µ equal to half-integers. We do not consider that here, so we fix β0 = 0.
In fact, it is not hard to bring the real part of Eq.(3.2) to the form in [14],
i.e

j = j0
elτ2

µ~
E2cosα

∞
∑

r=1

N
∑

s=1

r2Ersfrs
[

∞
∑

n=−∞

nJn(rβ1)Jn−µ(rβ1)

1 + (nΩτ)2

]

. (3.3)

However, the advantage of our equation over [14] is that µ does not have to be
2 only.

3.2. Non-commensurate frequencies

If the frequencies are not commensurate, then the condition ν1+µν2 = 0 is lifted
and ω2 6= νω1. However, it is still possible to amplify frequencies in the THz
domain if one considers ω1 and ω2 as pump and probe frequencies respectively.
Both frequencies belong to THz range, i.e ω1τ & 1 and ω2τ & 1. This approach
has been adopted in [15, 16] for superlattices and in experiment for generating
THz using resonance tunneling-like configuration in graphene [6] and amplifying
small frequencies in epitaxially grown graphene heterostructures [8]. Here, the
THz is generated because the pump field excites electrons, the space charge
instability is suppressed by the strong (pump) field while the week probe signals
get amplified.

The real part of Eq.(2.2) for the two frequencies which are not related (α1,2 = 0)
takes the form

j = i
∞
∑

r=1

j0r

[

∞
∑

n1 n2=−∞

J2
n1
(rβ1)J

2
n2
(rβ2)

rβ0τ + n1ω1τ + n2ω2τ

1 + [τ(rβ0 + n1ω1 + n2ω2)]2

]

, (3.4)
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where we have assume that ν1 = ν2 = 0.

Most often, we shall be using the ratio E1,2/Ecr which is defined as

E1,2

Ecr

= β1,2ω1,2τ, with Ecr =
~

elτ
(3.5)

instead of just β1,2.

4. Results and Discussion

In Fig.1, we have demonstrated dependence of non-linear current density on
the harmonic index µ for week (top) and strong (buttom) ac amplitudes. In
both cases, some µ values give positive (j−) and negative (j+) current density.
The series resulting in j+ yields Bloch oscillations of the current density that
decays faster to j = 0 from above as in Fig.2 (right). The series that results
in j− produces Bloch oscillations that is asymptote to j = 0 from below as in
Fig.2 (left). This means electronic oscillations persist for some time before dying
off and thus the µ-series that give j− is the better option for THz production.
They are two sub-categories of j±. j+: µodd = 1, 9, . . ., µeven = 4, 6, 8, 10 . . .
at low ac amplitudes and µodd = 1, 5, . . ., µeven = 4, 8, . . . at high amplitudes.
j−: µodd = 3, 5, 7, . . ., µeven = 2, . . . at low ac amplitude and µodd = 3, 7, 9, . . .,
µeven = 2, 6, 10, . . . at high amplitudes. From the graphs, we found that µeven =
2, 4 and µodd = 1, 3 are robust against the ac field amplitudes, E1, E2.
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Fig 1. Non-linear current density with harmonic index, µ. cos(α) = 1
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The graphs in Fig.2 show the behavior of terahertz current density on the ac
field amplitudes for armchair and zigzag graphene nanoribbons at µ = 2, 4.
For low E1/Ecr values at Ωτ = 2, the absolute current steadily increases to
maximum before falling. The curve then begins to oscillate above certain ac
threshold amplitude, E1,min. Under our default parameters, E1,min = 2Ecr for
aGNR and E1,min = 2

√
3Ecr for zGNR. This oscillations are predicted to lie

within THz range [14].
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Fig 2. THz current density against ac field amplitudes for armchair and zigzag graphene
nanoribbons. (Left) second harmonic, µ = 2 and (right) fourth harmonic µ = 4. cos(α) = 1.

We also studied in Fig.3 the combined effect of Thz current with reduced ac
amplitudes and frequencies. Oscillations disappear when Ωτ << 1. This region
is not feasible for THZ generation. However, for Ωτ ≥ 1 oscillaions are more
pronounced and a graphene device under this condition can operate effectively
to produce THz frequencies.

Within the scheme of commensurability of frequencies, we have finally demon-
strate the behavior of THz current on both phase difference and ac amplitudes
in Fig.4. There are some phase differences where there is no oscillations, this is
indicated on the contour as straight lines. Interestingly, current peaks when the
two ac fields are out of phase, i.e α = π and E1 = 5Ecr.

Now, we turn to the case of non-commensurate frequencies. In Fig.5, we plot
THz current with ac amplitudes in the presence of another stronger ac amplitude
but with weak frequency and biased static field. It is this weak frequency that
excites electrons after the electric charge instability is suppressed by the strong
ac field amplitude. The excited electrons Bloch oscillates at rather magnified
frequency within the THz range. However, the nature of oscillations in the figure
is different from what we have seen earlier. Here, the curve falls quickly and then
begins to oscillate almost immediately.



Rabiu Musah et al./Terahertz generation and amplification in graphene nanoribbons 7

0 1 2 3 4 5 6 7 8
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

 E
1
 / E

cr

 j 
/ j

0

Ωτ = 2.0
Ωτ = 1.0
Ωτ = 0.5

Fig 3. THz current density against ac field amplitudes for armchair and zigzag nanoribbon
at various Ωτ values. cos(α) = 1

Fig 4. Three dimensional plot showing THz current oscillations at varying ac field and phase
difference.

The graph in Fig.6 also shows effects of both the ac fields E1, E2 on THz current.
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Fig 5. THz current oscillations at non-commensurate frequencies. E0 = 2.5Ecr.

Fig 6. Three dimensional plot showing THz current oscillations at varying ac fields. ω2 =
0.7ω1, E0 = 2.5Ecr

5. Conclusion

We have studied theoretically, two schemes of THz production; generation and
amplification at commensurate and non-commensurate frequencies respectively.
For commensurable frequencies, we discovered two harmonic series, µodd =
2, 4, ... and µeven = 1, 3, ... which are robust against high ac field amplitudes
and at which values production is suitable. Generation at the commensurate
frequencies is due to wave mixing at zero bias field. For incommensurable fre-
quencies, there is THz amplification of small ac signals. A strong ac amplitude
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is neccessary to suppress charge instability at non-zero bias field.
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