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ABSTRACT 

 As semiconductor plasma medium experiences the spread of an acoustic wave, 

the wave reacts with several basic excitations. An example of such excitations 

is plasmon. In such a reaction in the presence of certain physical conditions, 

there is a lost or gain of energy in the acoustic wave.  Monolayer materials have 

offered several distinctive material concepts and properties that differ 

dramatically from their bulk counterparts. This work analytically studied 

longitudinal phonon-plasmon interaction in bulk (CdS) and monolayer (MoS2) 

semiconductors doped with nanoparticle cluster using fields of combined direct 

current-alternating current (dc-ac) and fields of commensurate frequencies. The 

theoretical formulation made use of the hydrodynamic model of plasma and 

macroscopic model of piezoelectric media to derive an expression for the 

acoustic gain ( ).Variation of the acoustic gain with velocity ratio, behavior 

of the acoustic gain per unit length 
sv

 
 
 

 with frequency and variation of the 

acoustic gain with carrier density (
0en ) were explored graphically and 

investigated. The results show that velocity ratio ( i.e. the  ratio of electrons drift 

velocity  to sound velocity) is greatest for this monolayer material whenever it 

is subjected to both combined dc-ac fields and fields of commensurate 

frequencies. This variation also increases with increasing levels of nanoparticle 

(NP) cluster. Therefore, NP doped monolayer piezoelectric semiconductors will 

be better candidates for the fabrication of high speed sensors and transducers.  
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CHAPTER ONE 

INTRODUCTION 

              Chapter one presents a background of this research work. It also 

highlights information on problem statement, the research significance, the 

objectives, delimitations and the limitations of the research and finally the 

organization of the study. 

  Background to the Study 

              As semiconductor plasma medium experiences the spread of an 

acoustic wave, the wave reacts with several basic excitations. An example of 

such excitations is plasmon. In such a reaction in the presence of certain 

physical conditions, there is a loss or gain of energy in the acoustic wave. The 

process whereby the acoustic wave loses energy is termed as attenuation and 

then amplification when it gains energy. The use of a dc electric field in a 

piezoelectric semiconductor has led to the realization of acoustic amplification.  

Most research scientists have studied in this area and used several ways of 

amplifying acoustic in several kinds of semiconductors.  

  Nanoparticles 

              Nanoparticles (NPs) are particles whose dimensions ranges between 1 

and 100 nanometers and surrounded by an interfacial layer. The integral part of 

nanoscale matter is known as the interfacial layer which affect fundamentally 

its characteristics or features. The interfacial layer comprises of ionic, inorganic 

and organic molecules (Laurent et al., 2008). Nanoparticles can be made from 

gold, silver, copper , silica, titanium dioxide, liposomes, hydrogel and many 

others (Masserini, 2013). Nanoparticles are grouped into different classes based 
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on their features, sizes or shapes. The different groups comprise of fullerenes, 

metal NPs, ceramic NPs, and polymeric NPs. The special physical and chemical 

characteristics of nanoparticles are as a result of their greater surface area and 

nanoscale size ( Sigmund et al., 2006; Mansha et al., 2017). Nanoparticles have 

principal parameters such as shape, size, and the morphological sub-structure. 

Nanoparticles are in the form of mostly solid or liquid phase in air, mostly solid 

in liquids or two liquid phases.  In the existence of chemical agents also termed 

as surfactants, the surface and the interfacial characteristics undergo changes. 

The outer layer of the particle can undergo changes through the conservation of 

a charge of the particle as a result of indirect stabilization of the agents against 

aggregation. In the case of historical growth and the lifetime of a nanoparticle, 

complicated compositions, with complicated materials which are made up of 

two or more different substances physically combined are adsorbed, and 

expected.  

             In nanoscale, particle-particle interactions are generated as a result of 

weak Van der Waals forces, stronger polar and electrostatic interactions or 

covalent interactions. Based on the viscosity and polarizability of the fluid, 

particle aggregation is found by the interparticle interaction (Willets & Van 

Duyne, 2007). Piezoelectric semiconductors can be doped with NPs. As a result 

of phonon-plasmon interactions in nanoparticles doped piezoelectric 

semiconductors, the nanoparticles physical and chemical features can help in  

constructing high performance plasmonic devices and technologies. They also 

contribute to the reduction of the upper limit of the acoustic gain. The 

interaction of light with nanoparticles have been revealed to rely on the size, 

thereby giving dissimilar colours because of visible region absorption. 
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Nanoparticles have the condition or quality of being reactive, the ability to 

absorb energy and practically deform without fracturing. They also show 

distinctive features which rely on their special size, structure and shape. Because 

of the above features, NPs serve as better nominees in the activities of industries 

and various homes. Examples are; making a visual representation of materials 

using an electromagnetic beam, software developed for medical purposes, 

evaluation of renewable energy sources and health and safety monitoring 

(Dreaden et al., 2012; Eustis and El-Sayed, 2006; Saeed and Khan, 2016). 

  Phonons 

             Phonons are definite discrete units or quanta of vibrational mechanical 

energy or a phonon is a quantum of energy of the independent oscillators in an 

ensemble (Schwabl, 2008). They can also be defined as the vibration of the 

atomic lattice. Phonons exist with discrete amounts of energy: they lose or 

accept energy in accordance with the Planck relation:  ∆𝐸 = ℎѵ, where ∆𝐸 is  

the change in energy, ℎ is Planck’s constant and ѵ is frequency of vibration. 

Phonons behave similarly as particles or waves, just as electrons can. The 

smallest lattice point of solids having at least two atoms have two categories of 

phonons: acoustic phonons and optical phonons (Simon, 2013). Acoustic 

phonons are the coherent motion of atoms of the lattice from their equilibrium 

positions. Transverse and longitudinal acoustic phonons are mostly represented 

as TA and LA phonons, respectively. The motion of atoms in the lattice (out-

of-phase) whereby one atom moves to the left, and the other to the right are 

referred as optical phonons. They are often denoted as LO and TO phonons, as 

longitudinal and transverse optical phonons respectively: the splitting between 

LO and TO frequencies is accurately briefed by the Lyddane-Sachs-Teller 
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relation. They belong to a group of particles in quantum statistics called Bosons 

(Misra, 2010; Kittel, 2004; Fetter & Walecka, 2003).  

              Some of the novel applications of phonons are the design of 

metamaterials with the aim of controlling dissipative heat effects and also 

insulating, diffusion or absorbing sound waves in a super enhanced way 

(Schwabl, 2008). 

  Plasmons 

               A plasmon is a quantum of plasma oscillation. A plasmon can be 

regarded as a quasiparticle since it arises from the quantization of plasma 

oscillations, just like phonons are the vibration of the atomic lattice. Thus, 

plasmons are collective (a discrete number) oscillations of the free electron gas 

density. Plasmons can be classified into two groups. These are surface plasmons 

and volume plasmons.  Plasmons that are confined to surfaces and that strongly 

interact with light leading to a polariton are referred to as surface plasmons. 

Volume or bulk plasmons are the quanta of energy of volume plasma 

oscillations (Cottam & Tilley, 1989; Raether, 1980). Volume or bulk plasmons 

have higher energy than surface plasmons (Barnes, Deurrex & Ebesen, 2003). 

  Piezoelectric Semiconductors 

              Piezoelectric semiconductors (PSCs) are semiconductors without 

center of symmetry and when they undergo mechanical deformations, they 

produce electric charges, and vice versa, when electric fields are applied to 

them, they are mechanically strained. In piezoelectric semiconductors, the 

electric fields that accompany an elastic wave produce electronic currents and 

space charge which modify the attenuation and wave velocity. 
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               Piezoelectricity is an important property of non-centro symmetric 

crystals that allows the conversion of mechanical strain into electric field. The 

linear electromechanical interaction or reaction between the mechanical and 

electrical states within crystalline materials without inversion symmetry 

produces piezoelectric effect. The piezoelectric effect is a reversible process: 

materials generating the piezoelectric effect (the internal generation of electrical 

charge resulting from applied mechanical force) also show a reverse effect of 

piezoelectricity, the internal generation of a mechanical strain obtained from   

electrical field that is applied. The deformation of the static structure of lead 

zirconate by about 0.1% of its original dimension produces piezoelectricity that 

can be measured. However, these crystals will alter about 0.1% of their static 

dimension by the external application of the field to the material (Manbanchi & 

Cobbold, 2011). 

              A number of usual applications, such as the production and detection 

of sound, piezoelectric inkjet printing, generation of high voltages, electronic 

frequency generation, and ultrafine focusing of optical assemblies make use of 

piezoelectricity. Also, it serves as the basis for a lot of scientific instrumental 

techniques with atomic resolution. 

                A few widely used PSCs have a crystal class of 6 mm and are of n-

type with electronic conduction (Hickernell, 2005). The piezoelectric 

semiconductors of crystal class 6 mm which are mostly utilized include Zinc 

Oxide (ZnO), Cadmium Sulphide (CdS), and Cadmium Selenide (CdSe) 

(Hickernell, 2005) serve as typical examples of n-type semiconductors because 

of their native defects. Considering a lot of components used in controlling 

electrical currents, the use of semiconductors which are piezoelectric are 
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normally considered to be the elementary ones because they exhibit special 

features.  

              Many devices obtained from acoustic waves are revealed to be 

manufactured from piezoelectric semiconductors. In a process that creates 

growth or positive change in science, engineering and technology conducted at 

the nanoscale that ranges from 1 to 100 nm, several devices with at least one 

dimension in the nanoscale are been manufactured from nanowires from ZnO 

(Hu, Zeng & Yang, 2007). A change in electric polarization have been found in 

ZnO and CdS semiconductors. For example; hardness, strength, elasticity, etc. 

of piezoelectric semiconductors are already investigated. Based on the 

investigations of the unique reaction between forces that feature some direct 

contact between two objects and a particle that is free to move, carrying an 

electric charge of PSCs, many modern single devices which are based on 

piezoelectric semiconductors with an electrical and mechanical components are 

reported, which comprises of devices that generate or sense ultrasound energy 

and those based on piezoelectricity (Hickernell, 2005). The strongest 

piezoelectric semiconductor materials are from wurtzite family of crystal 

structure such as ZnO, GaN, InN, and AlN.  

               PSCs have widely been applied in various smart structures, and 

electromechanical devices and systems. The properties stemming from 

piezoelectric-semiconducting coupling in nanowires have inspired the 

development of many devices yielding a new field called piezotronics that has 

attached interests for various applications and research (Johar, Hassan, 

Waseem, & Ryu, 2018). Due to the fact that piezoelectric semiconductors can 

be utilized in changing mechanical energy to electrical energy and also since 
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they are semiconductors, they can be used as junction device for performing 

diode and transistor type functions. These properties influence them to be strong 

candidates for use in electromechanically coupled sensors, and transducers. 

Piezoelectric semiconducting coupled property of PSC is used in the fabrication 

of novel and unique electronic devices and components by introducing the 

concepts of piezotronics (Zhao, Li, Yan & Fan, 2016).              

  Statement of the Problem 

                 A number of research works have been done on piezoelectric 

semiconductors doped with nanoparticles using dc and ac fields (Ghosh & 

Dubey, 2017). However, no study has been reported on phonon-plasmon 

interaction in piezoelectric semiconductors doped with nanoparticles using 

combined dc-ac fields and fields with commensurate frequencies.  Hence a 

research on this sort is looked at under this study.  

  Objectives of the Study 

            The main objective of the study is to analytically study phonon-plasmon 

interaction in piezoelectric plasma medium doped with a nanoparticle using 

combined dc-ac fields and fields with commensurate frequencies with respect 

to material and field parameters. 

             The specific objectives are to: 

(i) understand the physics of phonon-plasmon interactions in nanoparticle           

    doped PSCs by analytically deriving an expression for the acoustic gain. 

(ii) investigate the variations of acoustic gain with the physical parameters of      

      the material media using codes developed in MATLAB. 
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 Significance of the study 

           From the study, results obtained will assist in the provision of the 

necessary additional theoretical basis for the phonon-plasmon interaction in 

doped piezoelectric semiconductors in order to promote the understanding of 

the physics of phonon-plasmon interactions in such media. 

              Based on the nature of the variation of the gain with the piezoelectric 

materials, possible practical applications will be suggested. 

   Delimitations 

              The scope of the study will cover analytical derivation of expressions 

for the gain using combined dc-ac and commensurate fields. The work will also 

compare the variations of acoustic gain with wave frequency, carrier density 

and velocity ratio. Typical values of parameters of n-CdS, and MoS2 

semiconductor plasma will be adopted to calculate the gain using the analytic 

derivations acquired.  

  Limitations 

               The limitations of this work are as follows: 

(i)The study would have considered different piezoelectric semiconductors 

doped with same nanoparticles but due to time constraint and computational 

limitation, only few were considered under study. 

(ii) A piezoelectric semiconductor doped with nanoparticles of different 

dimensions could have been considered but due to lack of time this has not been 

considered in this study. 
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(iii) Phonon-plasmon interactions in nanoparticles doped piezoelectric 

semiconductor could have been modelled computationally but due to time 

limitation this was not carried out under study. 

 Organization of the study 

               This work comprises of five sections: Chapter one deals with the 

background to the study with a short introduction that presents the problem 

under study, why the problem is important, how the study relates to previous 

work, and the practical and theoretical implications of the study. This chapter 

also points out existing knowledge gaps, controversies to be resolved, what 

previous research in the area has not been resolved, and so forth. The chapter 

also stated the reason of conducting this work as well as it objectives. The 

relevance of the work is also stated. It also covers the scope and the constraints 

or hindrances of the work. The second section deals with a recap of what the 

study is about. It also covers the key concepts or theories around which the study 

is built. Chapter three covers the theoretical formulation; the designed 

procedures used in obtaining the results in the research. Chapter four presents 

the results or the findings from the research. It also addresses the endings and 

then interprets the investigations by linking them to previous findings. The fifth 

section covers the conclusions and the recommendations of the study.  

Chapter Summary 

             This chapter outlines the background of the study. It also provides 

information on problem statement, the significance of the study, the objectives, 

delimitation and limitations of the research. The concept of phonons, plasmons, 

nanoparticles and piezoelectric semiconductors are highlighted. 
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CHAPTER TWO 

LITERATURE REVIEW 

  Introduction 

              This chapter reviews previous works that are related to the study. The 

concept of piezoelectric semiconductors is analyzed and reviewed. In addition, 

phonons in piezoelectric semiconductors, general interactions in piezoelectric 

semiconductors, and acoustic wave amplification in piezoelectric 

semiconductors. Optical and electrical properties of nanoparticles are also 

reviewed. 

  Piezoelectric Semiconductors 

               Piezoelectric semiconductors (PSCs) are semiconductors without 

center of symmetry (Elloh, 2001) and when they undergo mechanical 

deformations, they produce electric charges, and vice versa, when electric fields 

are applied to them, they are mechanically strained (Willatzen & Christensen, 

2014). In piezoelectric semiconductors, the electric fields that accompany an 

elastic wave generate electronic currents and space charge which modify the 

attenuation and wave velocity. 

                Piezoelectric semiconductors that exhibit elementary features are 

narrated using phenomenological theory of linear vicoelastic behavior 

(Hickernell, 2005). This theory has been used to examine the problem of 

inclusion for piezoelectric semiconductor composites, the electromechanical 

energy conversion in these materials, the fracture of piezoelectric 

semiconducting materials, vibrations of piezoelectric semiconductor plates, and 

ensures the growth of theories of semiconductor shells and plates that are 
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piezoelectric and restricted in one or more directions.  Also with large 

mechanical destructions, the complete general nonlinear theories for 

piezoelectric semiconductors in the presence of strong electrical fields have 

been developed by scientists (Hu, Zeng & Yang, 2007). In piezoelectric 

semiconductors, several scattering mechanisms occur which includes ionized 

impurity scattering, polar and nonpolar optical phonon scatterings, acoustic 

phonon scattering, carrier-carrier scattering, piezoelectric scattering and alloy 

scattering among others which determine the variation of mobility with 

temperature, carrier concentration, and in some cases the compensation ratio 

(Hickernell, 2005). 

              For an increase in acoustic wave and also by the transport of an acoustic 

charge as a result of the motion of carriers under the influence of electrical field 

accompanying an acoustic wave, piezoelectric semiconductors serve as better 

candidates for designing piezoelectric devices (Ghosh and Muley, 2016). 

Piezoelectric semiconductors serve as better nominees in changing mechanical 

energy into electrical energy or electrical energy into mechanical energy as a 

result of interaction between acoustic phonons and plasmons by means of 

piezoelectricity. Currently, piezoelectric semiconductors are playing an 

important role in fast growth of wireless electrical devices because of their 

ability in providing power to very minute or small electrical devices with 

decreased power expectation (Ghosh and Muley, 2016).  

 Phonons in piezoelectric semiconductors 

             Phonons are quanta of energy or quasiparticles associated with a 

compressional wave such as sound or a vibration of a crystal lattice. Phonons 

can also be defined as units of vibrational energy that arise from oscillating 
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atoms within a crystal (Schwabl, 2008). Practically, phonons exist in all features 

of materials such as the limitation of electrical conductivity by acoustic and 

optical phonons. The interaction of light with piezoelectric semiconductors is 

enhanced by optical phonons, meanwhile acoustic phonons serve as carriers of 

heat in materials that do not conduct electricity and also play a vital role in those 

that can conduct electricity partially. 

             Lattice vibrations have basic theory dates back to the 1930’s and is still 

considered today to be the reference theory in this field. It is well known that 

optical transitions between bound states of defects in piezoelectric 

semiconductors usually involve the absorption or emission of phonons (Krauth, 

2006; Kittel, 2004). At very less temperatures, optical phonon scattering in a 

piezoelectric semiconductor is suppressed, scattering by acoustic phonons can 

be expected to become an important limiting factor for the mobility of the two-

dimensional electron gas confined to the atomic layer of an extrinsic two-

dimensional piezoelectric semiconductor (Krauth, 2006; Kittel, 2004). 

Longitudinal optical phonon generation in direct-gap polar piezoelectric 

semiconductors by electrons is more intense because electrons accelerated in 

electric field can lose all their kinetic energy giving birth to the phonons (Simon, 

2013).  

             The elasticity model (Krauth, 2006; Kittel, 2004) has been adopted in 

establishing features or characteristics of phonons in piezoelectric 

semiconductors such as nanofilms made from GaN. Based on the relation of 

piezoelectric constituent in nanofilms made from GaN, the expression of 

dispersion of phonons has been determined. The speed of propagation of 

acoustic phonons, the number of electron states per unit volume per unit energy 
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(phonon density) and the ability of phonons to show conductivity properties  

have also been found because of the role played by piezoelectricity. 

Piezoelectricity in piezoelectric semiconductor nanofilms such as those made 

from GaN beneficially alters the features or characteristics of phonon such as 

the phonon speed of propagation and proportion of states that are to be occupied 

by the phonons at each energy, leading to differences in the ability of nanofilms 

made from GaN to conduct heat. Phonons transport heat in semiconductors; 

thus, the investigation of  phonon properties and phonon thermal conductivity 

in semiconductor nanostructures becomes essential (Xu, 2016). 

A convenient tool for the dynamic manipulation of optical phonons in 

piezoelectric semiconductors is provided by surface acoustic waves which are 

mechanical waves of deformations on a surface popularly generated when a 

high frequency signal is applied to electrodes on a piezoelectric surface, using 

an interdigitated transducer (Hutson & White, 1962). 

            A number of interesting phenomena associated with phonon instability 

have been noted in piezoelectric semiconductors. Typical experimental features 

include the amplification of the injected supersonic wave and the nonohmic-

current behaviors such as the current saturation in the steady state or the various 

types of oscillatory current (Yamada, 1968). 

 Plasmons in piezoelectric semiconductors  

            A plasmon is a quantum of plasma oscillation. The plasmon can be 

considered as a quasiparticle since it arises from the quantization of plasma 

oscillations, just like phonons are quantization of mechanical vibrations (Maier, 

2007). However, in the presence of oscillation frequencies of the electric field 
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of light (optical frequencies), the quanta of plasma oscillations can interact with 

an elementary particle such as photon in the production of other quasiparticles 

known as surface plasmon-polariton. A lot of features of plasmons are 

established by Maxwell’s equations (Raether, 1980). Materials made from 

plasmons quickly alter at the optical frequency with respect to their optical 

features. There is a negative permittivity in the case of frequencies that are lesser 

than the resonance frequency of plasmons. Some structures and devices that 

behave extraordinarily as field enhancement and sub-diffraction mode 

confinement are influenced by a negative permittivity. In sensing and photonic 

circuits, the devices and structures are better applied.  However, irrespective of 

capability and desire, the limitations of applied devices made from plasmons 

are as a result of light which could have generated an electron-hole pair, but 

does not (Feng et al, 2015). Collective excitations in classical plasmas were first 

examined by Langmuir. The pioneering theoretical investigations on their 

quantum counterparts were carried out by Bohm and Pines ( Bohm & Pines, 

1951). Experimental evidence for the existence of plasmons as a well-defined 

collective mode of the outermost shell electrons of metals comes from 

characteristic energy-loss experiments (Atwater, 2007; Ekmel, 2006). The 

collective oscillation of free electrons in a piezoelectric semiconductor may 

involve surface charge density called surface plasmons or volume charge 

density called volume or bulk plasmons. Surface plasmons are those plasmons 

that are confined to surfaces and interact strongly with light resulting in a 

polariton. They occur at the interface of a material showing positive real part of 

their relative permittivity, i.e. dielectric constant, and a material that have a 
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negative real part of permittivity at the given light frequency, typically a heavily 

doped piezoelectric semiconductor (Barnes, Dereux & Ebbesen, 2003).  

             Plasmons play a significant role in the optical properties of piezoelectric 

semiconductors. Light of requencies above the plasma frequency is transmitted 

by a material because the electrons in the material cannot respond fast enough 

to screen it. Semiconductors that exhibit piezoelectricity have outermost shell 

electron frequency of plasmons normally found within a region of deep 

ultraviolet (UV), the visible range also shows the transformation between 

electronic bands, in which particular colors are soaked up, resulting in the 

production of the distinct colours (Atwater, 2007; Ozbay, 2006). Piezoelectric 

semiconductors that are doped with or have impurities of nanoparticles 

establishes a frequency of plasmon located within regions of mid-infrared and 

near-infrared.  

 General Interactions in Piezoelectric Semiconductors 

            The interactions between collective excitations of free electrons and 

holes with the lattice vibrations is one of the fundamental interaction processes 

in piezoelectric semiconductors. Hutson & White,1962 have explained plasma 

waves with respect to the restraining of vibrational motion. The loss of energy 

in lattice waves results in the establishment of plasma frequency in a  

collisionless boundary. The existence of resonance between vibrations of 

applied optics of the plasma and the lattice waves with very small temperature 

is as a result of frequency not much greater than the frequency of plasma. There 

exist also an intense interaction between electrons that show conductivity 

properties and acoustic waves spreading through some areas in piezoelectric 

semiconductors such as CdS. The exchange mechanism of energy has greatly 
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been non-linear, and thus inclusion of many collinear acoustic waves into the 

piezoelectric semiconductors result in new signals at the frequencies of the 

combination (summation and difference). Through experimentation, the 

authenticity of such analysis method has been examined and confirmed, and the 

explanation of such mechanism of reaction in considering the non-linear cross 

term found in the equation of current-density is determined to be developed. 

(Dompreh, Mensah, Abukari, Sam & Edziah, 2015).  

              Interactions between charge carriers and phonons also occur in 

piezoelectric semiconductors. Piezoelectric semiconductors depict three types 

of charge carrier-phonon reactions. One type of these interactions is due to 

dilation associated with the lattice acoustic waves, which decreases the energy 

of the edges of band and such dilations are presented in terms of potential 

deformation. This is the commonest type of charge carrier-phonon reaction 

located within semiconductors showing piezoelectricity. The second type is the 

charge carrier-phonon reaction that happens in semiconductors with polarity 

whereby a strain attached with acoustic phonons can produce a macroscopic 

electric polarization known as the effect of piezoelectricity. The interaction 

coordinate could denote the destruction in the electrovalent or ionic regime 

because of the electric potential fields of piezoelectricity. The third interaction 

can be applied to piezoelectric semiconductors with polarity. The charge carrier-

acoustic phonon reaction as a result of piezoelectric interaction possess non-

zero role played by both longitudinal and acoustic phonons respectively. The 

piezoelectric charge carrier-phonon reaction has not led to a great focus from 

semiconductors that are piezoelectric (Misra, 2010 ; Kittel, 2004 ; Fetter & 

Walecka, 2003). 
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             Phonons can affect electrons through their reactions. These reactions 

play a vital role on the optical and transport features of electrons found within 

piezoelectric semiconductors. Optical phonons are considered in the production 

of “internal strain” and their coupling with electrons can be narrated by optical-

phonon deformation potentials. Piezoelectric semiconductors that have polarity, 

both high acoustic and optical phonons wavelength could produce electrical 

fields by means of charges attached with the ions in motion. These fields can 

couple intensively with electrons, resulting in Frohlich interaction for optical 

phonons and piezoelectric electron-phonon interactions for acoustic phonons 

(Talwar, Vandevyer, Kunc & Zigone, 1981). 

 Electrical Properties of Nanoparticles 

            Electrical conductivity is an important property for technological 

applications of nanoparticles that has failed to be widely investigated. 

Conventional descriptions such as the Maxwell model do not account for 

surface charge effects that play an important role in electrical conductivity, 

particularly at higher nanoparticle volume fractions (Laurent et al., 2010). In 

nanoparticles, especially metal nanoparticles, the dc electrical conductivity is 

much affected by the microstructure, and this is a consequence of large area to 

bulk ratio of the individual grains. The length scale of the microstructure is 

compared to the electrons mean-free-path that have conductivity property,  

making the grain boundaries an importance source of scattering of the 

conduction electrons. The grain boundary scattering has an effect briefed as 

conduction electrons tunneling through the grain boundaries or limits, modelled 

as potential barriers associated with a probability of transmission (Masserini, 

2013). 
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 Optical Properties of Nanoparticles 

             Nanoparticles are fascinating objects whose features are normally 

different from those of the bulk material. They are small minuscule pieces of 

atoms or molecules whose size lie between bulk materials and individual atoms 

(Ghosh & Dubey, 2016). Optical properties of nanoparticles play an important 

role in either the type of application in which nanoparticles may be utilized or 

the type of the nanoparticle which may be used for a desired outcome. Several 

kinds of optical features produced by nanoparticles from bulk material are 

because of confinement of electron, and the characteristics of collective 

excitations together with the features of collective electronic excitations like 

frequency of resonance are altered. (Kelly, Coronado, Zhao & Schatz, 2003). 

Some nanoparticles exhibit very different optical properties such as colour 

compared with bulk materials (Dreaden et al., 2012 ; Eustis and El-Sayed, 2006 

; Saeed and Khan, 2016). Complicating factors in getting concept of the 

nanoparticle optical properties,  consist of a supporting substrate, a solvent layer 

on top of the particles, and particles that are much nearer together that their 

electromagnetic interaction alters their spectra (Kelly, Coronado, Zhao & 

Schatz, 2003). 

            Nanoparticles’ interaction with light depends strongly on the size, shape 

and composition of the particles, as well as on the composition of the medium 

in which particles are found. If nanoparticles are supplied by light, they produce 

radiation through scattering as a result of oscillatory motion of their electrons. 

Some of the linear optical properties of composites containing metal 

nanoparticles such as extinction, absorption and scattering matrix elements have 

been known both through analytical and numerical approaches (Kociak et al, 
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2014). Strongly scattering nanoparticles have been utilized in improving 

contrast in microscopy of dark-field and optical tomography of coherence(Park, 

2014). 

              The nanoparticle optical properties are unveiled with electrons by two 

types of spectroscopies: loss of energy by electron spectroscopy and 

cathodoluminescence spectroscopy. Electrons with high speed nearer to a 

nanoparticle can exhibit some movement of energy as a result of Coulombic 

reaction. If the amount of energy loss by electron is measured, then this gives 

an idea of the extinction properties of the nanoparticle. Thus, the amount of 

energy loss by the electron could be found by means of energy loss by electron  

spectroscopy, and considered as spectroscopy of extinction at the nanometer 

scale. Similarly, there should be a release of energy moved to the nanoparticle  

and luckily when there is an occurrence of transfer of photons within regions of 

the infrared, visible or ultraviolet, then through cathodoluminescence 

spectroscopy there could be a way out to illumination features or characteristics.  

  Amplification of acoustic waves in piezoelectric semiconductors 

            An acoustic wave can be thought of as a sound and a vibrational wave. 

This wave travels with a velocity that takes care of variations within the  

direction of interfacial waves and depicts an impedance that also manages the 

bouncing or reflection of wave and amplitudes of transmission at interfaces 

(Steele & Vural, 1969 ). 

            When an acoustic wave spread through a crystal with piezoelectricity an 

electrical field normally accompanies it. For a crystal that is not a 

semiconductor, the electrical field generates current and charges in space 
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resulting in dispersion and loss of acoustic (Hutson & White, 1962). A travelling 

acoustic wave and mobile charges react in piezoelectric materials in a process 

called the acoustoelectric effect (Weinreich et al., 1959). An acoustic wave 

travelling in a piezoelectric semiconductor could undergo amplification through 

the application of an initial of dc electric field which is biased (White, 1962). 

Acoustoelectric effect and acoustoelectric amplification of acoustic waves have 

resulted in the manufacture of a lot of acoustoelectric devices (Busse & Miller, 

1981). Semiconductors with the property of piezoelectricity, and acoustoelectric 

effect that have an elementary of fundamental character are briefed using a 

linear phenomenological theory (Hutson & White, 1962). The acoustoelectric 

amplification in piezoelectric semiconductors shows that the attenuation of an 

acoustic wave crosses over to its amplification as the drift velocity becomes 

greater than the acoustic wave velocity. In other words, acousto electric 

amplification occurs most effectively in piezoelectric semiconductors when 

charge carriers drift in the presence of an applied electrical field with a speed 

greater than that of the acoustic wave, thus there is an energy transfer to lesser 

speed phonons (Ghosh & Dubey, 2016). 

Furthermore, acoustic wave absorption/amplification in graphenes, rectangular 

quantum wires, and quantum dots have all received attention (Dompreh et al., 

2015).  

              The acoustic waves amplification in a crystal of photoconductive CdS 

upon using an external electric field. The energy transfer was analytically 

treated for interaction of electrons-acoustic waves under the influence of a field 

having an electrical property with the material considered as a free electron gas 

(Hutson & White, 1962).  
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Chapter Summary 

              The chapter reviews previous works that are related to the study. It also 

analyzes and reviews the concept of phonons in piezoelectric semiconductors 

and general interactions in piezoelectric semiconductors. Finally, optical and 

electrical properties of nanoparticles are also reviewed  
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CHAPTER THREE 

METHODOLOGY 

Introduction 

            This section provides the theoretical basis of the study. It outlines the 

use of the hydrodynamic model of plasma together with other relevant equations 

to derive an expression for the acoustic gain in the presence of alternating and 

direct current fields and fields of commensurate frequencies. 

 Theoretical Formulation 

            The displacements of the lattice are obtained from solids been elastic 

and which experiences stress. For a unit cell of a crystal, u  is chosen as a vector 

which is also taken to be the displacement in describing the equations that 

govern the motion of such displacements. The relationship between u  and the 

Cstress tensor T according to the equations of Newton[Steele &Vural, 1969] is 

given by 

                                               
2

2

iji

j

Tu

t z



=

 
                                               ( )1  

where  represents the medium density while ijT  also denote the second-rank 

stress tensor components. When piezoelectricity is equal to zero ( 0 = ), the 

relationship between T and the second-rank-stress tensor S  through the 

fourth-rank elastic tensor C  is given as   

                                             ij ijkl ijT C S=                                                      ( )2  

 as shown in Figure 1.  
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Here, X1, X2 and X3 are the axes of the infinitesimal cube and ij  is the stress 

tensor. 

Equation ( )2  shows the Hooke’s law expressed in terms of stress and strain. 

The elements of S which are diagonal and also known as linear strains are 

defined as                              

                                                                                                       ( )3   

The crystal can exhibit piezoelectricity when it lattice point contains more than  

one atom. In such a material, the elastic and electrical variables show a 

relationship that makes use of the piezoelectric tensor   as a third-rank tensor.  

             The basic equations of state describing the piezoelectric crystal are 

given as  

                                                   ij ijkl kl ijm mT C S E= −                                   ( )4                                                     

i
ii

i

u
S

z


=

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                                          n mn m nij ijD E S = +                                            ( )5   

Where mn denote the lattice dielectric tensor, nD  represents the electric 

displacement tensor and mE  stands for electric field tensor.  

              In the analytical description of the phonon-plasmon reaction in a 

piezoelectric semiconductor plasma which has undergone doping, an expression 

known as dispersion relation is derived using the motion equation of lattice and 

hydrodynamical quantum model of plasma.  A semiconductor plasma exhibiting 

piezoelectricity doped with nanoparticles (NPs) having density number N ,  

density of electrons onn  with r as radius, was considered to be present within 

the host medium. The medium is acted upon by an external dc electric field 

( )0 0E E z=  due to which electrons of the medium get drifted by velocity,

( )0 0z = . A shear sound wave is considered to be propagating along the z  - 

direction in the medium. The medium is assumed to be piezoelectric having 

cubic symmetry. The role of the physical interactions under study has not been 

changed due to the simplification of the tensor components by these 

assumptions.  

              The displacement lattice u  is taken in the x − direction as 100    

crystal lattice axis. This approach is geometrically appropriate for many piezo-

compound semiconductors of III-V class. In this study, all perturbations are 

assumed to vary as ( )exp i t kz −   , in which   and k  are respectively 

frequency and wave number and also all amplitude terms are assumed to be 

unity with their respective units for simplicity. Based on these considerations, 
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only longitudinal piezoelectric fields need to be considered and the problem at 

hand has essentially been reduced to one-dimensional one. Therefore, equation 

( )1  becomes:  

                                         

2

2

xu T

zt

 

=


                                                        ( )6  

Also (2), (3), (4) and (5) are respectively                       

                                              T CS=                                                              ( )7    

                                             xu
S

z


=


                                                           ( )8                                                                    

                                         T CS E= −                                                         ( )9  

                                         D E S = +                                                        ( )10  

From equation ( )6 , the relation between u  and stress tensor  T  is given as: 

                                            

2

2

xu T

zt

 

=


                                                     ( )11  

Substituting equation ( )8  into equation ( )9 , the stress tensor T  becomes: 

                                            xu
T C E

z



= −


                                                ( )12  

Differentiating the stress tensor T with respect to Z  in equation ( )12  gives: 

                                          

2

2

x Z
u ET

C
z zz


 

= −
 

                                        ( )13   
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Substituting equation  ( )13  into equation  ( )11 : 

                                             

2 2

2 2

x x Z
u u E

C
zt z

 
  

= −
 

                                ( )14  

(Refer to Appendix A). 

In a piezoelectric elastic medium, the equation of wave may be obtained as :  

                                              ( )2 2

x ZCk u ik E − + =                             ( )15                                                    

(Refer to Appendix B).  

using equation ( )14  and other related equations. 

Here,  is piezoelectric constant ZE  is applied electric field,   is mass 

density, C  is elastic stiffness constant. In absence of piezoelectricity, 0 = , 

then equation ( )15  reduces to  
s

CV


=  as sound velocity (Refer to Appendix 

C). Whereas, when 0  , i.e. in the presence of piezoelectricity, the sound 

mode is interacted with movement of electrons via applied electrical field ZE .                                                                                                                                                                                                              

Following the procedure of (Steele & Vural, 1969), the electric displacement 

component of sound wave is obtained as: 

                                  

( )

2

2

2

2
1Z Z

k
D E

Ck




 

 
 = +
 − +  

                               ( )16                        

(Refer to Appendix D)                                                                                                                            

               As the motion of free electrons in piezo-semiconductor plasma is 

governed by hydrodynamical model, the velocity of free electrons of the 
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medium (in the absence of NP cluster (where NP cluster are small minuscule 

pieces of nanoparticles)) may be defined by solving momentum transfer 

equation under the quasi-static limit 2 2 2

Lk c  as (Ghosh & Dubey, 2016): 

                                          
( )
( ),

Z

z

ei E
m

v
F k

=                                                     ( )17   

Here, m represents the electronic mass and

( )
( )

2

0

0

,
D k

F k kv i
kv


  



 
= − − − 

−  

in which   is the transfer collision 

frequency of momentum and D  is the diffusion coefficient. Using equation 

( )17  in the expression for conduction current density, 0Z e ZJ n ev= −    

                                          
( )

2

,

pe Z

Z

i E
J

F k




= −                                                   ( )18    

 (Refer to Appendix E)                                                                                                                            

where 

2

0e
pe

n e

m



=   is electron plasma frequency, 0en  is carrier density of the 

medium and   is the permittivity of the medium. The displacement  of the 

motion of electrons within the nanoparticle cloud can be described by equation 

of motion: 

                                           

22

2 3

pn ZeEd

mdt

 
+ = −                                           ( )19                                                                                                                                                                                                                     
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Here, 

2

0n
pn

e n
m

 =   is the frequency of electron plasma found in the cluster 

of nanoparticle while 0nn  is the electron density. On solving the above equation

( )19 , the velocity of electron cloud may be obtained as   

                                            
( ) Z

np

ei E
m

v
X


=                                             ( )20       

 (Refer to Appendix F)                                                                                                                             

 where
2

2

3

pn
X



 

= −  
 

. Substituting equation ( )20  into the current density 

expression for electron cloud of nanoparticle cluster, 3

0

4

3
np n npJ r Nn ev


= −  

gives 

                                       

2
4

3

pn

np ZJ i l E
X


= −                                          ( )21          

                                                                                                                      

where l  = 3Nr is a dimensionless physical parameter of a nanoparticle cluster 

and r  is the radius. 

Using equations ( )18  and ( )21 , the resultant current density Z npJ J J= +  is 

obtained as: 

                           
( )

2 2
4

, 3

pe pn

ZJ i E l
F k X

 




 
= − + 

  

                                    ( )22  

From Maxwell’s equation 

                                        D  =                                                               ( )23   
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 where   is the charge density. 

                                           en = −                                                              ( )24  

 Substituting ( )24  into ( )23   

                                           D en = −                                                          ( )25  

 Recalling the continuity equation    

                                        J
t


  = −


                                                         ( )26  

 the one-dimensional continuity equation is given as:              

                                            
J n

e
z t

 
=

 
                                                          ( )27   

Combining equation (22), with the continuity equation (equation 27), the space- 

charge density is obtained as: 

                     
( ) ( )

2 2

'

0

4

, 3

pe pnZik E
n l

e kv F k X

  

 

 
= + 

−   

                                 ( )28                                                                  

  (Refer to Appendix G)                                                                                                   

which on using in Maxwell’s equation 'D en = − , modifies the electric 

displacement of free electrons of the medium due to nanoparticle cluster and 

may be expressed as: 

                     
( ) ( )

2 2

0

4

, 3

pe pnZ
Z

E
D l

kv F k X

  

 

 
= + 

−   

                                   ( )29                             

  (Refer to Appendix H) 
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  Using equations ( )16  and ( )29 , the desired dispersion relation is given as:              

                                            

( )
( )

2 2

2 2 2 2 2 2

0

1 4
1

, 3

pe pn

s sk v l K k v
kv F k X

 


 

    
− − + =   

−      

                   ( )30                                                                            

 (Refer to Appendix I)                                                                            

where 

2

K
C




=  is a non-dimensional electromechanical coupling coefficient. 

For no piezoelectricity, 0 = , and equation ( )30  yields:  

        ( )
( )

2 2

2 2 2

0

1 4
1 0

, 3

pe pn

sk v l
kv F k X

 


 

    
− − + =   

−     

                      ( )31                                                                                                               

This implies that, 

                                         ( )2 2 2 0sk v − =                                                    ( )32                                                                                                                                                              

  and 

                            
( )

2 2

0

1 4
1 0

, 3

pe pn
l

kv F k X

 

 

   
− + =  

−    



(Refer to Appendix I)                                                                          

Equations ( )32  and ( )33  represent the usual sound mode propagating through 

an elastic medium and the electrokinetic mode modified due to the presence of 

a nanoparticle cluster within the host material. 
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              Using the collision dominated regime[𝜔 ≪ 𝜈 and k𝜈0 ≪  𝜈] with the 

standard approximation 1skv
i


= + , the expression for acoustic gain per 

radian 𝛼(𝛼 ≪ 1) is obtained by simplifying the dispersion relation ( )30 as: 

      

2 2

2
2 222

2

1

2

4 4

3 3

R

pnR
pn

D R

K X

X X l X l





   

 
   

=
     

+ + + +             

                 ( )34        

 (Refer to Appendix I)                                                                             

where 

2

S
D

v

D
 =  is the diffusion frequency, 

2

pe

R





=  is the relaxation 

frequency and 
0 1
s

v

v
 = − . Since 0   is the necessary condition for sound 

wave to be amplified, it is clear from equation ( )34  that acoustic gain will be 

obtained only if 0   or 
0 1
s

v

v
 .  

             The above analysis reveals that in the presence of nanoparticle cluster 

in a piezoelectric medium, the maximum value of the acoustic gain per unit 

length 
sv

 
 
 

 is attained at resonance point defined by 2 24

3
R D pnl


   = +  

whereas in the absence of nanoparticle cluster it is achieved at 2

R D  = . This 

infers that in the presence of a nanoparticle cluster, the maximum acoustic gain 

points get shifted to higher frequency, and the amount of shift is proportional 

to 
2

pn  and the parameter l .  
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             In the case of combined dc-ac fields, ( ) 0 1 cosE t E E t= + , where 0E   

is the constant dc field and 1E  is the amplitude of ac field, and   is  the wave 

frequency. Hence, equations ( )16  and ( )29   respectively become  

                     ( )
( )

2

2

2

0 1
2

cos 1Z

k
D E E t

Ck


 

 

 
 = + +
 − +  

                        ( )35                                                                                                                                                                           

                      
( )

( ) ( )

2 2

0 1

0

cos 4

, 3

pe pn

Z

E E t
D l

kv F k X

   

 

 +
= + 

−   

                    ( )36                                                                                                                    

Equating equations ( )35  and ( )36  the desired dispersion relation becomes               

( ) ( )
( )

( ) ( )
( )

2 2

0 12 2 2 2 2 2

0 1 0 1

0

cos 4
cos cos

, 3

pe pn

s s

E E t
k v E E t l E E t K k v

kv F k X

  
  

 

  +  
− + − + = +  

−    
 



(Refer to Appendix J)                                

For collision dominated limit [𝜔 ≪ 𝜈 and k𝜈0 ≪  𝜈] and with the same standard 

approximation as shown above, the expression for acoustic gain per radian 

𝛼(𝛼 ≪ 1) using combined dc-ac fields becomes:     

                       

( )

( )
( )

2 2

0 1

2
2 22

0 1

0 1

1
cos

2

cos 4
cos

3

R

pnR

R D

K X E E t

E E t
E E t X X l


 


  


   

+

=
  + 

+ + + +          
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       ( ) ( )
2

2

0 1 0 1

4
cos cos

3
pnE E t X E E t l


   

  
+ + +  

  
                                 ( )38  

(Refer to Appendix J) 

                Similarly, in the presence of commensurate fields, 

( ) ( )1 1 2 2cos cosE t E t E t  = + + , where 1E and 2E are fields amplitudes, 1  

and 2 are the commensurate frequencies ( )1 2   and   is the phase 

difference between the two fields, the gain becomes 

( )( )

( )( )
( )( )

2 2

1 1 2 2

2
22 2

1 1 2 2

1 1 2 2

1
cos cos

2

cos cos 4
cos cos

3

R

pnR

R D

K X E t E t

E t E t
E t E t X X l


   


     

  
   

+ +

=
 + +   

+ + + +           

 

( )( ) ( )( )
2

4 2cos cos cos cos1 1 2 2 1 1 2 23
E t E t l E t E t Xpn


       

 
+ + + + + 

 
   

 

                    ( )39                                                                                                                               

(Refer to Appendix K)   

Chapter Summary                                                                                                                                                       

              This chapter outlines the relevant theory of a piezoelectric 

semiconductor plasma doped with nanoparticle cluster that shows a phonon-

plasmon reaction. The theoretical formulation makes use of the hydrodynamic 

model of plasma together with other relevant equations to “derive an expression 

for the acoustic gain in the presence of dc-ac fields and fields of commensurate 

frequencies”.  
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

 Introduction 

                The results of phonon-plasmon interaction in piezoelectric 

semiconductors doped with a nanoparticle cluster using combined dc-ac fields 

and fields of commensurate frequencies are discussed in this chapter. It also 

highlights the results of the study graphically using MATLAB codes generated 

and shows various plots of the variations of the acoustic gain with field 

parameters. 

              The study theoretically examined phonon-plasmon interaction in 

piezoelectric semiconductors doped with nanoparticle cluster (NC) using  dc-ac 

fields and commensurate fields. The hydrodynamic model of plasma was 

employed to study the motion of electrons in the system and the relevant 

equations were solved analytically to obtain an expression for the acoustic gain 

as a function of some physical parameters of the medium. To visualize the 

results of the study graphically, two piezoelectric semiconductors, cadmium 

sulphide (CdS) and molybdenum disulphide (MoS2) have been chosen.    

                 Monolayer materials such as MoS2 consist of more than one atomic 

element, where one Mo plane is sandwiched by two S planes, which makes their 

lattice dynamics more complex than that in bulk material (CdS) including the 

symmetry and frequency trends varying with thickness. Furthermore, in 

comparison to their bulk counterpart, monolayer materials show very distinctive 

physical properties in lattice dynamics and electronic structure. The unit cell of 

monolayer MoS2 consists of two S-Mo-S units with total of 6 atoms suggesting 
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that there are 18 phonon modes (3 acoustic and 15 optical modes) more than 

that in the bulk material (Ghosh & Pal, 2007). 

              To visualize the theoretical results obtained, nanoparticle doped CdS 

and MoS2 were considered at room temperature (300K) with the following 

physical parameters as listed below. 

(i) Cadmium Sulphide  

9.35,L = 2 1 10.035 ,m V s − −=  
00.17 ,em m=  34820 ,kgm −=   20.21C

m
 =       

 (ii) Molybdenum disulphide  

  2.5L = , 2 1 10.041 ,m V s − −=  
00.16185 ,em m=  35060 ,kgm −=      

20.0156C
m

 =   

 Interaction in the presence of combined dc-ac fields  

               Figure 2 shows the variation of the acoustic gain ( ) with velocity 

ratio 0

s

v

v

 
 
 

  at 12 115 10 s −=   and 0en =1026 m-3 using combined dc-ac fields for 

nanoparticle doped MoS2 and CdS.  
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              (i)                                                           (ii)   

     

Figure 2: Variation of acoustic gain ( )  with velocity ratio 0

s

v

v

 
 
 

 using    

                combined dc-ac fields for 0.001l = , 0.008l =  and without NP  

                cluster ( 0.000l = ) for:(i) CdS and (ii) Mo𝑆2 at 12 15 10 s −=   and 

                
26 3

0 10en m−= (using equation ( )38 ).  

              From Figure 2, the acoustic gain (equation ( )38 ) increases as the 

velocity ratio increases in both (i) and (ii). This is due to enhanced amplification 

of the acoustic waves in both materials which results in more gain. In general, 

the acoustic gain is largely independent on l as depicted in (i) and (ii).  At 0 1
s

v

v


, there is attenuation of the acoustic waves while for 0 1
s

v

v
 , the acoustic waves 

are amplified in both materials. However, the order of magnitude of the acoustic 

gain in (ii) is greater than that in (i). This is as a result of increased acoustic gain 

in the monolayer material than in the bulk caused by enhanced interaction in 

Mo𝑆2 than CdS due to the low dimension.  
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                When the ac field is turned off, the variation of acoustic gain with 

velocity ratio for CdS in this study is the same as that obtained by Ghosh et al [ 

Ghosh & Dubey, 2016] as shown in Figure 3(i). Figure 3(ii) represents the 

variation of the dc induced gain versus velocity ratio for the monolayer material. 

Therefore, comparing Figures 2 and 3, it is clear that in the case of purely dc 

field, the acoustic gain in CdS is largely independent on l  while that for the 

combined dc-ac fields is l  dependent. Moreover, in terms of the order of 

magnitude of the acoustic gain, CdS shows or has the same range of values 

when both dc and combined dc-ac fields are used for the same values of 

nanoparticle cluster.   For purely dc field in the case of Mo𝑆2, it is also largely 

independent on l  while  in the case of combined dc-ac fields, it is largely 

dependent on l . However, the order of magnitude of the acoustic gain under 

purely dc field is the same as that for the combined dc-ac fields.                                                                     
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Figure 3: Variation of acoustic gain ( )  with velocity ratio 0

s

v

v

 
 
 

 in the    

                presence of a dc field using 0.001l = , 0.008l =  and without NP  

                cluster ( 0.000l = ) for:(i) CdS and (ii) Mo𝑆2 at 12 15 10 s −=   and  

               
26 3

0 10en m−= (using equation ( )34 ).  

                 Figure 4 displays the behavior of the acoustic gain per unit length 

sv
 
 
 

with wave frequency ( )  at 
0

s

v

v
=1.25 and 0en = 1026m-3 using combined 

dc-ac fields for nanoparticle doped MoS2 and CdS.  

 

 

 

 

 

                         

 

  (i)                          

 (ii) 

 

(ii)

II 
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Figure 4: Acoustic gain per unit length 
sv

 
 
 

 variation with wave                   

                frequency ( )  using combined dc-ac fields for 0.001l = , 0.008l =     

                and without NP cluster ( 0.000)l = for:(i) CdS and (ii) Mo𝑆2 at    

               26 3

0 10en m−=  and  0 1.25
s

v

v
= (using equation ( )38 ).  

                From Figure 4, the acoustic gain per unit length initially (equation

( )38 ) increases sharply with frequency and attains maxima in both (i) and (ii). 

With further increase in the wave frequency beyond the peak values, the 

acoustic gain per unit length experiences exponential decrease for both 

materials. The initial increment is caused by pronounced amplification of the 

acoustic waves in the materials and the exponential decrease is as a result of 

attenuation of the acoustic waves in these materials. Also, as l  increases the 

peak values of the acoustic gain per unit length increase in both (i) and (ii) due 

to more amplification of the acoustic waves in the materials. For example, for 

0.008l = , (i) (CdS) has maximum value of the acoustic gain per unit length 

than (ii) (Mo𝑆2). Moreover, (i) has greater value of the acoustic gain per unit 

(ii) 
(i) 
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length than (ii).  This is also because the acoustic wave amplified is enhanced 

in CdS than in MoS2.  

               In the absence of the ac field, the behavior of acoustic gain per unit 

length with wave frequency for CdS in this study is the same as that achieved 

by Ghosh et al [Ghosh & Dubey, 2016] as shown in Figure 5(i). Also, Figure 

5(ii) depicts the acoustic gain per unit length variation with wave frequency for 

the monolayer material in the presence of a purely dc field. In comparison, for 

the combined dc-ac fields, the order of magnitude of the acoustic gain per unit 

length for CdS is the same as that for the purely dc field. Moreover, Mo𝑆2, has 

greater order of magnitude of the acoustic gain per unit length using the 

combined dc-ac fields than that for the purely dc field.   
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                            (i)                                                       (ii)              

 

Figure 5: Acoustic gain per unit length 
sv

 
 
 

 variation with wave     

                frequency ( )  under the influence of a dc field using 0.001l = ,    

                0.008l =  and without NP cluster ( 0.000)l = for:(i) CdS and (ii)     

                Mo𝑆2 at 26 3

0 10en m−=  and 0 1.25
s

v

v
= (using equation ( )34 ). 

              Figure 6 depicts the variation of the acoustic gain as a function of 

carrier density ( )0en  at 12 15 10 s −=   and  0

s

v

v
 = 1.25 using combined dc-ac 

fields for nanoparticle doped MoS2 and CdS. 
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                   (i)                      (ii)  

 

 

Figure 6: Variation of acoustic gain with carrier density of the medium using  

                 combined dc-ac fields for 0.001l = , 0.008l =  and without NP     

                 cluster ( 0.000)l = for:(i) CdS and (ii) Mo𝑆2 at 12 15 10 s −=  and   

                0 1.25
s

v

v
= (using equation ( )38 ).                     

               It can be seen from Figure 6 that the acoustic gain (equation ( )38 ) 

generally increases as the carrier density increases up to a maximum value. With 

further increase in the carrier density beyond the maximum values in (i) and (ii), 

the acoustic gain decreases and this is as a result of attenuation of the acoustic 

waves in both materials. As l  increases, the peak values of the acoustic gain 

also increase in (i) and (ii). This is because of enhanced amplification of 

acoustic waves in both materials. Under the condition of 0.008l = , the 

maximum value of the acoustic gain in (ii) is equal to that in (i). The order of 

magnitude of the acoustic gain in the monolayer and bulk materials is the same. 

              If the ac source is turned off, the variation of acoustic gain with carrier 

density for CdS is the same as that shown by Ghosh et al [Ghosh & Dubey, 
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2016] as obtained in Figure 7(i). Again, Figure 7(ii) shows the dc induced 

variation of acoustic gain with carrier density for the monolayer material.  

Comparing the behaviour of CdS using applied combined dc-ac fields to the 

purely dc field, it can be clearly seen that CdS has the same order of magnitude 

of the acoustic gain for both fields. However, CdS has higher peaks of the 

acoustic gain in the case of the combined dc-ac fields than that for the purely dc 

field. 

             Comparing the response of the materials under combined dc-ac and 

purely dc fields, it is obvious that for the dc-ac case, Mo𝑆2 has a lower order of 

magnitude of the acoustic gain as compared to that of the purely dc field case. 

Under the influence of the purely dc field, Mo𝑆2 depicts higher order of peaks 

of the acoustic gain than that of the combined dc-ac fields for Mo𝑆2 as compared 

to CdS.     
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Figure 7: Variation of acoustic gain with carrier density of the medium in the  

                presence of a dc field using 0.001l = , 0.008l =  and without NP  

                cluster ( 0.000)l = for: (i) CdS and (ii) Mo𝑆2 at 12 15 10 s −=   and 

                0 1.25
s

v

v
= (using equation ( )34 ). 

 Interaction in the presence of commensurate fields  

          Figure 8 displays the variation of acoustic gain with velocity ratio at 

12 15 10 s −=   and 
0en = 1026m-3 in the presence of commensurate fields for 

nanoparticle doped MoS2 and CdS.  

 

 

 

 

 

 

 

 

 
(i) 

 

(ii) 

 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



45 
 

 

 

 

 

         (( 

                                 

   

Figure 8: Variation of acoustic gain with velocity ratio in the presence of  

                commensurate fields using 0.001l = , 0.008l =  and without NP                             

                cluster ( 0.000)l = for:(i) CdS and (ii) Mo𝑆2 at 12 15 10 s −=  and  

                26 3

0 10en m−= . 

  From Figure 8, the acoustic gain (equation ( )39 ) generally increases as 

the velocity ratio increases as shown in (i) and (ii). This behavior is due to 

amplification of the acoustic waves in these materials. Also, as l  increases the 

acoustic gain increases for both materials. However, when 0 1,
s

v

v
  0   in both 

(i) and (ii). This is because at velocity ratio less than unity, the acoustic wave 

suffers attenuation. Moreover, the order of magnitude of the acoustic gain in (ii) 

is far greater than that in (i) and this is as a result of more amplification of 

acoustic waves in the monolayer than in the bulk material.

(i)                                                               (ii) 
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Comparably, for interaction in the presence of commensurate fields, the bulk 

material has a higher order of magnitude of the acoustic gain as compared to the 

case of purely dc and combined dc-ac fields. Again, considering acoustic gain 

as a function of velocity ratio in the case of combined dc-ac fields is largely 

independent on l  while for the commensurate and purely dc fields, it is l  

dependent. However, for the monolayer material, the order of magnitude of the 

acoustic gain using combined dc-ac fields and purely dc field is greater than that 

for the commensurate fields. In addition, the acoustic gain for the combined dc-

ac fields is largely independent on l  while that of the purely dc and 

commensurate fields depends on l  as shown in Figures 2 and 7.  

            Figure 9 depicts the variation of the gain per unit length as a function of 

wave frequency at 
0en =1026m-3 for nanoparticle doped MoS2 and CdS in the 

presence of commensurate fields. 
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Figure 9: Acoustic gain per unit length variation with wave frequency in the  

                presence of commensurate fields using 0.001l = , 0.008l =  and    

                without NP cluster ( 0.000)l = for:(i) CdS and (ii) Mo𝑆2 at 0 1.25
s

v

v
=   

                 and 26 3

0 10en m−= (using equation ( )39 ).  

  It is clearly seen that the acoustic gain per unit length (equation ( )39 )  

in Figure 9 initially increases and attains maxima in both (i) and (ii). With 

further increase in the wave frequency, the acoustic gain per unit length 

experiences exponential decrease. Here, initial increase in the acoustic gain per 

unit length is as a result of pronounced amplification of the acoustic waves in 

both materials and the exponential decrease is also due to the attenuation of 

acoustic waves in these materials. However, as l  increases the peak values of 

the acoustic gain per unit length also increase in both (i) and (ii). This behavior 

is due to increased amplification of the acoustic waves in the bulk and 

monolayer materials with increasing l . 

 (i)     

 

(ii) 
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Moreover, the order of magnitude of the acoustic gain in (i) is greater than that 

in (ii). This is caused by enhanced amplification of the acoustic waves in the 

bulk material than in the monolayer one. For example in the case of 0.008l = , 

the peak value of the acoustic gain per unit length in (i) is greater than that in 

(ii).  

              In comparing the bulk material in the case of the combined dc-ac fields 

and the purely dc field, it is clearly seen that the order of magnitude of the 

acoustic gain of the bulk material is greater than that in the case of 

commensurate fields. In other words, the presence of purely dc and combined 

dc-ac fields depict higher acoustic gain per unit length than commensurate 

fields. Similarly, considering the monolayer material it is clear that in the case 

of the combined dc-ac fields the order of magnitude of the acoustic gain for this 

material is greater than that in the purely dc field and least also in the case of 

the commensurate fields. Moreover, comparing Figures 3, 4 and 8 it is obvious 

that both materials behave similarly with respect to their trends. 

             Figure 10 shows the variation of the acoustic gain as a function of 

carrier density at 0 1.25
s

v

v
=  and 12 15 10 s −=  in the presence of fields of 

commensurate frequencies for nanoparticle doped MoS2 and CdS.   
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Figure 10: Variation of acoustic gain with carrier density of the medium in the  

                  presence of commensurate fields using 0.001l = , 0.008l =  and  

                  without NP cluster ( 0.001)l = for: (i) CdS and (ii) Mo𝑆2 at     

                 12 15 10 s −=    and 0 1.25
s

v

v
= (using equation ( )39 ). 

               From Figure 10, the acoustic gain (equation ( )39 ) generally increases 

as the carrier density increases in both (i) and (ii). This is as a result of increased 

presence of nanoparticle cluster in both materials. As l  increases, the acoustic 

gain also increases in both (i) and (ii) with the order of magnitude of the acoustic 

gain in (i) greater than that in (ii). 

In using the combined dc-ac and the purely dc fields, the order of 

magnitude of the acoustic gain in the bulk material is largely greater than that 

in the presence of the commensurate fields. Again, in the presence of purely dc 

and combined dc-ac fields, further increase in carrier density decreases the 

acoustic gain. However, for the commensurate fields, increase of the carrier 

density increases the acoustic gain. On the other hand, for the monolayer 

  (i) 

 

(ii) 
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material using combined dc-ac fields, the order of magnitude of the acoustic 

gain is lesser than that in the purely dc case. For commensurate fields, the order 

of magnitude of the acoustic gain is the least as compared to the other two 

applied fields. Moreover, unlike Figure 9 it is clearly seen that Figures 5 and 6 

depict a similar behavior in terms of their trends. 

Chapter Summary 

               The chapter presents the results of phonon-plasmon interaction in bulk 

and monolayer piezoelectric semiconductors doped with nanoparticle cluster 

using combined dc-ac fields and fields with commensurate frequencies. Graphs 

showing the variation of acoustic gain with velocity ratio, acoustic gain per unit 

length with wave frequency and acoustic gain with carrier density were 

obtained. The figures were discussed with explanations provided for the 

observed trends. The chapter also compares the results of this work with those 

obtained by other researches in the presence of only a dc field.  

                  Finally, it also compares the results obtained using fields of 

commensurate frequencies with those of purely dc and combined dc-ac fields.
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CHAPTER FIVE 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

 Introduction 

           This work employed the hydrodynamical model of plasma and macroscopic 

model of piezoelectric media to study the interaction of phonons and plasmons in 

bulk and monolayer piezoelectric semiconductors doped with nanoparticle cluster 

(NC) using combined dc-ac fields and fields of commensurate frequencies.  

Summary 

           The study reviewed the relevant theory of phonon-plasmon interaction in 

piezoelectric semiconductor doped with a nanoparticle cluster. The theoretical 

formulation made use of the hydrodynamic model of plasma together with other 

equations to “derive an expression for the acoustic gain using combined dc-ac fields 

and fields of commensurate frequencies”.  

          To visualize the results graphically, CdS and MoS2 were considered as 

typical examples of piezoelectric semiconductors. Three cases of the variation of 

the acoustic gain as a function of the physical parameters of the media in the 

presence of combined dc-ac fields and commensurate fields were considered: 

  (i) The behavior of acoustic gain spectrum as a function of velocity ratio. 

  (ii) The acoustic gain per unit length as a function of wave frequency 

  (iii) The acoustic gain as a function of the carrier density of the media.            
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Conclusions 

               The results of the study suggest that NP doped bulk and monolayer 

piezoelectric semiconductors respond differently to different applied external 

fields. Thus, the variation of the acoustic gain with velocity ratio in the NP doped 

monolayer piezoelectric semiconductor has been found to have higher several 

orders of magnitude than that of the doped bulk material whenever such materials 

are subjected to the same combined dc-ac fields and fields of commensurate 

frequencies. The response of the monolayer material increases with increasing 

levels of NP cluster. Interestingly, when the ac component of the combined dc-ac 

fields is turned off, the results of this study agree perfectly with those obtained by 

other researchers. Therefore, NP doped piezoelectric semiconductors could be used 

as better candidates in the fabrication of high-performance sensors and transducers 

as opposed to similar devices manufactured from intrinsic semiconductors. 

                 On the other hand, the acoustic gain per unit length of both materials 

vary equally with carrier frequency when both materials are subjected to combined 

dc-ac fields. However, in the absence of the ac field, the acoustic gain per unit 

length of the NP doped bulk material exceeds that of the monolayer by several 

orders of magnitude in agreement with results of other studies. Similarly, the NP 

doped bulk piezoelectric semiconductor shows more enhanced acoustic gain per 

unit length under the influence of fields of commensurate frequencies. These results 

suggest that bulk NP doped piezoelectric semiconductors are better candidates for 

device applications in which the acoustic gain per unit length is required. Finally, 

the study revealed that both NP doped bulk and monolayer piezoelectric 
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semiconductors show low level of acoustic gain with carrier density when subjected 

to fields of commensurate frequencies.  

Recommendations 

              The following are some recommendations for further study: 

(i) Different piezoelectric semiconductors such as two-dimensional 

strained-induced (for example GaN and AlN) could be adopted for a 

similar study. 

(ii) A similar study could be carried out using the same materials under the 

influence of fields with combined magnetic and electrical properties. 
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                                                              APPENDICES 

 

                                                              APPENDIX A 

DERIVATION OF THE RELATION BETWEEN DISPLACEMENT AND STRESS 

TENSOR 

 

 The relation between displacement u  and stress tensor  T  is given as: 

                                                              

2

2

xu T

zt

 

=


                                                       A1 

The linear strain corresponding to diagonal element of S  is defined as 

                                                                 xu
S

z


=


                                                                            A2  

The basic equation of state describing piezoelectric crystal is given as 

                                                                  T CS E= −                                                      A3  

Substituting equation (A2) into equation (A3), the stress tensor T  becomes: 

                                                             xu
T C E

z



= −


                                                     A4  

Differentiating the stress tensor T with respect to z  in equation (A4) gives: 

                                                            

2

2

x Z
u ET

C
z zz


 

= −
 

                                               A5  

Substituting equation (A5) into equation (A1): 
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2 2

2 2

x x Z
u u E

C
zt z

 
  

= −
 

                                                 A6 
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                                                                   APPENDIX B 

DERIVATION OF THE EQUATION OF A WAVE IN A PIEZOELECTRIC 

MEDIUM 

Given the Newton’s equation of lattice vibration as 

                                                     
2 2

2 2

Zx xu u E
C

zt z
 
  

= −
 

                                                          B1                                                                                                      

Since all perturbations are assumed to vary as ( )exp i t kz −   , it implies that 

                                                                    ( )expxu i t kz= −           B2 

and  

                                                                     ( )expZE i t kz = −                                                                B3                                                                                                    

 

This implies that 

                                                   
2

2

2

x

x

u
k u

z


= −


                                               B4  

Similarly 

                  
2

2

2

x
x

u
u

t



= −


                                                                          B5  

Substituting equations (B4) and (B5) into equation (A1) gives 
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                                                                    ( )2 2 Z
x

E
Ck u

z
 


− + = −


                                               B6 

Differentiating equation (B3) with respect to z  gives 

                                                                      
Z

Z

E
ikE

z


= −


                                    B7 

Substituting equation (B7) into equation (B6) gives 

                                                      ( )2 2
ZxCk u ik E − + =                B8   
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APPENDIX C 

DERIVATION OF THE VELOCITY OF SOUND 

The wave equation in an elastic piezoelectric medium is given as 

                                                  ( )2 2
ZxCk u ik E − + =                                                     C1                                                                                                                                                                                                                           

Here   is piezoelectric constant, ZE  is applied electric field,   is mass density, and  C  is   

elastic stiffness constant. 

In the absence of piezoelectricity, 0 =   

                                                          ( )2 2 0xCk u− + =                                                     C2                                                                              

                                                             

                                                           
2

2

C

k




=          C3  

But                                                             

                                                            
2

2

2SV
k


= .                                                                 

This implies that, 

                                                             
2

SV
C


=                                                               C4 

                                                            
S

C
V


=                   C5 
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APPENDIX D 

DERIVATION OF THE ELECTRIC DISPLACEMENT COMPONENT OF SOUND 

WAVE 

In presence of piezoelectricity, when 0   and based on equation C1 

                                                            ( )2 2
ZxCk u ik E − + =                                          D1                         

                                                                      
31 13

1

2

xu
S S

z


= =


                 D2  

where 13S  and 31S  are the strain components in terms of lattice displacement 

                                                                
132Z ZD E S = +                  D3 

Here,  is the electric permittivity constant, ZD  is the electric displacement component, S  is 

the strain and   is the piezoelectric constant 

Substituting D2 into D3 

                                                        
1

2
2

x
Z Z

u
D E

z
 

 
= +  

 
      D4

        
x

Z Z

u
D E

z
 


= +


                                                  D5                                                                                          

                                                               
( )2 2

Z
x

ik E
u

Ck




=

− +
                                                 D6                                                                                                                                                                             

But                                                      

                                                             ( )expZ ZE E i t kz= −    
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( )

( )2 2

exp
x

ik i t kz
u

Ck

 



−
=

− +
                                           D7                                      

                                                            
( )

2

2 2

Zxu k E

z Ck






=

 − +


                                                       
( )

2

2 2

Z
Z Z

k E
D E

Ck


 



 
 = +
 − +
 

                                    D9                                                                                                                                                                                                                                                                                      

                                                       
( )

2 2

2 2
1Z Z

k
D E

Ck




 

 
 = +
 − +
 

                                  D10 
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APPENDIX E 

DERIVATION OF THE CONDUCTION CURRENT DENSITY 

The velocity of free electrons of the piezoelectric semiconductor plasma medium is given as: 

                                                         
( )
( ),

Z

z

ei E
m

v
F k

=                                                          E1                                                          

where ( )
( )

2

0

0

,
Dvk

F k kv iv
kv

 


 
= − − − 

−  
in which v  is the momentum transfer collision 

frequency and D  is the diffusion coefficient. 

The conduction current density is given as: 

                                                                
0Z e zJ n ev= −                                     E2

       ZJ
( )
( )

0

,

Ze
ien e E

m

F k

−
=                                              E3 

 But                                                          

                                                               
2

0e
pe

n e
m




 
=  

 
                                                                                                                                           

                                                                  
2

20e
pe

n e
m

=                                                       E4                                                                                                                                                                                                                               

Substituting E4 into E3 

                                                                  
( )

2

,

Zpe
Z

i E
J

F k




= −                                       E5  

where pe  is the electron plasma frequency and 0en  is the carrier density of the medium.                                  
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APPENDIX F 

DERIVATION OF THE VELOCITY OF ELECTRON CLOUD 

The motion of electrons presents within the nanoparticle cloud having displacement   can be 

described by the equation of motion 

                                                          

22

2 3

pn ZeEd

mdt

 
+ = −                  F1   

Here, 
2

0n
pn

e n
m

 =    is plasma frequency of electrons present within the NP-cluster. 

Since all perturbations vary are assumed to vary as ( )exp i t kz −   , then 

                                                                           ~ ( )exp i t kz −                     F2    

Differentiating equation F2 with respect to t  gives 

                                                                              
2

2

2

d

dt



= −                                                                        F3                                                                                                                               

Substituting equation F3 into equation F1 gives                      

                                            

2

2

3

pn
Z

e
E

m


−  +  = −                                                          F4           

                                   
( )

2

2

3

Z

pn

e E
m




 =
 

−  
 

                   F5            
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Differentiating equation F5 with respect to t  yields the velocity of the electron cloud as   

                                
( )

2

2

3

Z

np

pn

e
d Em

v
dt



=
 

−  
 

                         F6  

But                         

                                                           ( )expZE i t kz= −                                                                                                     

By differentiating the expression of ZE  with respect to t  gives 

                                                                 ( )exp
Zd E

i i t kz
dt

  = −                              F7

     
Z

Z

d E
i E

dt
=                                                                         F8 

Substituting equation F8 into equation F6 

                                                                       
( )

2

2

3

Z

np

pn

ei E
m

v





=
 

−  
 

                                                                  F9                                                                                                                                                                   

Let X =

2

2

3

pn

 

−  
 

, then the above equation yields 

                                                                         
( ) Z

np

ei E
m

v
X


=                                                            F10  
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APPENDIX G 

DERIVATION OF THE SPACE CHARGE DENSITY 

 Recalling the continuity equation  

                                                                            
J n

e
z t

 
=

 
                                                                     G1  

But   

                                                             
( )

2 2
4

, 3

pe pn
ZJ i E l

F k X

 




 
= − + 

  

     

               '

0n n n= +                 G2  

where 'n  is the space charge density and 0n  is the equilibrium electron density. 

Substituting the resultant current density J  into equation G1 yields 

                                                 
( )

2 2 '4

, 3

Zpe pn E n
i l e

F k X z t

 




   
− + = 

   

                              G3                                                                                                  

But 

                                                       ( )expZE i t kz= −     

Differentiating equation ZE  with respect to z  yields 

                                                                   
Z

Z

E
ikE

z


= −


                                                                       G4                                                                                                                                

Substituting equation G4 into equation G3 gives 
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( )

2 2 '4

, 3

pe pn
Z

n
kE l e

F k X t

 




  
− + = 

  

                                   G5                                                                                                                                                                                                                            

 From equation G5 

                                              
( )

2 2

' 4

, 3

pe pn
Z

k
n l E t

e F k X

  



 −
= +  

  
                   G6 

But  

                                                       ( )expZE i t kz= −    exp
kz

it t
t


  

= −  
  

                                  

But
0

z
v

t
=  is the drift velocity of electrons in the medium and hence, ZE becomes                                                                                                                                                                                                                                  

                                                       ( )0expZE it t kv = −                                                    G7 

Therefore 

                                                                    
( )0

Z
Z

E
E t

i kv
 =

−                                                                    G8                         

  Substituting equation G8 into equation G6 gives 

                                                   

                                                        
( ) ( )

2 2

'

0

4

, 3

Z pe pni kE
n l

e kv F k X

  

 

 
= +  

−   

                  G9
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APPENDIX H 

DERIVATION OF VELOCITY OF FREE ELECTRONS OF A MEDIUM DUE TO 

NANOPARTICLE CLUSTER 

From Maxwell’s equation  

                                                                            '
ZD en = −                H1 

     That is,                                                                               

                                                                    

                                                                       'ZD
en

z


= −


                               H2                                                                                                     

         
'

ZD e n z= −                                                                     H3            

From equation G9 in (Appendix G): 
( ) ( )

2 2

'

0

4

, 3

Z pe pni kE
n l

e kv F k X

  

 

 
= +  

−   

                   

Substituting 'n  into equation H3 and simplify to get 

                                             
( ) ( )

0

2 2
4

, 3

pe pn
Z Z

i k
D l E z

F k Xkv

  



 
= − +  

−   
                                H4 

But 

                                                                                                                                                                     

( )
1

expZE z i t kz
ik

  = − −  = 
1

ZE
ik

−                     H5    

Substituting equation H5 into equation H4 gives 
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( ) ( )

0

2 2
4

, 3

Z pe pn
Z

E
D l

F k Xkv

  



 
= +  

−   

                        H6
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APPENDIX I 

DERIVATION OF THE ACOUSTIC GAIN IN THE PRESENCE OF A DC FIELD 

 From equation (16) 

                                                  ZD =
( )

2 2

2 2
1Z

k
E

Ck




 

 
 +

− +  

                                                    I1    

and from equation (29)                                                                                                                                                 

                                                        
( )

2 2

0

4

, 3

Z pe pn
Z

E
D l

kv F k X

  

 

 
= + 

−   

                                              I2                                                                                                                         

I1 and I2 gives 

                                       
( )

2 2

2 2
1Z

k
E

Ck




 

 
 +

− +  

=
( ) ( )

2 2

0

4

, 3

Z pe pnE
l

kv F k X

  

 

 
+ 

−   

                    I3                                                                                       

                                
( ) ( ) ( )

2 2 2 2

2 2
0

1 4
1

, 3

pe pn k
l

kv F k X Ck

  

   

 
− + = − 

− − +  

                            I4                                                                                           

Multiplying equation I4 by ( )2 2 2

sk v − gives 

( )
( ) ( ) ( )

( )
2 2 2 2

2 2 2 2 2 2

2 2
0

1 4
1

, 3

pe pn

s s

k
k v l k v

kv F k X Ck

  
 

   

    
 − − + = − −  

− − +       

          I5                                                       

 ( )2 2 2

sk v −
( ) ( ) ( )

2 2 2
2

2 2 20
2

1 4
1

1, 3

pe pn

s

S

k
l K

kv F k X
k v

v

 

  

 
    
 − + = −  

−       − −
  

( )2 2 2

sk v −   I6                                   
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                     ( )2 2 2

sk v −
( ) ( )

2 2

2 2 2

0

1 4
1

, 3

pe pn

sl K k v
kv F k X

 

 

   
− + =  

−     

                                I7                                                                                                                    

For no piezoelectricity, 0 =  and  0K =   

                                 ( )2 2 2

sk v −
( ) ( )

2 2

0

1 4
1 0

, 3

pe pn
l

kv F k X

 

 

   
− + =  

−     

                           I8                                                                                                                                             

  This implies that,                                                                                  

                                                                                     ( )2 2 2

sk v − 0=                                  I9 

    and  

                                                               
( ) ( )

2 2

0

1 4
1 0

, 3

pe pn
l

kv F k X

 

 

   
− + =  

−     

                            I10                                                                                                        

     But,  

                                                     ( )
( )

2

0

0

,
Dvk

F k kv iv
kv

 


 
= − − − 

−  
                                       I11 

                        ( )2 2 2

sk v −
( )

( )

2 2

2 2 2

2

0
0

0

1 4
1

3

pe pn

sl K k v
kv XDvk

kv iv
kv

 






  
  
  − + = 

 − − − − 
 −  

 I12                                                  

For collision dominated limit: v   and 0kv v  
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                          ( )2 2 2

sk v −
( )

( )

2 2

2 2 2

2

0

0

1 4
1

3

pe pn

sl K k v
kv XDvk

iv
kv

 





  
  
  − + = 

 − − − 
 −  

               I13                                                 

                     ( )2 2 2

sk v −
( ) ( )

2 2

2 2 2

2 2
00

4
1

3

pe pn

sl K k v
X kviv kv iDk vk

 



   
 + − = 

−− −    

        I14                                                                                                                                                                

 But                                                               

                                                                           

2

pe

R
v


 = .  

                               ( )2 2 2

sk v −
( ) ( )

2

2 2 2

2
00

4
1

3

pnR
sl K k v

X kvi kv iDk

 



   
 + − = 

−− −    

              I15                                                                                                                                                                                                                                   

 Multiplying through equation I15 by ( )2

0i kv iDk − −  gives 

                 ( )2 2 2

sk v − ( ) ( )
( )

2

2 2

0 0

0

4

3

pn

Ri kv iDk i kv iDk l
X kv


  



   
− − + − − −  

−    

               

                                                                           = ( )2 2 2 2

0 si kv iDk K k v − −                                             I16    

               ( )2 2 2

sk v − ( ) ( )
( )

2

2 2

0 0

0

4

3

pn

Ri kv iDk i kv iDk l
X kv


  



   
− − + − − −  

−    

                    

                                                                            ( )2 2 2 2

0 si kv iDk K k v= − −                                               I17  

  But                                                         
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sv

k


= .  

   This implies that,   

                                                                                  2 2 2

sk v =                                                                          

Hence equation I17 becomes: 

2 2
2

2
1 sk v




 
− 

 
( )

( )
( )

2

2 2 2 2 2

0 0

0

4
1

3

pn

R si kv iDk l i kv iDk K k v
X kv


  



  
+ − − − = − − 

−    

 

                                                                                                                                                                              I18                                                                                                                                                                                                                                                                                                                                

  Dividing equation I18 by the second term in the left-hand side parenthesis gives 

                           
2 2

2
1 sk v



 
− 

 

( )

( )
( )

2 2

0

2

2

0

0

4
1

3

pn

R

i kv iDk K

i kv iDk l
X kv




 



− −
=
  

+ − − −  
−    

                            I19                                                                                  

                               
2 2

2

sk v



( )

( )
( )

2 2

0

2

2

0

0

1

4
1

3

pn

R

i kv iDk K

i kv iDk l
X kv




 



− +
= +

  
+ − − −  

−    

                            I20                                                                                                   

From binomial expansion ( )1 1
n

x nx+ = +  for x  been very small 

                            skv



( )

( )
( )

2 2

0

2

2

0

0

1

21

4
1

3

pn

R

i kv iDk K

i kv iDk l
X kv




 



− +

= +
  

+ − − −  
−    

                             I21                                                                         

  But                                                        
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                                                                skv


=1 i+ .  

                                   1 i+
( )

( )
( )

2 2

0

2

2

0

0

1

21

4
1

3

pn

R

i kv iDk K

i kv iDk l
X kv




 



− +

= +
  

+ − − −  
−    

                       I22                                                            

                                            

( )

2
20

2

2

0

0

1
1

2

4
1

3
1

pn

R

kv iDk
K

i kv iDk l
kv

X


 




 



 
− + 

 
=
 
 
 + − − + 

  −      

                             I23                                                                                   

But                                                   

                                                                      ,sv
k


=   

 and   

                                                                      0 1
s

v

v
 = − .  

Substituting the above expressions into equation I23 gives: 

                   

2
2

22
2

1

2

4 4

3 3

pnR

pn

R D

iDk
K X

X X l i X l





   

 
   

 
+ 

 
=

      
+ + − +             

                                   I24                                                                                

Rationalizing the equation I24 and neglecting all real terms and considering only the 

coefficient of complex terms gives:       
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22 2
2 2

22
2

1 4 4

2 3 3

4 4

3 3

pnR
pn

R D

pnR
pn

R D

iDk
K X X X l i X l

X X l i X l

   
  

    


   
 

   

         
 + + + + +                  

=
       
 + + − +                

                   

                                      

22
24 4

3 3

pnR
pn

R D

X X l i X l
   

 
   

       
 + + + +                

                         I25 

                                

2 2

2
2 2 22

2

1

2

4 4

3 3

R

pnR

pn

R D

K X

X X l X l





   

 
   

=
     

+ + + +             

                      I26                                                                                             
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APPENDIX J 

DERIVATION OF THE ACOUSTIC GAIN IN THE PRESENCE OF COMBINED 

DC-AC FIELDS 

From equation I3: 

                               
( )

2 2

2 2
1Z

k
E

Ck




 

 
 +

− +  

=
( ) ( )

2 2

0

4

, 3

Z pe pnE
l

kv F k X

  

 

 
+ 

−   

                        J1                                                                                                       

  But              

                                                          0 1 cosZE E E t= +                                                                                                                                                                                     

Substituting the above expression into equation J1 and dividing through by   gives                                                                                                                                                                                                               

             ( )0 1 cosE E t+
( )

2 2

2 2
1

k

Ck



 

 
 +

− +  

=
( )

( )
0 1

0

cosE E t

kv





+

− ( )

2 2
4

, 3

pe pn
l

F k X

 



 
+ 

  

      J2                                                                                                                                             

( ) ( )
( )

( ) ( )

( )

( )

2 22 2 2 2
0 1 0 10 1

0 12 2 2 2
0 0

cos coscos 4
cos

, 3

pe pnE E t E E tE k E t k
E E t l

kv F k kv XCk Ck

     


     

+ +
+ + + = +

− −− + − +
                         

             J3                                                                                          

( ) ( )
( )

( )

( ) ( )

2 22 2
0 1

0 1 0 1 2 2
0

cos 4
cos cos

, 3

pe peE E tk
E E t E E t l

kv F k XCk

  
 

  

   +
 + + + = + 

−− +     

     

                                                                                                                                                                           

( )
( )

( ) ( )
( )

( )

2 2 2 2
0 1

0 1 0 1 2 2
0

cos 4
cos cos

, 3

pe pnE E t k
E E t l E E t

kv F k X Ck

   
 

   

   +  
 + − + = − +  

− − +       

     

J4 

J5 
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Multiplying through equation J5 by ( )2 2 2

sk v −  gives  

                  ( )
( )

( ) ( )

2 2

0 12 2 2

0 1

0

cos 4
cos

, 3

pe pn

s

E E t
k v E E t l

kv F k X

  
 

 

  +  
− + − + =  

−     

    

                                 ( )0 1 cosE E t− +
( )

( )
2 2

2 2 2

2 2 s

k
k v

Ck




 

 
  −

− +  

                                           J6                                                                                                                                                 

                 ( )
( )

( ) ( )

2 2

0 12 2 2

0 1

0

cos 4
cos

, 3

pe pn

s

E E t
k v E E t l

kv F k X

  
 

 

  +  
− + − + =  

−    

    

                                          ( )0 1 cosE E t− + ( )
2 2

2 2 2

2 2
s

k
k v

C
k

C







 
 
  −
  
− +    

                              J7                                                                         

                  ( )
( )

( ) ( )

2 2

0 12 2 2

0 1

0

cos 4
cos

, 3

pe pn

s

E E t
k v E E t l

kv F k X

  
 

 

  +  
− + − + =  

−    

 

                                   ( ) 2

0 1 cosE E t K− + ( )
2

2 2 2

2 2

2

1
s

s

k
k v

k
v





 
 
  −
  
− +  

   

                                        J8                                

                       ( )
( )

( ) ( )

2 2

0 12 2 2

0 1

0

cos 4
cos

, 3

pe pn

s

E E t
k v E E t l

kv F k X

  
 

 

  +  
− + − + =  

−    

        

                                                      ( )0 1 cosE E t K− +

( )
( )

2
2 2 2

2 2 2

2

1 s

s

s

k
k v

k v
v





 
 
  −
− −

  

                        J9                                                          
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( )
( )

( ) ( )
( )

2 2

0 12 2 2 2 2 2

0 1 0 1

0

cos 4
cos cos

, 3

pe pn

s s

E E t
k v E E t l E E t K k v

kv F k X

  
  

 

  +  
− + − + = +  

−    

     

                                                                                                                                                                             J10 

For no piezoelectricity, 0, =  and  0K = .  

                 ( )
( )

( ) ( )

2 2

0 12 2 2

0 1

0

cos 4
cos 0

, 3

pe pn

s

E E t
k v E E t l

kv F k X

  
 

 

  +  
− + − + =  

−     

             J11           

                                    ( )2 2 2 0sk v − =                                  J12 

and 

                                         
( )

( ) ( )

2 2

0 1

0 1

0

cos 4
cos 0

, 3

pe pnE E t
E E t l

kv F k X

  


 

  +  
+ − + =  

−    

       J13                                                                                                      

But  

                                               ( )
( )

2

0

0

,
Dvk

F k kv iv
kv

 


 
= − − − 

−  

   

      ( ) ( )
( )

( )
( )

2 2

0 12 2 2

0 1 2

0
0

0

cos 4
cos

3

pe pn

s

E E t
k v E E t l

kv XDvk
kv iv

kv

  
 






  
  

+   − + − +  −  − − − 
 −   

        

                                                                ( ) 2 2 2

0 1 cos sE E t K k v= +                                                             J14                                                                                                        

For collision dominated limit: v   and 0kv v . 
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( ) ( )
( )

( )

( )

( )
2 2

0 12 2 2 2 2 2

0 1 0 1
2

0

0

cos 4
cos cos

3

pe pn

s s

E E t
k v E E t l E E t K k v

kv XDvk
iv

kv

  
  





  
  

+  
− + − + = +  

−    − −   −    

                                     

                                                                                                                                               J15                                                                                                        

( ) ( ) ( )
( ) ( )

2 2

2 2 2

0 1 0 1 2
00

4
cos cos

3

pe pn

sk v E E t E E t l
X kviv kv Dvk

 
  



   
 − + − + + 

−  − − −    

       

                                                   ( ) 2 2 2

0 1 cos sE E t K k v= +                                                                          J16  

    ( ) ( ) ( )
( ) ( )

2 2

2 2 2

0 1 0 1 2
00

4
cos cos

3

pe pn

sk v E E t E E t l
X kviv kv iDk

 
  



  
  − + + + − 

 − − −    

         

                                                              ( ) 2 2 2

0 1 cos sE E t K k v= +                                                              J17                 

    But  

                                                                      

2

pe

R
v


 =      

( ) ( ) ( )
( ) ( )

2

2 2 2

0 1 0 1 2
00

4
cos cos

3

pnR
sk v E E t E E t l

X kvi kv iDk

 
  



   
 − + + + − 

− − −   

           

                                                    ( ) 2 2 2

0 1 cos sE E t K k v= +                                                                       J18 

Multiplying through equation J18 by ( )2

0i kv iDk − −   

( ) ( )( ) ( ) ( ) ( )
( )

2

2 2 2 2 2

0 0 1 0 1 0 1 0

0

4
cos cos cos

3

pn

s Rk v i kv iDk E E t E E t E E t i kv iDk l
X kv


      



 
− − − + + + − + − − 

−  
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                                                ( )( )2 2 2 2

0 0 1 cos si kv iDk E E t K k v = − − +                                           J19  

But                                                     

                                                                     ,sv
k


=   

and  

                                                                      2 2 2

sk v =   

Hence equation J19 becomes: 

( ) ( ) ( ) ( )
( )

22 2
2 2

0 1 0 0 1 0 12

0

4
1 cos cos cos

3

pns
R

k v
E E t i kv iDk E E t E E t l

X kv


     

 

     
− + + − − + − +   

−      

  

                                                  ( ) ( )2 2 2 2

0 1 0cos si E E t K k v kv iDk = + − −                                     J20                                

Dividing J20 through by the term in the square bracket gives 

( ) ( )

( ) ( ) ( ) ( )
( )

2 22 2
0 1 0

2 2

2

0 1 0 0 1 0 1

0

cos
1

4
cos cos cos

3

s

pn

R

i E E t K kv iDkk v

E E t i kv iDk E E t E E t l
X kv

 

 
    



+ − − 
− = 

     
+ + − − + − +  

−    

     

                                                                                                                                                                              J21                                                                                      

( ) ( )

( ) ( ) ( ) ( )
( )

2 2

0 1 0

2

2

0 1 0 0 1 0 1

0

1
cos

21
4

cos cos cos
3

s

pn

R

i E E t K kv iDk
kv

E E t i kv iDk E E t E E t l
X kv

 

 
    



+ − −

= +
   

+ + − − + − +  
−    

     

                                                                                                                                                                              J22                                                    
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( ) ( )

( ) ( ) ( ) ( )
( )

2 2

0 1 0

2

2

0 1 0 0 1 0 1

0

1
cos

21 1
4

cos cos cos
3

pn

R

i E E t K kv iDk

i

E E t i kv iDk E E t E E t l
X kv

 



    



+ − +

+ = +
   

+ + − − + − +  
−    

     

                                                                                                                                                                      J23

( )

( ) ( ) ( ) ( )

2
2 0

0 1

2

2

0 1 0 0 1 0 1

0

1
cos 1

2

4
cos cos cos

3
1

pn

R

kv iDk
E E t K

E E t i kv iDk E E t E E t l
kv

X

 
 




    



 
+ − + 

 
=
  
  

  + + − − + + + 
   −      

                                                               

                                                                                                                                          J24 

But                                                      

                                                                           sv
k


=  

 and                                          

                                                                                          0 1
s

v

v
 = −   

Substituting the above expressions into equation J24 gives  

( )

( ) ( ) ( ) ( )

2
2

0 1

2

2

0 1 0 0 1 0 1

1
cos

2

4
cos cos cos

3

pn

R

iDk
E E t K

E E t i kv iDk E E t E E t l
X

  





    


 
+ + 

 
=
   

+ + − − + + +  
    

                                                                                                                      J25 
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 Further simplification of equation J25 produces 

                            

( )

( )
( )

2
2

0 1

22

0 1

0 1

1
cos

2

cos 4
cos

3

pnR

R D

iDk
K X E E t

E E t
E E t X X l

 



  


   

 
+ + 

 
=

  + 
 + + + −        

        

                                      ( ) ( ) 2

0 1 0 1

4
cos cos

3
pni E E t X E E t l


   

  
+ + +  

  
                              J26    

Rationalizing the above equation and neglecting all real terms and considering only the 

coefficient of complex terms gives: 

                     
( )

( )
( )

2 2

0 1

2
2 22

0 1

0 1

1
cos

2

cos 4
cos

3

R

pnR

R D

K X E E t

E E t
E E t X X l


 


  


   

+

=
  + 

+ + + +          

                      

                                           ( ) ( )
2

2

0 1 0 1

4
cos cos

3
pnE E t X E E t l


   

  
+ + +  

  
                           J27  
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APPENDIX K 

DERIVATION OF THE ACOUSTIC GAIN IN THE PRESENCE OF 

COMMENSURATE FIELDS 

From equation I3: 

                               
( )

2 2

2 2
1Z

k
E

Ck




 

 
 +

− +  

=
( ) ( )

2 2

0

4

, 3

Z pe pnE
l

kv F k X

  

 

 
+ 

−   

           K1 

But 

                                                     ( )1 1 2 2cos cosZE E t E t  = + +                                                                                                                                      

Substituting the above expression into equation K1 and dividing through by  gives:                        

                                         ( )( )
( )

2 2

1 1 2 2 2 2
cos cos 1

k
E t E t

Ck


  

 

 
 + + +

− +  

= 

                                        
( )( )

( ) ( )

2 2

1 1 2 2

0

cos cos 4

, 3

pe pn
E t E t

l
kv F k X

    

 

 + +
+ 

−   

                  K2                                                                                  

         
( )

( )
( )

( )
( )( )

( ) ( )

22 22 2
1 1 2 22 21 1

1 1 2 22 2 2 2
0

cos coscoscos
cos cos

,

pe E t E tE t kE t k
E t E t

kv F kCk Ck

      
  

    

+ ++
+ + + + = +

−− + − +
                                                                                                     

                                       ( )( )
( )

2

1 1 2 2

0

4
cos cos

3

pn
E t E t l

kv X


  


+ +

−
                                     K3 

                       ( )( )
( )( )

( )

2 2

1 1 2 2

1 1 2 2 2 2

cos cos
cos cos

E t E t k
E t E t

Ck

   
  

 

+ +
+ + +

− +
= 
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( )( )

( ) ( )

2 2

1 1 2 2

0

cos cos 4

, 3

pe pn
E t E t

l
kv F k X

    

 

 + +
+ 

−   
                              K4                                                                                                                                     

 ( )( )
( )( )

( ) ( )

2 2

1 1 2 2

1 1 2 2

0

cos cos 4
cos cos

, 3

pe pn
E t E t

E t E t l
kv F k X

    
  

 

 + +
+ + − + 

−   
=                                                                                                                                                                            

                                                         
( )( )

( )

2 2

1 1 2 2

2 2

cos cosE t E t k

Ck

   

 

+ +
−

− +
                                            K5               

Multiplying  through equation K5 by ( )2 2 2

sk v −  gives

( ) ( )( )
( )( )

( ) ( )

2 2

1 1 2 22 2 2

1 1 2 2

0

cos cos 4
cos cos

, 3

pe pn

s

E t E t
k v E t E t l

kv F k X

    
   

 

  + + 
− + + − +  

−     

     

                       = - ( )( )
( )

( )
2 2

2 2 2

1 1 2 2 2 2
cos cos s

k
E t E t k v

Ck


   

 

 
 + + −

− +  

               K6                                                                                                                                                                                                                                                                          

( ) ( )( )
( )( )

( ) ( )

2 2

1 1 2 22 2 2

1 1 2 2

0

cos cos 4
cos cos

, 3

pe pn

s

E t E t
k v E t E t l

kv F k X

    
   

 

  + + 
− + + − + = −  

−     

     

                      ( )( ) ( )
2 2

2 2 2

1 1 2 2

2 2

cos cos s

k
E t E t k v

C
k

C


   




 
 
 + + −
−  

+    

                     K7                                                                                                                 

( ) ( )( )
( )( )

( ) ( )

2 2

1 1 2 22 2 2

1 1 2 2

0

cos cos 4
cos cos

, 3

pe pn

s

E t E t
k v E t E t l

kv F k X

    
   

 
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( ) ( )( )
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E t E t
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   

 

  + + 
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−     

     

                                      ( )( ) 2 2 2

1 1 2 2cos cos sE t E t K k v  + +                                        K10                                                                                                                                                                   

For no piezoelectricity, 0 =   and  0K = .  
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 

  + + 
− + + − + =  

−     

  

                                                                                                                                               K11                      

                                                  ( )2 2 2

sk v − 0=                                                                   K12      

and  

( )( )
( )( )

( ) ( )

2 2

1 1 2 2

1 1 2 2

0

cos cos 4
cos cos

, 3

pe pn
E t E t

E t E t l
kv F k X

    
  

 

  + + 
+ + − +  

−     

= 0                                                                                                                                                                         

                                                                                                                                               K13 

 

But  
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 
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.                                       
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


 
 
 

+     − − −   −  

 = ( )( ) 2 2 2

1 1 2 2cos cos sE t E t K k v  + +            K14           

 For collision dominated limit: 𝜔 ≪ 𝜈 and k𝜈0 ≪  𝜈
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
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− + + − +  −    − −   −   

     

                                          = ( )( ) 2 2 2

1 1 2 2cos cos sE t E t K k v  + +                                       K15                

                               ( ) ( )( )2 2 2

1 1 2 2cos cossk v E t E t   − + + −                   

( )( )1 1 2 2cos cosE t E t  + +
( ) ( )

2 2

2
00

4

3

pe pn
l

X kviv kv Dvk

 



 
 + 

− − − −   

=                                              

               ( )( ) 2 2 2

1 1 2 2cos cos sE t E t K k v  + +                         K16 

But                

                                                                 

2

pe

R
v


 =     
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                                        ( )2 2 2

sk v − ( )( ) 1 1 2 2cos cosE t E t  + + +         

( )( )1 1 2 2cos cosE t E t  + +
( ) ( )

2

2 2
00

4

3

pnR l
X kvi kv iDk Dvk

 



 
 − 

 − − − −   

=                                                                                                                                                                    

                                           ( )( ) 2 2 2

1 1 2 2cos cos sE t E t K k v  + +                                        K17 

Multiplying through the above equation K17 by ( )2

0i kv iDk − −  gives 

           ( ) ( )( ) ( )( ) 2

0 1 1 2 2 1 1 2 2cos cos cos c  os Ri kv iDk E t E t E t E t       − − + + + + + −       
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   




− − + + 

− 
( )2 2 2

sk v − =                        

( )( ) 2 2 2
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( )( ) 2 2 2
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0  i kv iDk − −                                                   K19                                                                                              

Dividing K19 by the first term in the left-hand side parenthesis gives 
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Further simplification of equation K24 produces     
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                                                                                                                                               K25 

             Rationalizing the above equation and neglecting all real terms and considering only 

the coefficient of complex terms gives:   
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APPENDIX L 

CODES FOR FIGURES 

1. Interaction in the presence of combined dc-ac fields  

 The following are the MATLAB codes for CdS.The same codes were also used 
for MoS2 but with different physical parameters(density=p,piezoelectric 

constant=B,effective mass=m,electron mobility=n)and field constants( 

amplitude of a dc field=s1, amplitude of an ac field=s2)as 

p=5060,B=0.0156,m=0.16185*9.11e-31,n=0.041,s1=1 and s2=0.5. 

 

(i) Variation of acoustic gain with velocity ratio 

close all 
x=0.5:0.5:3.0; % x represents velocity ratio 
T=300;         % T represents absolute temperature 
e=9.35*8.85e-12;% e represents relative permitivity 
ec=1.602e-19;   % ec is the electric charge 
KB=1.38e-23;    % KB is the boltzman constant 
m=0.17*9.11e-31; % m is the effective mass of the piezoelectric material 
p=4820;          % p is the density 
B=0.21;          % B is the piezoelectric constant 
n=0.035;         % n is the electron mobility 
l=0.000;   % l is the dimensionless physical parameter of nanoparticle 

cluster 

s1=1;            % s1 is the amplitude of the dc field 
s2=0.5;          % s2 is the amplitude of the ac field 
w1=3e12;         % w1 is the wave frequency of the ac field 
t=2;             % t is the time 
w=5e12;          % w is the wave frequency 
C=24.1e9;        % C is the elastic stiffness constant 
Vs=sqrt(C./p);   % Vs is the velocity of sound 
K=sqrt((B.^2)./(C.*e)); % K is the non-dimensional electromechanical 

coupling coefficient 
Noe=1e26;               % Noe is the carrier density 
Non=1e26;               % Non is the electron density 
Wpe=sqrt((Noe.*(ec).^2)./(m.*e)); % Wpe is the electron plasma frequency 
Wpn=sqrt((Non*(ec).^2)./(m.*e));   % Wpe is the electron plasma frequency 
X=((w.^2)-((Wpn.^2)./3));          % X represents the effect of a 

nanoparticle on acoustic gain as it contains the plasma frequency of 

electron cloud of nanoparticle. 
D=(n.*KB.*T)./ec;                  % D is the diffusion coefficient 
f=ec./(m*n);                       % f is the momentum transfer collision 

frequency 
wD=(Vs.^2)./D;                     % WD is the diffusion frequency 
wR=(Wpe.^2)./f;                    % WR is the relaxation frequency 
%y1=0.5.*(K^2).*(x-1).*(X.^2).*(wR./w).*(s1+s2.*cos(w1.*t)); 
%y2=((wR./w).^2); 
%y3=((w.^2).*(s1+s2.*cos(w1.*t))./(wD.*wR)); 
%y4=(X+(4.*pi.*l.*(Wpn.^2))./(3.*(x-1))); 
%y5=(y3).*(y4); 
%y6=((s1+s2.*cos(w1.*t)).*X)+(y5); 
%y7=(y2).*((y6).^2); 
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%y8=(X.*(s1+s2.*cos(w1.*t)).*(x-

1))+((s1+s2.*cos(w1.*t)).*4.*pi.*l.*(Wpn.^2)./3).^2; 
%y9=(y7)+(y8); 
y=(y1)./(y9); 
plot(x,(y.*10^6),'g'); 
hold on 
hold on 
x=0.5:0.5:3.0; 
T=300; 
e=9.35.*8.85e-12; 
ec=1.602e-19; 
KB=1.38e-23; 
m=0.17*9.11e-31; 
p=4820; 
B=0.21; 
n=0.035; 
s1=1; 
s2=0.5; 
w1=3e12; 
t=2; 
l=0.001; 
w=5e12; 
C=24.1e9; 
Vs=sqrt(C./p); 
K=sqrt((B.^2)./(C.*e)); 
Non=1e26; 
Noe=1e26; 
Wpe=sqrt((Noe.*(ec).^2)./(m.*e)); 
Wpn=sqrt((Non*(ec).^2)./(m.*e)); 
X=((w.^2)-((Wpn.^2)./3)); 
D=(n.*KB.*T)./ec; 
f=ec./(m*n); 
wD=(Vs.^2)./D; 
wR=(Wpe.^2)./f; 
%y1=0.5.*(K^2).*(x-1).*(X.^2).*(wR./w).*(s1+s2.*cos(w1.*t)); 
%y2=((wR./w).^2); 
%y3=((w.^2).*(s1+s2.*cos(w1.*t))./(wD.*wR)); 
%y4=(X+(4.*pi.*l.*(Wpn.^2))./(3.*(x-1))); 
%y5=(y3).*(y4); 
%y6=((s1+s2.*cos(w1.*t)).*X)+(y5); 
%y7=(y2).*((y6).^2); 
%y8=(X.*(s1+s2.*cos(w1.*t)).*(x-

1))+((s1+s2.*cos(w1.*t)).*4.*pi.*l.*(Wpn.^2)./3).^2; 
%y9=(y7)+(y8); 
y=(y1)./(y9); 
plot(x,(y.*10^6),'--b'); 

hold on 
x=0.5:0.5:3.0; 
T=300; 
e=9.35.*8.85e-12; 
ec=1.602e-19; 
KB=1.38e-23; 
m=0.17*9.11e-31; 
p=4820; 
B=0.21; 
n=0.035; 
s1=1; 
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s2=0.5; 
w1=3e12;  
t=2; 
l=0.008; 
w=5e12; 
C=24.1e9; 
Vs=sqrt(C./p); 
K=sqrt((B.^2)./(C.*e)); 
Non=1e26; 
Noe=1e26; 
Wpe=sqrt((Noe.*(ec).^2)./(m.*e)); 
Wpn=sqrt((Non*(ec).^2)./(m.*e)); 
X=((w.^2)-((Wpn.^2)./3)); 
D=(n.*KB.*T)./ec; 
f=ec./(m*n); 
wD=(Vs.^2)./D; 
wR=(Wpe.^2)./f; 
%y1=0.5.*(K^2).*(x-1).*(X.^2).*(wR./w).*(s1+s2.*cos(w1.*t)); 
%y2=((wR./w).^2); 
%y3=((w.^2)./(wD.*wR)); 
%y4=(X+(4.*pi.*l.*(Wpn.^2))./(3.*(x-1))); 
%y5=(y3).*(y4); 
%y6=X+(y5); 
%y7=(y2).*((y6).^2); 
%y8=(X.*(s1+s2.*cos(w1.*t)).*(x-

1))+((s1+s2.*cos(w1.*t)).*4.*pi.*l.*(Wpn.^2)./3).^2; 
%y9=(y7)+(y8);  
y=(y1)./(y9); 
plot(x,(y.*10^6),'-.r'); 
set(findall(gca, 'Type', 'Line'),'LineWidth',1.5); 
legend('0.000','0.001','0.008'); 
grid on 
xlabel('Vo/Vs'); 
ylabel('\alpha(10^{-6})'); 

 

(ii) Variation of acoustic gain per unit length with wave frequency 
close all 
x=0e12:0.5e12:40e12; 
T=300; 
e=9.35.*8.85e-12; 
ec=1.602e-19; 
KB=1.38e-23; 
m=0.17*9.11e-31; 
p=4820; 
B=0.21; 
n=0.035; 
s1=1; 
s2=0.5; 
w1=3e12; 
t=2; 
l=0.000; 
C=24.1e9; 
j=0.25; % j is a term expressed interms of velocity ratio  
Vs=sqrt(C/p); 
K=sqrt((B.^2)./(C.*e)); 
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Non=1e26; 
Noe=1e26; 
Wpe=sqrt((Noe.*(ec).^2)./(m.*e)); 
Wpn=sqrt((Non*(ec).^2)./(m.*e)); 
X=((x.^2)-((Wpn.^2)./3)); 
D=(n.*KB.*T)./ec; 
f=ec./(m*n); 
wD=(Vs.^2)./D; 
wR=(Wpe.^2)./f; 
%y1=(0.5.*(K^2).*(j).*(X.^2).*(wR./x).*(s1+s2.*cos(w1.*t))); 
%y2=((wR./x).^2); 
%y3=((x.^2).*(s1+s2.*cos(w1.*t))./(wD.*wR)); 
%y4=(X+(4.*pi.*l.*(Wpn.^2))./(3.*(j))); 
%y5=(y3).*(y4); 
%y6=((s1+s2.*cos(w1.*t)).*X)+(y5); 
%y7=(y2).*((y6).^2); 
%y8=(X.*(s1+s2.*cos(w1.*t)).*j)+((s1+s2.*cos(w1.*t)).*4.*pi.*l.*(Wpn.^2)./

3).^2; 
%y9=(y7)+(y8); 
%y10=(y1)./(y9); 
y=((y10.*x)./Vs); 
plot((x.*10.^-12),(y.*10.^-3),'g'); 
hold on 
x=0e12:0.5e12:40e12; 
T=300; 
E=9.35.*8.85e-12; 
e=1.602e-19; 
k=1.38e-23; 
m=0.17*9.11e-31; 
p=4820; 
B=0.21; 
n=0.035; 
s1=1; 
s2=0.5; 
w1=3e12; 
t=2; 
l=0.001; 
C=24.1e9; 
Vs=sqrt(C./p); 
j=0.25; 
K=sqrt((B.^2)./(C.*E)); 
Non=1e26; 
Noe=1e26; 
Wpe=sqrt((Noe*(e).^2)/(m.*E)); 
Wpn=sqrt((Non*(e).^2)/(m.*E)); 
X=((x.^2)-((Wpn.^2)/3)); 
D=(n*k*T)/e; 
f=e/(m*n); 
wD=(Vs^2)/D; 
wR=(Wpe^2)/f; 
%y1=(0.5*(K^2)*(j)*(X.^2).*(wR./x).*(s1+s2.*cos(w1.*t))); 
%y2=((wR./x).^2); 
%y3=((x.^2).*(s1+s2.*cos(w1.*t))./(wD.*wR)); 
%y4=(X+(4*pi*l*(Wpn^2))/(3*(j))); 
%y5=(y3).*(y4); 
%y6=((s1+s2.*cos(w1.*t)).*X)+(y5); 
%y7=(y2).*((y6).^2); 
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%y8=(X.*(s1+s2.*cos(w1.*t)).*j)+((s1+s2.*cos(w1.*t)).*4.*pi.*l.*(Wpn.^2)./

3).^2; 
%y9=(y7)+(y8); 
%y10=(y1)./(y9); 
y=((y10.*x)./Vs); 
plot((x.*10.^-12),(y.*10.^-3),'--b'); 
hold on 
x=0e12:0.5e12:40e12; 
T=300; 
e=9.35.*8.85e-12; 
ec=1.602e-19; 
KB=1.38e-23; 
m=0.17*9.11e-31; 
p=4820; 
B=0.21; 
n=0.035; 
s1=1; 
s2=0.5; 
w1=3e12; 
t=2; 
l=0.008; 
C=24.1e9; 
j=0.25; 
Vs=sqrt(C/p); 
K=sqrt((B.^2)./(C.*e)); 
Non=1e26; 
Noe=1e26; 
Wpe=sqrt((Noe.*(ec).^2)./(m.*e)); 
Wpn=sqrt((Non*(ec).^2)./(m.*e)); 
X=((x.^2)-((Wpn.^2)./3)); 
D=(n.*KB.*T)./ec; 
f=ec./(m*n); 
wD=(Vs.^2)./D; 
wR=(Wpe.^2)./f; 
%y1=(0.5.*(K^2).*(j).*(X.^2).*(wR./x).*(s1+s2.*cos(w1.*t))); 
%y2=((wR./x).^2); 
%y3=((x.^2).*(s1+s2.*cos(w1.*t))./(wD.*wR)); 
%y4=(X+(4.*pi.*l.*(Wpn.^2))./(3.*(j))); 
%y5=(y3).*(y4); 
%y6=((s1+s2.*cos(w1.*t)).*X)+(y5); 
%y7=(y2).*((y6).^2); 
%y8=(X.*(s1+s2.*cos(w1.*t)).*j)+((s1+s2.*cos(w1.*t)).*4.*pi.*l.*(Wpn.^2)./

3).^2; 
%y9=(y7)+(y8); 
%y10=(y1)./(y9);  
y=((y10.*x)./Vs); 
plot((x.*10.^-12),(y.*10.^-3),'-.r'); 
set(findall(gca, 'Type', 'Line'),'LineWidth',1.5); 
legend('0.000','0.001','0.008'); 
xlabel('\omega(10^{12}s^{-1})') 
ylabel('\alpha\omega/v_s(10^{3})')   

(iii) Variation of acoustic gain with carrier density 
clc, clear all, close all 
x=0e25:0.05e25:40e25; 
T=300; 
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e=9.35.*8.85e-12; 
ec=1.602e-19; 
KB=1.38e-23; 
m=0.17*9.11e-31; 
p=4820; 
B=0.21; 
n=0.035; 
s1=1; 
s2=0.5; 
w1=3e12; 
t=2; 
l=0.000; 
w=5e12; 
C=24.1e9; 
Vs=sqrt(C./p); 
j=0.25; 
K=sqrt((B.^2)./(C.*e)); 
Non=1e26; 
Wpe=sqrt((x.*(ec).^2)./(m.*e)); 
Wpn=sqrt((Non*(ec).^2)./(m.*e)); 
X=((w.^2)-((Wpn.^2)./3)); 
D=(n.*KB.*T)./ec; 
f=ec./(m*n); 
wD=(Vs.^2)./D; 
wR=(Wpe.^2)./f; 
%y1=(0.5.*(K^2).*(j).*(X.^2).*(wR./w).*(s1+s2.*cos(w1.*t))); 
%y2=((wR./w).^2); 
%y3=((w.^2).*(s1+s2.*cos(w1.*t))./(wD.*wR)); 
%y4=(X+(4.*pi.*l.*(Wpn.^2))./(3.*(j))); 
%y5=(y3).*(y4); 
%y6=((s1+s2.*cos(w1.*t)).*X)+(y5); 
%y7=(y2).*((y6).^2); 
%y8=(X.*(s1+s2.*cos(w1.*t)).*j)+((s1+s2.*cos(w1.*t)).*4.*pi.*l.*(Wpn.^2)./

3).^2; 
%y9=(y7)+(y8); 
y=(y1)./(y9); 
plot((x.*10^-25),(y*10^6),'g'); 
hold on 
x=0e25:0.05e25:40e25; 
T=300; 
e=9.35.*8.85e-12; 
ec=1.602e-19; 
KB=1.38e-23; 
m=0.17*9.11e-31; 
p=4820; 
B=0.21; 
n=0.035; 
s1=1; 
s2=0.5; 
w1=3e12; 
t=2; 
l=0.001; 
w=5e12; 
C=24.1e9; 
Vs=sqrt(C./p); 
j=0.25; 
K=sqrt((B.^2)./(C.*e)); 
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Non=1e26; 
Wpe=sqrt((x.*(ec).^2)./(m.*e)); 
Wpn=sqrt((Non*(ec).^2)./(m.*e)); 
X=((w.^2)-((Wpn.^2)./3)); 
D=(n.*KB.*T)./ec; 
f=ec./(m*n); 
wD=(Vs.^2)./D; 
wR=(Wpe.^2)./f; 
%y1=(0.5.*(K^2).*(j).*(X.^2).*(wR./w).*(s1+s2.*cos(w1.*t))); 
%y2=((wR./w).^2); 
%y3=((w.^2).*(s1+s2.*cos(w1.*t))./(wD.*wR)); 
%y4=(X+(4.*pi.*l.*(Wpn.^2))./(3.*(j))); 
%y5=(y3).*(y4); 
%y6=((s1+s2.*cos(w1.*t)).*X)+(y5); 
%y7=(y2).*((y6).^2); 
%y8=(X.*(s1+s2.*cos(w1.*t)).*j)+((s1+s2.*cos(w1.*t)).*4.*pi.*l.*(Wpn.^2)./

3).^2; 
%y9=(y7)+(y8); 
y=(y1)./(y9); 
plot((x.*10^-25),(y*10^6),'--b'); 
hold on 
x=0e25:0.05e25:40e25; 
T=300; 
e=9.35.*8.85e-12; 
ec=1.602e-19; 
KB=1.38e-23; 
m=0.17*9.11e-31; 
p=4820; 
B=0.21; 
n=0.035; 
s1=1; 
s2=0.5; 
w1=3e12; 
t=2; 
l=0.008; 
w=5e12; 
C=24.1e9; 
Vs=sqrt(C./p); 
j=0.25; 
K=sqrt((B.^2)./(C.*e)); 
Non=1e26; 
Wpe=sqrt((x.*(ec).^2)./(m.*e)); 
Wpn=sqrt((Non*(ec).^2)./(m.*e)); 
X=((w.^2)-((Wpn.^2)./3)); 
D=(n.*KB.*T)./ec; 
f=ec./(m*n); 
wD=(Vs.^2)./D; 
wR=(Wpe.^2)./f; 
%y1=(0.5.*(K^2).*(j).*(X.^2).*(wR./w).*(s1+s2.*cos(w1.*t))); 
%y2=((wR./w).^2); 
%y3=((w.^2).*(s1+s2.*cos(w1.*t))./(wD.*wR)); 
%y4=(X+(4.*pi.*l.*(Wpn.^2))./(3.*(j))); 
%y5=(y3).*(y4); 
%y6=((s1+s2.*cos(w1.*t)).*X)+(y5); 
%y7=(y2).*((y6).^2); 
%y8=(X.*(s1+s2.*cos(w1.*t)).*j)+((s1+s2.*cos(w1.*t)).*4.*pi.*l.*(Wpn.^2)./

3).^2; 
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%y9=(y7)+(y8); 
y=(y1)./(y9); 
plot((x.*10^-25),(y*10^6),'-.r'); 
set(findall(gca, 'Type', 'Line'),'LineWidth',1.5); 
legend('0.000','0.001','0.008'); 
grid on 
xlabel('n_{0e}(10^{25}m^{-3})'); 
ylabel('\alpha(10^{-6})'); 

 

2. Interaction in the presence of commensurate fields  

The following are the MATLAB codes for CdS.The same codes were also used 
for MoS2 but with different physical parameters(density=p,piezoelectric 

constant=B,effective mass=m,electron mobility=n)and field constants( 

amplitude of a dc field=s1, amplitude of an ac field=s2)as 

p=5060,B=0.0156,m=0.16185*9.11e-31,n=0.041,s1=1 and s2=1. 

  

(i) Variation of acoustic gain with velocity ratio 
close all 
x=0.5:0.5:3.0; 
T=300; 
e=9.35*8.85e-12; 
ec=1.602e-19; 
KB=1.38e-23; 
m=0.17*9.11e-31; 
p=4820; 
B=0.21; 
n=0.035; 
s1=1; 
s2=1; 
w1=3e12;  % w1 is a commensurate frequency 
w2=6e12;  % w2 is also a commensurate frequency 
l=0.000; 
d=2; 
t=2; 
w=5e12; 
C=24.1e9; 
Vs=sqrt(C./p); 
K=sqrt((B.^2)./(C.*e)); 
Noe=1e26; 
Non=1e26; 
Wpe=sqrt((Noe.*(ec).^2)./(m.*e)); 
Wpn=sqrt((Non*(ec).^2)./(m.*e)); 
X=((w.^2)-((Wpn.^2)./3)); 
D=(n.*KB.*T)./ec; 
f=ec./(m*n); 
wD=(Vs.^2)./D; 
wR=(Wpe.^2)./f; 
%y1=(0.5.*(K^2).*(x-

1).*(X.^2).*(wR./w).*(s1.*cos(w1.*t)+s2.*cos(w2.*t+d))); 
%y2=((wR./w).^2); 
%y3=((w.^2).*(s1.*cos(w1.*t)+s2.*cos(w2.*t+d))./(wD.*wR)); 
%y4=(X+(4.*pi.*l.*(Wpn.^2))./(3.*(x-1))); 
%y5=(y3).*(y4); 
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%y6=((s1.*cos(w1.*t)+s2.*cos(w2.*t+d)).*X)+(y5); 
%y7=(y2).*((y6).^2); 
%y8=(X.*(s1.*cos(w1.*t)+s2.*cos(w2.*t+d)).*(x-

1))+((s1.*cos(w1.*t)+s2.*cos(w2.*t+d)).*4.*pi.*l.*(Wpn.^2)./3).^2; 
%y9=(y7)+(y8); 
y=(y1)./(y9); 
plot(x,(y*10^7),'g'); 
hold on 
hold on 
x=0.5:0.5:3.0; 
T=300; 
e=9.35.*8.85e-12; 
ec=1.602e-19; 
KB=1.38e-23; 
m=0.17*9.11e-31; 
p=4820; 
B=0.21; 
n=0.035; 
s1=1;  % s1 represents the amplitude of first commensurate field 
s2=1;  % s2 represents the amplitude of the second commensurate field 
w1=3e12; 
w2=6e12; 
d=2; 
t=2; 
l=0.001; 
w=5e12; 
C=24.1e9; 
Vs=sqrt(C./p); 
K=sqrt((B.^2)./(C.*e)); 
Non=1e26; 
Noe=1e26; 
Wpe=sqrt((Noe.*(ec).^2)./(m.*e)); 
Wpn=sqrt((Non*(ec).^2)./(m.*e)); 
X=((w.^2)-((Wpn.^2)./3)); 
D=(n.*KB.*T)./ec; 
f=ec./(m*n); 
wD=(Vs.^2)./D; 
wR=(Wpe.^2)./f; 
%y1=(0.5.*(K^2).*(x-

1).*(X.^2).*(wR./w).*(s1.*cos(w1.*t)+s2.*cos(w2.*t+d))); 
%y2=((wR./w).^2); 
%y3=((w.^2).*(s1.*cos(w1.*t)+s2.*cos(w2.*t+d))./(wD.*wR)); 
%y4=(X+(4.*pi.*l.*(Wpn.^2))./(3.*(x-1))); 
%y5=(y3).*(y4); 
%y6=((s1.*cos(w1.*t)+s2.*cos(w2.*t+d)).*X)+(y5); 
%y7=(y2).*((y6).^2); 
%y8=(X.*(s1.*cos(w1.*t)+s2.*cos(w2.*t+d)).*(x-

1))+((s1.*cos(w1.*t)+s2.*cos(w2.*t+d)).*4.*pi.*l.*(Wpn.^2)./3).^2; 
%y9=(y7)+(y8); 
y=(y1)./(y9); 
plot(x,(y*10^7),'--b'); 

hold on 
x=0.5:0.5:3.0; 
T=300;  
e=9.35.*8.85e-12; 
ec=1.602e-19; 
KB=1.38e-23; 
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m=0.17*9.11e-31; 
p=4820; 
B=0.21; 
n=0.035; 
s1=1; 
s2=1; 
w1=3e12; 
w2=6e12; 
d=2; 
t=2; 
l=0.008; 
w=5e12; 
C=24.1e9; 
Vs=sqrt(C./p); 
K=sqrt((B.^2)./(C.*e)); 
Non=1e26; 
Noe=1e26; 
Wpe=sqrt((Noe.*(ec).^2)./(m.*e)); 
Wpn=sqrt((Non*(ec).^2)./(m.*e)); 
X=((w.^2)-((Wpn.^2)./3)); 
D=(n.*KB.*T)./ec; 
f=ec./(m*n); 
wD=(Vs.^2)./D; 
wR=(Wpe.^2)./f; 
%y1=(0.5.*(K^2).*(x-

1).*(X.^2).*(wR./w).*(s1.*cos(w1.*t)+s2.*cos(w2.*t+d))); 
%y2=((wR./w).^2); 
%y3=((w.^2).*(s1.*cos(w1.*t)+s2.*cos(w2.*t+d))./(wD.*wR)); 
%y4=(X+(4.*pi.*l.*(Wpn.^2))./(3.*(x-1))); 
%y5=(y3).*(y4); 
%y6=((s1.*cos(w1.*t)+s2.*cos(w2.*t+d)).*X)+(y5); 
%y7=(y2).*((y6).^2); 
%y8=(X.*(s1.*cos(w1.*t)+s2.*cos(w2.*t+d)).*(x-

1))+((s1.*cos(w1.*t)+s2.*cos(w2.*t+d)).*4.*pi.*l.*(Wpn.^2)./3).^2; 
%y9=(y7)+(y8); 
y=(y1)./(y9); 
plot(x,(y*10^7),'-.r'); 
set(findall(gca, 'Type', 'Line'),'LineWidth',1.5); 
legend('0.000','0.001','0.008'); 
grid on 
xlabel('Vo/Vs'); 
ylabel('\alpha'); 

 

 

(ii) Variation of acoustic gain per unit length with wave frequency 
close all 
x=0e12:0.05e12:40e12; 
T=300; 
e=9.35.*8.85e-12; 
ec=1.602e-19; 
KB=1.38e-23; 
m=0.17*9.11e-31; 
p=4820; 
B=0.21; 
n=0.035; 
s1=1; 
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s2=1; 
w1=3e12; 
w2=6e12; 
d=2; 
t=2; 
l=0.000; 
C=24.1e9; 
j=0.25; 
Vs=sqrt(C/p); 
K=sqrt((B.^2)./(C.*e)); 
Non=1e26; 
Noe=1e26; 
Wpe=sqrt((Noe.*(ec).^2)./(m.*e)); 
Wpn=sqrt((Non*(ec).^2)./(m.*e)); 
X=((x.^2)-((Wpn.^2)./3)); 
D=(n.*KB.*T)./ec; 
f=ec./(m*n); 
wD=(Vs.^2)./D; 
wR=(Wpe.^2)./f; 
%y1=(0.5.*(K^2).*(j).*(X.^2).*(wR./x).*(s1.*cos(w2.*t+d))); 
%y2=((wR./x).^2); 
%y3=((x.^2).*(s1.*cos(w1.*t)+s2.*cos(w2.*t+d))./(wD.*wR)); 
%y4=(X+(4.*pi.*l.*(Wpn.^2))./(3.*(j))); 
%y5=(y3).*(y4); 
%y6=((s1.*cos(w1.*t)+s2.*cos(w2.*t+d)).*X)+(y5); 
%y7=(y2).*((y6).^2); 
%y8=(X.*(s1.*cos(w1.*t)+s2.*cos(w2.*t+d)).*j)+((s1.*cos(w1.*t)+s2.*cos(w2.

*t+d)).*4.*pi.*l.*(Wpn.^2)./3).^2; 
%y9=(y7)+(y8); 
%y10=(y1)./(y9); 
y=((y10.*x)./Vs); 
plot((x.*10.^-12),(y*10^-4),'g'); 
hold on 
x=0e12:0.05e12:40e12; 
T=300; 
E=9.35*8.85e-12; 
e=1.602e-19; 
kB=1.38e-23; 
m=0.17*9.11e-31; 
p=4820; 
B=0.21; 
n=0.035; 
s1=1; 
s2=1; 
w1=3e12; 
w2=6e12; 
d=2; 
t=2; 
l=0.001; 
C=24.1e9; 
Vs=sqrt(C./p); 
j=0.25; 
K=sqrt((B.^2)./(C.*E)); 
Non=1e26; 
Noe=1e26; 
Wpe=sqrt((Noe*(e).^2)/(m.*E)); 
Wpn=sqrt((Non*(e).^2)/(m.*E)); 
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X=((x.^2)-((Wpn.^2)/3)); 
D=(n*k*T)/e; 
f=e/(m*n); 
wD=(Vs^2)/D; 
wR=(Wpe^2)/f; 
%y1=(0.5.*(K^2).*(j).*(X.^2).*(wR./x).*(s1.*cos(w2.*t+d))); 
%y2=((wR./x).^2); 
%y3=((x.^2).*(s1.*cos(w1.*t)+s2.*cos(w2.*t+d))./(wD.*wR)); 
%y4=(X+(4*pi*l*(Wpn^2))/(3*(j))); 
%y5=(y3).*(y4); 
%y6=((s1.*cos(w1.*t)+s2.*cos(w2.*t+d)).*X)+(y5); 
y7=(y2).*((y6).^2); 
y8=(X.*(s1.*cos(w1.*t)+s2.*cos(w2.*t+d)).*j)+((s1.*cos(w1.*t)+s2.*cos(w2.*

t+d)).*4.*pi.*l.*(Wpn.^2)./3).^2; 
y9=(y7)+(y8); 
y10=(y1)./(y9); 
y=((y10.*x)./Vs); 
plot((x.*10.^-12),(y*10^-4),'--b'); 
hold on 
x=0e12:0.05e12:40e12; 
T=300; 
e=9.35.*8.85e-12; 
ec=1.602e-19; 
KB=1.38e-23; 
m=0.17*9.11e-31; 
p=4820; 
B=0.21; 
n=0.035; 
s1=1; 
s2=1; 
w1=3e12; 
w2=6e12; 
d=2; 
t=2; 
l=0.008; 
C=24.1e9; 
j=0.25; 
Vs=sqrt(C/p); 
K=sqrt((B.^2)./(C.*e)); 
Non=1e26; 
Noe=1e26; 
Wpe=sqrt((Noe.*(ec).^2)./(m.*e)); 
Wpn=sqrt((Non.*(ec).^2)./(m.*e)); 
X=((x.^2)-((Wpn.^2)./3)); 
D=(n.*KB.*T)./ec; 
f=ec./(m*n); 
wD=(Vs.^2)./D; 
wR=(Wpe.^2)./f; 
%y1=(0.5.*(K^2).*(j).*(X.^2).*(wR./x).*(s1.*cos(w2.*t+d))); 
%y2=((wR./x).^2); 
%y3=((x.^2).*(s1.*cos(w1.*t)+s2.*cos(w2.*t+d))./(wD.*wR)); 
%y4=(X+(4.*pi.*l.*(Wpn.^2))./(3.*(j))); 
%y5=(y3).*(y4); 
%y6=((s1.*cos(w1.*t)+s2.*cos(w2.*t+d)).*X)+(y5); 
%y7=(y2).*((y6).^2); 
%y8=(X.*(s1.*cos(w1.*t)+s2.*cos(w2.*t+d)).*j)+((s1.*cos(w1.*t)+s2.*cos(w2.

*t+d)).*4.*pi.*l.*(Wpn.^2)./3).^2; 
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%y9=(y7)+(y8); 
%y10=(y1)./(y9); 
y=((y10.*x)./Vs); 
plot((x.*10.^-12),(y*10^-4),'-.r'); 
set(findall(gca, 'Type', 'Line'),'LineWidth',1.5); 
legend('0.000','0.001','0.008'); 
xlabel('\omega(10^{12}s^{-1})')  
ylabel('\alpha\omega/v_s(10^{-4})') 

     

 

 (iii) Variation of acoustic gain with carrier density 
close all 
x=0e25:0.05e25:40e25; 
T=300; 
e=9.35.*8.85e-12; 
ec=1.602e-19; 
KB=1.38e-23; 
m=0.17*9.11e-31; 
p=4820; 
B=0.21; 
n=0.035; 
s1=1; 
s2=1; 
w1=3e12; 
w2=6e12; 
d=2; 
t=2; 
l=0.000; 
w=5e12; 
C=24.1e9; 
Vs=sqrt(C./p); 
j=0.25; 
K=sqrt((B.^2)./(C.*e)); 
Non=1e26; 
Wpe=sqrt((x.*(ec).^2)./(m.*e)); 
Wpn=sqrt((Non*(ec).^2)./(m.*e)); 
X=((w.^2)-((Wpn.^2)./3)); 
D=(n.*KB.*T)./ec; 
f=ec./(m*n); 
wD=(Vs.^2)./D; 
wR=(Wpe.^2)./f; 
y1=(0.5.*(K^2).*(x-

1).*(X.^2).*(wR./w).*(s1.*cos(w1.*t)+s2.*cos(w2.*t+d))); 
y2=((wR./w).^2); 
y3=((w.^2).*(s1.*cos(w1.*t)+s2.*cos(w2.*t+d))./(wD.*wR)); 
y4=(X+(4.*pi.*l.*(Wpn.^2))./(3.*(j))); 
y5=(y3).*(y4); 
y6=((s1.*cos(w1.*t)+s2.*cos(w2.*t+d)).*X)+(y5); 
y7=(y2).*((y6).^2); 
y8=(X.*(s1.*cos(w1.*t)+s2.*cos(w2.*t+d)).*j)+((s1.*cos(w1.*t)+s2.*cos(w2.*

t+d)).*4.*pi.*l.*(Wpn.^2)./3).^2; 
y9=(y7)+(y8); 
y=(y1)./(y9); 
plot((x.*10^-25),(y*10^-18),'g'); 
hold on 
x=0e25:0.05e25:40e25; 
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T=300; 
e=9.35.*8.85e-12; 
ec=1.602e-19; 
KB=1.38e-23; 
m=0.17*9.11e-31; 
p=4820; 
B=0.21; 
n=0.035; 
s1=1; 
s2=1; 
w1=3e12; 
w2=6e12; 
d=2; 
t=2; 
l=0.001; 
w=5e12; 
C=24.1e9; 
Vs=sqrt(C./p); 
j=0.25; 
K=sqrt((B.^2)./(C.*e)); 
Non=1e26; 
Wpe=sqrt((x.*(ec).^2)./(m.*e)); 
Wpn=sqrt((Non*(ec).^2)./(m.*e)); 
X=((w.^2)-((Wpn.^2)./3)); 
D=(n.*KB.*T)./ec; 
f=ec./(m*n); 
wD=(Vs.^2)./D; 
wR=(Wpe.^2)./f; 
%y1=(0.5.*(K^2).*(x-

1).*(X.^2).*(wR./w).*(s1.*cos(w1.*t)+s2.*cos(w2.*t+d))); 
%y2=((wR./w).^2); 
%y3=((w.^2).*(s1.*cos(w1.*t)+s2.*cos(w2.*t+d))./(wD.*wR)); 
%y4=(X+(4.*pi.*l.*(Wpn.^2))./(3.*(j))); 
%y5=(y3).*(y4); 
%y6=((s1.*cos(w1.*t)+s2.*cos(w2.*t+d)).*X)+(y5); 
%y7=(y2).*((y6).^2); 
%y8=(X.*(s1.*cos(w1.*t)+s2.*cos(w2.*t+d)).*j)+((s1.*cos(w1.*t)+s2.*cos(w2.

*t+d)).*4.*pi.*l.*(Wpn.^2)./3).^2; 
%y9=(y7)+(y8); 
y=(y1)./(y9); 
plot((x.*10^-25),(y*10^-18),'--b'); 
hold on 
x=0e25:0.05e25:40e25; 
T=300; 
e=9.35.*8.85e-12; 
ec=1.602e-19; 
KB=1.38e-23; 
m=0.17*9.11e-31; 
p=4820; 
B=0.21; 
n=0.035; 
s1=1; 
s2=1; 
w1=3e12; 
w2=6e12; 
d=2; 
t=2; 
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l=0.008; 
w=5e12; 
C=24.1e9; 
Vs=sqrt(C./p); 
j=0.25; 
K=sqrt((B.^2)./(C.*e)); 
Non=1e26; 
Wpe=sqrt((x.*(ec).^2)./(m.*e)); 
Wpn=sqrt((Non*(ec).^2)./(m.*e)); 
X=((w.^2)-((Wpn.^2)./3)); 
D=(n.*KB.*T)./ec; 
f=ec./(m*n); 
wD=(Vs.^2)./D; 
wR=(Wpe.^2)./f; 
%y1=(0.5.*(K^2).*(x-

1).*(X.^2).*(wR./w).*(s1.*cos(w1.*t)+s2.*cos(w2.*t+d))); 
%y2=((wR./w).^2); 
%y3=((w.^2).*(s1.*cos(w1.*t)+s2.*cos(w2.*t+d))./(wD.*wR)); 
%y4=(X+(4.*pi.*l.*(Wpn.^2))./(3.*(j))); 
%y5=(y3).*(y4); 
%y6=((s1.*cos(w1.*t)+s2.*cos(w2.*t+d)).*X)+(y5); 
%y7=(y2).*((y6).^2); 
%y8=(X.*(s1.*cos(w1.*t)+s2.*cos(w2.*t+d)).*j)+((s1.*cos(w1.*t)+s2.*cos(w2.

*t+d)).*4.*pi.*l.*(Wpn.^2)./3).^2; 
%y9=(y7)+(y8); 
y=(y1)./(y9); 
plot((x.*10^-25),(y*10^-18),'-.r'); 
set(findall(gca, 'Type', 'Line'),'LineWidth',1.5); 
legend('0.000','0.001','0.008'); 
grid on 
xlabel('n_{0e}(10^{25}m^{-3})'); 
ylabel('\alpha(10^{-18})'); 
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