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ABSTRACT

In this thesis, inequalities regarding the solutions of the nonlinear ordi-

nary differential equation with multiple delays are obtained by means of

Lyapunov functionals. These inequalities are then used to obtain sufficient

conditions that guarantee exponential decay of solutions to zero of the multi

delay nonlinear ordinary differential equation. In addition, a criterion for

the instability of the zero solution is obtained. The results generalizes some

results in the literature.
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CHAPTER ONE

INTRODUCTION

This chapter is made up of the background of the study, the statement

of the problem, the objectives of this study as well as the organization of

the chapters in the thesis

Background to the Study

In science and engineering, mathematical models are developed to

help in the understanding of physical phenomena. These models often

yield an equation that contains some derivatives of an unknown function.

Such an equation is called a differential equation.

Ince (1956) observed that the study of differential equations began in

1675, when Gottfried Wilhelm Von Leibniz wrote the equation

∫
xdx = (1

2
)x2.

However, according to Sasser (2005) the search for the general methods

of integrating ordinary differential equations began when Isaac Newton

put forth the following three ”types” of differential equations known as

”fluxional equations” in the 1670s:

dy

dx
= f(x),

dy

dx
= f(x, y),

x
∂u

∂x
+ y

∂u

∂y
= u.

The first two equations contain only ordinary derivatives of one or more

dependent variables, with respect to a single independent variable, and are

known today as ordinary differential equations. The third equation involved
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the partial derivatives of one dependent variable and today is called partial

differential equations.

The main concern of mathematicians during the 17th and 18th cen-

tury focused primarily on integration of differential equations by means of

elementary functions. Due to the works of several great mathematicians,

all known elementary methods for solving first-order differential equations

were practically found by the end of the 17th century. Many differential

equations of second-order were derived, in the beginning of the 18th cen-

tury, as models for problems in classical Mechanics. Also other phenomena

led to differential equations of third order.

The period of initial discovery of general methods of integrating or-

dinary differential equations ended by 1775, a hundred years after Leibniz

inaugurated the integral sign. For many problems the formal methods were

not sufficient. Solutions with special properties were required, and thus,

criteria guaranteeing the existence of such solutions became increasingly

important. Boundary value problems led to ordinary differential equations,

such as Bessel’s equation, that prompted the study of Laguerre, Legendre,

and Hermite polynomials. The study of these and other functions that

are solutions of equations of hypergeometric type led in turn to modern

numerical methods. Thus, by 1775, as more and more attention was given

to analytical methods and problems of existence, the search for general

methods of integrating ordinary differential equations ended.

In the middle of the 19th century, Joseph Liouville showed the impos-

sibility of expressing the general solution of certain differential equations

by a combination of elementary functions or Liouville functions. Conse-

quently, a new approach to the study of differential equations had to be

developed.

The qualitative theory of differential equations was born at the end of

the 19th century with the works of Poincaré & Magini (1899) and Lyapunov

2
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(1892). Its aim is to obtain the local and global behaviour of the solutions

without having them explicitly. The main goal of the qualitative theory is

the topological description of properties and configurations of solutions of

differential systems in the whole space.

In the case of stability, Lyapunov (1892) introduced a completely dif-

ferent technique, known as Lyapunov’s second method, to determine the

stability behaviour of solutions of linear and nonlinear systems of differ-

ential equations. The major advantage of this method is that; basically,

stability can be obtained without any prior knowledge of solutions. Earlier,

this method was used only to establish simple theorems on stability. How-

ever, from the last 40 years his basic idea has been extensively exploited

and effectively applied to entirely new problems in physics and engineering.

Today, this method is widely recognized as an excellent tool not only

in the study of differential equations but also in the theory of control sys-

tems, dynamical systems, systems with time lag, power system analysis,

time-varying nonlinear feedback systems, and so on. Its main characteris-

tic is the construction of a scalar function, namely, the Lyapunov function.

Unfortunately, it is sometimes very difficult to find a proper Lya-

punov function for a given system. Because the method yields stability

information directly, that is, without solving the differential systems, it is

also known as Lyapunov direct method.

Statement of the Problem

The study of the stability properties of differential equations have at-

tracted the attention of several mathematicians lately. In particular, Wang

(2004) obtained sufficient conditions for the zero solution of the equation

x′(t) = a(t)x(t) + b(t)x(t− h)

to be exponentially stable.

Also, Cable & Raffoul (2011) obtained sufficient conditions for the

zero solution of the equation with multiple delays

3
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x′(t) = a(t)x(t) +
∑n

i=1 bi(t)x(t− hi)

to be exponentially stable.

However, the results obtained by the above authors are for linear

equations and do not apply to the equation

x′(t) = a(t)f(x(t)) +
∑n

i=1 bi(t)f(x(t− hi)),

which is the nonlinear version of the equations considered by the authors.

Purpose of the Study

The purpose of this study is to determine the sufficient conditions for

exponential stability and instability of solutions of nonlinear delay ordinary

differential equations.

Research Objectives

The study sought to achieve the following;

1. construct a suitable Lyapunov functional that yields results concern-

ing the exponential stability of the zero solution of

x′(t) = a(t)f(x(t)) +
∑n

i=1 bi(t)f(x(t− hi))

2. obtain sufficient conditions for the exponential stability of the zero

solution of

x′(t) = a(t)f(x(t)) +
∑n

i=1 bi(t)f(x(t− hi))

3. obtain an instability criteria of the zero solution of

x′(t) = a(t)f(x(t)) +
∑n

i=1 bi(t)f(x(t− hi)).

Significance of the Study

The results obtained in the study generalizes some results in the lit-

erature.

4
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Delimitation

The study determined the sufficient conditions for exponential stabil-

ity and instability of solutions of nonlinear delay ordinary differential equa-

tions. Results concerning exponential stability and instability of solutions

of nonlinear ordinary differential equations was analyzed. The results ob-

tained cannot be easily generalized for all ordinary differential equations.

Limitation

Even though there are other methods of obtaining stability proper-

ties of solutions of ordinary differential equations, the study was limited

to Lyapunov’s direct method. This was because the method allowed us

to deduce inequalities that all solutions must satisfy and from which the

exponential stability and instability is deduced. Also the study obtained

results concerning nonlinear ordinary differential equations instead of linear

equations.

Organisation of the Study

Chapter One of the study dealt with the background to the study.

It gave a vivid history of the study of ordinary differential equations and

the important role it plays in the modelling of physical phenomena. It

further explained the qualitative properties of differential equations con-

sidered in this thesis. The Chapter also includes the problems statement

and objectives as well as the organization of the study.

In Chapter Two, an extensive review of relevant related literature was

carried out. It also includes a brief review of the relevant mathematical

concepts. It draws extensively from the work of other researchers which

are published in journals and scholarly articles.

The Chapter Three of the study dealt with the Methodology which

included an overview of the tool used in the discussion of the stability

properties of differential equations considered in this thesis.

5
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In Chapter Four, results and discussion of major findings were done

based on the objectives of the study. The Fifth Chapter of the study which

is the final Chapter dealt with the summary of the results as well as the

conclusions.

Chapter Summary

In this chapter, an introduction of the study is given by a brief back-

ground and the problem to be examined in this study. The objectives, sig-

nificance, limitations and delimitations of the study are also stated. Then

the structure of the study, that is how the study is organised is outlined.

6
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CHAPTER TWO

LITERATURE REVIEW

Introduction

This chapter is divided into two sections. The first section deals with

the review of existing literature which are obtained from the work of other

researchers published in journals and scholarly articles which are related

and also relevant and significant to the study. The second section consists

of a review of basic concepts of ordinary differential equations.

Lyapunov’s Stability

The study of behaviour of solutions of differential equations started

in the latter part of the nineteenth century and became a subject of in-

tense research since 1940. Early results include the work of the Russian

mathematician Lyapunov (1892) in which he standardized the definition of

stability to systems of ordinary differential equations of the form

x′(t) = f(x(t)).

In the century that followed, the use of Lyapunov functions to prove sta-

bility increased and is known alternatively as the ”Direct method of Lya-

punov” or ”Lyapunov’s second method”.

La Salle & Lefschetz (1961) presented modest monograph ”stability

by Liapunov’s direct method with applications”, which is described as ex-

pounding the main lines of Lypunov’s stability theory and of his direct

method, and making them accessible to technical people with some math-

ematical equipments.

Hale (1977) in his book ”Theory of Functional differential equations”

studied the equation

x′(t) = ax(t) + bx(t− h)

7
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where, a and b are constants and gave a stability region. For asymptotic

stability, he requires a < 0.

Busenberg & Cooke (1984) derived some new sufficient conditions

for uniform asymptotic stability of the zero solution of the linear non-

autonomous delay equations. The equations considered includes scalar

equations of the form

x′(t) = −c(t)x(t) +
n∑
i=1

bi(t)x(t− Ti),

where, c(t), bi(t) are continuous for t ≥ 0 and Ti is a positive number

(i = 1, 2, ..., n), and also systems of the form

x′(t) = B(t)x(t− T )− C(t)x(t),

where, B(t) and C(t) are n× n matrices.

The results are found by using the method of Lyapunov functionals.

Again, Hatvani (1997), gave annulus arguments not requiring the bounded-

ness of the derivatives of the functions involved and established Lyapunov

type theorems for the attractivity, asymptotic stability, and partial stabil-

ity properties of the zero solution of nonautonomous functional differential

equations. Hatvani applied these results to the scalar equation

x′(t) = −c(t)x(t) + b(t)x(t− h) (c(t) ≥ 0),

and the scalar equation with several delays

x′(t) = −c(t)x(t) +
n∑
i=1

bi(t)x(t− hi) (c(t) ≥ 0),

as well as to the system

x′(t) = B(t)x(t− h)− C(t)x(t),

8
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where, B(t) and C(t) are continuous matrix functions.

Knyazhishche & Shcheglov (1998) proved Lyapunov type theorems

and applied the results to the scalar equation

x′(t) = b(t)x(t− r(t)),

where, b(t) and r(t) may be unbounded. In the paper, they gave new

definition of the positive-definiteness of the Lyapunov functional involved

in the stability and asymptotic stability investigation.

Moreover, Wang (2004) used Lyapunov functionals and obtained in-

equalities from which exponential stability was deduced on the zero solution

of the constant delay equation

x′(t) = a(t)x(t) + b(t)x(t− h),

where, a, b : R+ → R is continuous and h > 0 a constant.

Wang obtained sufficient conditions for asymptotic stability if a(t) ≤

0 and instability a(t) ≥ 0. In the case that a(t) and b(t) are constant, Wang

offered a region showing uniform asymptotic stability and instability of the

zero solution of the equation which is different from the stability regions

obtained by Hale’s (1977).

Furthermore, Cable & Raffoul (2011) used Lyapunov functionals to

obtain sufficient conditions that quarantee exponential decay of solutions

to zero for the multi delay linear differential equation

x′(t) = a(t)x(t) +
n∑
i=1

bi(t)x(t− hi),

where, a, b are continuous with 0 < hi ≤ h∗ for i = 1, ..., n, for some

positive constant h∗. They also obtained a criterion for instability of the

zero solution of the equation.

9
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The highlight of the paper by Cable and Raffoul is that a(t) is allowed

to change signs. Cable and Raffoul compared their results to that of Wang

(2004), by setting n = 1, and showed that their work improved the results

obtained by Wang.

In the case where there are time varying delays, Burton (2003) ob-

tained asymptotic stability of the zero solution of the equation

x′ = b(t)x(t)− a(t)x(t− h(t)),

where, b(t) = 0 and when the delay is constant, h(t) = h for all t, and

used both Lyapunov functionals and fixed point theory for the purpose of

comparing both methods.

In the next section, basic concepts of ordinary differential equation is

reviewed. The mathematical concepts are reviewed from the book ”Ordi-

nary Differential Equations” by Nagy (2019).

Basic Concepts of Differential Equations

A differential equation is an equation, where the unknown is a func-

tion and both the function and its derivatives may appear in the equation.

For example

m
d2x

dt2
(t) = f

(
t, x(t),

dx

dt
(t)
)
, (2.1)

where, the unknown is x(t).

∂T

∂t
(t, x) = k

(∂2T
∂x2

(t, x) +
∂2T

∂y2
(t, x) +

∂2T

∂z2
(t, x)

)
, (2.2)

where, k is a positive constant.

Equation (2.1) is an example of ordinary differential equations (ODEs),

this is because the unknown function depends on a single independent

variable, t. Equation (2.2) is an example of partial differential equations

10
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(PDEs), this is because the unknown function depends on two or more

independent variables, t, x, y, and z, and their partial derivatives appear

in the equations.

Order of differential equations

The order of a differential equation is the highest derivative order that

appears in the equation. For instance, Equation (2.1) is a second order and

Equation (2.2) is first order in time and second order in space variables.

This thesis focuses on ordinary differential equations (ODEs) and

therefore basic concepts of ODEs are provided in the section that follows.

Ordinary Differential Equations

An ordinary differential equation (ODE) is an equation that involves

some ordinary derivatives of an unknown function. For example

dy

dt
= t2 (2.3)

is an ODE where, y(t) is the unknown function.

First order ordinary differential equation

The general first order ODE in Rn , n ≥ 1, is given by

y ′(t) = f (t , y(t)), y(t0) = y0. (2.4)

on a domain D ⊂ R×Rn, where, (t0, y0) ∈ D and f(t, y) is a function from

D ⊂ R×Rn into Rn.

Equation (2.4) is usually referred to as non-autonomous differential

system whereas, a differential system of the form

y′ = f(y). (2.5)

11
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in which the right hand side does not involve the independent variable ’t’

is called autonomous system.

Solution of an ordinary differential equation

A function y(t) is said to be a solution of Equation (2.4) on an interval

I if t0 ∈ I, (t, y(t)) ∈ D for t ∈ I, y(t) is differentiable for t ∈ I and satisfies

Equation (2.4) for t ∈ I.

Linear ordinary differential equations

The Equation (2.4) is linear if and only if the source function f is

linear on its second argument.

Consider the linear ODE,

y′ = a(t)y + b(t). (2.6)

The Equation (2.6) has constant coefficients if and only if both a and b

above are constants. Otherwise the equation has variable coefficients.

For example, consider the first order linear ODE,

y′ = 2y + 3. (2.7)

On the right-hand side, the function f(t, y) = 2y + 3, where a(t) = 2 and

b(t) = 3. Since these coefficients do not depend on t, Equation (2.7) is a

constant coefficient equation.

Also, consider the ODE,

y′ = −2

t
y + 4t. (2.8)

In this case, the right-hand side is given by the function f(t, y) = −2
t

+ 4t,

where a(t) = −2
t

and b(t) = 4t. Since the coefficients are non-constant

12

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



functions of t, Equation (2.8) is a variable coefficients equation.

Nonlinear ordinary differential equations

An ordinary differential equation is called nonlinear if and only if the

function f is nonlinear in the second argument.

For example

y′(t) =
t2

y3(t)
(2.9)

is nonlinear, since the function f(t, y) = t2

y3
is nonlinear in the second

argument.

Delay ordinary differential equations

When modelling a system using a differential equation where the fun-

damental assumption is that the time rate at time t, y′(t), depends only on

the current status at time t, f(t, y(t)) resulting in the differential Equation

(2.4).

In applications, this assumption and the initial condition should be

improved so the situation can be modeled more accurately and better re-

sults derived. One improvement of Equation (2.4) is to assume that the

time rate depends not only on the current state, but also on the state in the

past; that is, the past history will contribute to the future development,

or, there is a time-delay effect.

Differential equations incorporating delay effect, or using information

from the past, are called delay differential equations. They include finite

delay differential equations and infinite delay differential equations.

Consider the delay ordinary differential equation below,

dy

dt
= f
(

t , y(t), y(t − τ)
)
, τ > 0 (2.10)

13
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with

y(t) = φ0(t), t0 − τ ≤ t ≤ t0. (2.11)

Here, φ0 : R → Rn is a known function, usually taken to be continuous.

φ0(t) is called the initial function for , t0 the initial instant and [t0 − τ, t0]

the initial set.

Qualitative Properties of Differential Equations

Differential equations are required tools in scientific modelling of

physical systems which found their applications in almost every area of

human efforts from agricultural sciences, engineering, medical science, so-

cial sciences to physical sciences. Among the earlier work on differential

equations, the works of Euler and Lagrange stand out. They first worked

on the theory of small oscillations and consequently, the theory of linear

system of ordinary differential equations.

In the study of theory of differential equations, the knowledge of two

different streams should be known. They include;

1. An effort to get a definite or one of the definite types, either in closed

forms, which is rarely possible or else by some method of approxima-

tion. This is referred to as the Quantitative theory.

2. An effort to abandon all attempts to obtain an exact or approximate

solution, one strives to obtain information about the whole class of

solution. This is called the Qualitative theory. The most important

qualitative properties of solution of differential equations are stability

and boundedness.

Stability of differential equations

Stability has a great role in the study of differential systems. The

mathematical models or equations that describe physical phenomena are

14
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in most cases differential systems of the form x′ = f(t, x), with the initial

data x(t0) = x0. Since the initial data, which often results from all types

of measurements, may have errors, it is important to know the extent to

which small disturbances in the initial data affect the desired behaviour of

the solutions of given systems.

If by making a sufficiently small change in the initial data, a substan-

tial deviation is observed in the corresponding solutions, then the solution

obtained from the given initial data is unacceptable because it does not

describe the required phenomena even approximately.

The idea of investigating the conditions that will not allow the solu-

tions to remarkably deviate from the desired behaviour is therefore vital.

The area of mathematics that deals with such problems relating to the

behaviour of the solutions is usually referred to as stability theory (Ahmad

& Rao, 1999).

Definition 1 (Exponential stability)

The zero solution of Equation (2.4) is exponentially stable if for a

positive constant λ, any solution x (t , t0, ϕ) satisfies

‖ x ‖≤ K(|ϕ|, t0)e−λ(t−t0), (2.12)

for all t ≥ t0, where, K (|ϕ|, t0) is a positive constant depending on t0 and

ϕ, with ϕ being an initial given function.

Chapter Summary

In this chapter, review was done on relevant literature and basic con-

cepts of ordinary differential equations as well as stability of differential

equations. From the literature review, there is evidence that numerous

studies on exponential stability and instability of differential equations by

the use of Lyapunov direct method have been done by earlier researchers.

However, there seems to be a gap in the literature that needs to be

15
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filled and this study will ensure that these gaps are addressed.

It was discovered that few works has been documented in determining

the exponential stability and instability of nonlinear differential equations

as in linear differential equations.

16
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CHAPTER THREE

METHODOLOGY

Introduction

In this chapter, the method that was used in achieving the research

objectives is discussed.

Lyapunov’s Method

According to Parks (1992), Lyapunov in 1892, dealt with stability by

two distinct methods. The First method pre-supposes an explicit solution

known and this is applicable to some restricted but important cases. The

second method, which is also called the Direct method, is of great generality

and power and, above all, does not require the knowledge of the solutions

themselves.

The application of the Lyapunov’s method lies in constructing a scalar

function (say V - some time energy liked function) and its derivatives V ′

such that they possess certain properties. When these properties of V and

V ′ are shown, the stability behaviour of the system is known. The direct

method is via a special function called the Lyapunov function.

Definition 2 (Positive definite)

Let Q ⊂ Rn be a domain containing the zero vector. A continuous

function V : Q→ [0,∞) is called positive definite if V (x) > 0 for x 6= 0.

Definition 3 (Lyapunov Function)

Let Q ⊂ Rn be a domain containing the zero vector. A function

V : Q→ [0,∞) is called a Lyapunov function if;

1. V (0) = 0,

2. V (x) is positive definite and

3. has continuous first-order partial derivatives.

17
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The use of Lyapunov functionals allowed us to deduce inequalities

that all solutions must satisfy and from which the exponential stability

and instability is deduced.

However, the choice of a Lyapunov function plays an important role

in the study of Lyapunov stability theory. Once a Lyapunov function has

been found in some region around the origin, it becomes possible to test the

stability, exponential stability or instability of the zero solution of a given

system. In case of failure to find such a Lyapunov function, one cannot

study the stability of a given system using the Lyapunov stability theory.

In general, no satisfactory technique is given which provides suitable

Lyapunov function, particularly for nonlinear systems. However in the

literature, some methods are there which are applicable to both linear and

nonlinear systems to construct suitable Lyapunov functions.

Chapter Summary

This chapter presented the method that was used in conducting the

research. It focused on the Lyapunov’s direct method which was used to

deduce inequalities in this thesis.
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CHAPTER FOUR

RESULTS AND DISCUSSION

Introduction

This chapter covers the results of the study. In particular, the results

of exponential stability and instability criteria of the nonlinear ordinary

differential equation are presented and discussed. Results are presented

based on the objectives of the study.

Preliminary Results

Consider the scalar nonlinear differential equation with multi delay

as follows;

x′(t) = a(t)f(x(t)) +
n∑
i=1

bi(t)f(x(t− hi)), (4.1)

where, a, b are continuous with 0 < hi ≤ h∗ for i = 1, ..., n for some positive

constant h∗ and f : R→ R with f(0) = 0 to be continuous.

Let

f1(x) =


f(x)
x
, x 6= 0

f ′(0), x = 0.

In Lemma 1, an equivalent form of Equation (4.1) is provided which will

be used extensively in the rest of the thesis.

Lemma 1.

Equation (4.1) is equivalent to the equation

x′(t) =
(
a(t) +

n∑
i=1

bi(t+ hi)
)
f1(x(t))x(t)

−
n∑
i=1

d

dt

∫ t

t−hi
bi(s+ hi)f(x(s))ds. (4.2)
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Proof.

Differentiating the integral term in Equation (4.2), gives

x′(t) =
(
a(t) +

n∑
i=1

bi(t+ hi)
)
f1(x(t))x(t)

−
n∑
i=1

[
bi(t+ hi)f(x(t))

− bi(t− hi + hi)f(x(t− hi))
]

= a(t)f1(x(t))x(t)

+
n∑
i=1

bi(t+ hi)f1(x(t))x(t)

−
n∑
i=1

[
bi(t+ hi)f(x(t))

− bi(t)f(x(t− hi))
]

= a(t)f1(x(t))x(t)

+
n∑
i=1

bi(t+ hi)f1(x(t))x(t)

−
n∑
i=1

bi(t+ hi)f(x(t))

+
n∑
i=1

bi(t)f(x(t− hi)). (4.3)
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But, f(x(t)) = f1(x(t))x(t). Therefore, Equation (4.3) becomes

x′(t) = a(t)f(x(t))

+
n∑
i=1

bi(t+ hi)f(x(t))

−
n∑
i=1

bi(t+ hi)f(x(t))

+
n∑
i=1

bi(t)f(x(t− hi))

= a(t)x(t) +
n∑
i=1

bi(t)x(t− hi).

This completes the proof.

In lemma 2, the Lyapunov functionals that will be used to obtain

results for the exponential stability and instability are proposed.

Lemma 2.

Let δ and H be constants such that δ > 0 and H > 0. If f(0) = 0,

then the functionals defined by

V (t, x) =

[
x(t) +

n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

]2

+ δ

n∑
i=1

∫ 0

−hi

∫ t

t+s

b2i (z + hi)f
2(x(z))dzds (4.4)

and

V (t, x) =

[
x(t) +

n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

]2

− H
n∑
i=1

∫ t

t−hi
b2i (s+ hi)f

2(x(s))ds, (4.5)
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are Lyapunov functionals.

Proof.

To verify that Equation (4.4) is a Lyapunov functional, consider

V (t, 0) =

[
0 +

n∑
i=1

∫ t

t−hi
bi(s+ hi)f(0)ds

]2

+ δ
n∑
i=1

∫ 0

−hi

∫ t

t+s

b2i (z + hi)f
2(0)dzds

= 0.

Now, it is clear from the definition of Equation (4.4) that V (t, x) > 0

for all x, except x = 0. Thus, V (t, x) is positive definite.

Finally,

∂V

∂x
= 2

[
x(t) +

n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

]
,

which is continuous.

Therefore, V (t, x) defined by Equation (4.4) is a Lyapunov functional.

Equation (4.5) can similarly be shown to be a Lyapunov functional.

This complete the proof.

Main Results

In this section, results concerning exponential stability and instability

of Equation (4.1) is obtained. The following notation is given before the

statement of the main results.

Let ψ : [−h∗, 0]→ (−∞,∞) be a given bounded initial function with

||ψ|| = max
−h∗≤s≤0

|ψ(s)|.
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Also, denote the norm of a function ϕ : [−h∗,∞)→ (−∞,∞) with

||ϕ|| = sup
−h∗≤s≤∞

|ϕ(s)|.

x(t) ≡ x(t, t0, ψ) is a solution of Equation (4.1), if x(t) satisfies Equation

(4.1) for t ≥ t0 and xt0 = x(t0 + s) = ψ(s), s ∈ [−h∗, 0].

Exponential Stability

In this section, inequalities regarding the exponential stability of

Equation (4.1) is deduced.

To simplify notation, let

Q(t, x) =
(
a(t) +

n∑
i=1

bi(t+ hi)
)
f1(x(t)).

Lemma 3.

Let V (t, x) be as defined in Equation (4.4). Assume for δ > 0 that

δ

−(δ + 1)h∗
≤ Q(t, x) ≤ −δh∗

n∑
i=1

b2i (t+ hi)f
2
1 (x(t)) (4.6)

holds; Then along the solutions of Equation (4.1);

V ′(t) ≤ Q(t, x)V (t). (4.7)

Proof.

Let x(t) = x(t, t0, ψ) be a solution of Equation (4.1) with V (t, x) de-

fined by Equation (4.4). It must be noted that Q(t, x) < 0 for all t ≥ 0 in

view of condition (4.6). Then along the solutions of Equation (4.2);
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V ′(t) = 2

[
x(t) +

n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

] [
x′(t)

+
n∑
i=1

d

dt

∫ t

t−hi
bi(s+ hi)f(x(s))ds

]

+ δ

n∑
i=1

∫ 0

−hi
b2i (t+ hi)f

2(x(t))ds

− δ
n∑
i=1

∫ 0

−hi
b2i (t+ s+ hi)f

2(x(t+ s))ds

= 2

[
x(t) +

n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

]
Q(t, x)x(t)

+ δ
n∑
i=1

∫ 0

−hi
b2i (t+ hi)f

2(x(t))ds

− δ
n∑
i=1

∫ 0

−hi
b2i (t+ s+ hi)f

2(x(t+ s))ds

≤ 2

[
x(t) +

n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

]
Q(t, x)x(t)

+ δh∗
n∑
i=1

b2i (t+ hi)f
2(x(t))

− δ
n∑
i=1

∫ 0

−hi
b2i (t+ s+ hi)f

2(x(t+ s))ds

≤ 2Q(t, x)x(t)

[
x(t) +

n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

]

+ δh∗
n∑
i=1

b2i (t+ hi)f
2(x(t))

− δ
n∑
i=1

∫ 0

−hi
b2i (t+ s+ hi)f

2(x(t+ s))ds
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≤ 2Q(t, x)x2(t)

+ 2Q(t, x)x(t)
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

+ δh∗
n∑
i=1

b2i (t+ hi)f
2(x(t))

− δ
n∑
i=1

∫ 0

−hi
b2i (t+ s+ hi)f

2(x(t+ s))ds

≤ Q(t, x)x2(t)

+ 2Q(t, x)x(t)
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

+ δh∗
n∑
i=1

b2i (t+ hi)f
2(x(t))

− δ
n∑
i=1

∫ 0

−hi
b2i (t+ s+ hi)f

2(x(t+ s))ds

+ Q(t, x)x2(t)

≤ Q(t, x)x2(t)

+ 2Q(t, x)x(t)
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

+ δh∗
n∑
i=1

b2i (t+ hi)f
2
1 (x(t))x2(t)

− δ

n∑
i=1

∫ 0

−hi
b2i (t+ s+ hi)f

2(x(t+ s))ds

+ Q(t, x)x2(t)
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≤ Q(t, x)

[
x2(t) + 2x(t)

n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

]

+ δh∗
n∑
i=1

b2i (t+ hi)f
2
1 (x(t))x2(t)

− δ
n∑
i=1

∫ 0

−hi
b2i (t+ s+ hi)f

2(x(t+ s))ds

+ Q(t, x)x2(t)

≤ Q(t, x)
[
x2(t)

+ 2x(t)
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

+

(
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

)2

−

(
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

)2 ]

+ Q(t, x)δ
n∑
i=1

∫ 0

−hi

∫ t

t+s

b2i (z + hi)f
2(x(z))dzds

− Q(t, x)δ
n∑
i=1

∫ 0

−hi

∫ t

t+s

b2i (z + hi)f
2(x(z))dzds

− δ
n∑
i=1

∫ 0

−hi
b2i (t+ s+ hi)f

2(x(t+ s))ds

+ δh∗
n∑
i=1

b2i (t+ hi)f
2
1 (x(t))x2(t)

+ Q(t, x)x2(t)
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≤ Q(t, x)
[
x2(t) + 2x(t)

n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

+

(
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

)2

+ δ

n∑
i=1

∫ 0

−hi

∫ t

t+s

b2i (z + hi)f
2(x(z))dzds

]

− Q(t, x)

(
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

)2

− Q(t, x)δ
n∑
i=1

∫ 0

−hi

∫ t

t+s

b2i (z + hi)f
2(x(z))dzds

− δ
n∑
i=1

∫ 0

−hi
b2i (t+ s+ hi)f

2(x(t+ s))ds

+ δh∗
n∑
i=1

b2i (t+ hi)f
2
1 (x(t))x2(t)

+ Q(t, x)x2(t)

≤ Q(t, x)
[(

x(t) +
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

)2

+ δ

n∑
i=1

∫ 0

−hi

∫ t

t+s

b2i (z + hi)f
2(x(z))dzds

]

− Q(t, x)δ
n∑
i=1

∫ 0

−hi

∫ t

t+s

b2i (z + hi)f
2(x(z))dzds

− Q(t, x)

(
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

)2

− δ
n∑
i=1

∫ 0

−hi
b2i (t+ s+ hi)f

2(x(t+ s))ds

+

(
δh∗

n∑
i=1

b2i (t+ hi)f
2
1 (x(t)) +Q(t, x)

)
x2(t) (4.8)
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≤ Q(t, x)V (t)

− Q(t, x)δ
n∑
i=1

∫ 0

−hi

∫ t

t+s

b2i (z + hi)f
2(x(z))dzds

− Q(t, x)

(
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

)2

− δ

n∑
i=1

∫ 0

−hi
b2i (t+ s+ hi)f

2(x(t+ s))ds

+

(
δh∗

n∑
i=1

b2i (t+ hi)f
2
1 (x(t)) +Q(t, x)

)
x2(t). (4.9)

If u = t+ s, then

δ
n∑
i=1

∫ 0

−hi
b2i (t+ s+ hi)f

2(x(t+ s))ds

= δ
n∑
i=1

∫ t

t−hi
b2i (u+ hi)f

2(x(u))ds. (4.10)

By Holder’s inequality;

−Q(t, x)

(
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

)2

≤ −Q(t, x)h∗
n∑
i=1

∫ t

t−hi
b2i (s+ hi)f

2(x(s))ds. (4.11)

It is observe that,

δ
n∑
i=1

∫ 0

−hi

∫ t

t+s

b2i (z + hi)f
2(x(z))dzds

≤ δh∗
∫ t

t−hi

n∑
i=1

b2i (s+ hi)f
2(x(s))ds. (4.12)
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Substituting (4.9), (4.10), and (4.11) into (4.8) and making use of (4.6),

V ′(t) ≤ Q(t, x)V (t)

− Q(t, x)δh∗
∫ t

t−hi

n∑
i=1

b2i (s+ hi)f
2(x(s))ds

− Q(t, x)h∗
n∑
i=1

∫ t

t−hi
b2i (s+ hi)f

2(x(s))ds

− δ

n∑
i=1

∫ t

t−hi
b2i (u+ hi)f

2(x(u))ds

+

(
δh∗

n∑
i=1

b2i (t+ hi)f
2
1 (x(t)) +Q(t, x)

)
x2(t)

≤ Q(t, x)V (t)

+
[
−Q(t, x)δh∗ −Q(t, x)h∗

− δ
] n∑
i=1

∫ t

t−hi
b2i (s+ hi)f

2(x(s))ds

+

(
δh∗

n∑
i=1

b2i (t+ hi)f
2
1 (x(t)) +Q(t, x)

)
x2(t)

= Q(t, x)V (t)

+
[
−Q(t, x)h∗(δ + 1)

− δ
] n∑
i=1

∫ t

t−hi
b2i (s+ hi)f

2(x(s))ds

+

(
δh∗

n∑
i=1

b2i (t+ hi)f
2
1 (x(t)) +Q(t, x)

)
x2(t)
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≤ Q(t, x)V (t) +
[ δ

(δ + 1)h∗
h∗(δ + 1)

− δ
] n∑
i=1

∫ t

t−hi
b2i (s+ hi)f

2(x(s))ds

+
(
δh∗

n∑
i=1

b2i (t+ hi)f
2
1 (x(t))

− δh∗
n∑
i=1

b2i (t+ h1)f
2
1 (x(t))

)
x2(t)

V ′(t) ≤ Q(t, x)V (t).

This completes the proof.

In the next theorem, two inequalities; one for t ≥ t0 + h∗/2 and the

other for t ∈ [t0, t0 + h∗/2] are proposed.

Theorem 4.

Suppose that condition (4.6) holds. Then any solution x(t) = x(t, t0, ψ)

satisfies the exponential inequality

|x(t)| ≤
√

2
(2 + δ

δ

)
V (t0)e

− δh
∗

2

∫ t−hi
2

t0
[
∑n
i=1 b

2
i (s+hi)f

2
1 (x(s))]ds, (4.13)

for t ≥ t0 + h∗/2 and

|x(t)| ≤ e
∫ t
0 a(s)f1(x)ds

[
||ψ||+

∫ t0+h∗/2

t0

n∑
i=1

|bi(u)||f(ψ(u− hi))|e−
∫ t
0 a(s)f1(x)dsdu

]
,

(4.14)

for t ∈ [t0, t0 + h∗/2].

Proof.

By changing the order of integration of the second term in V (t, x)

given by Equation (4.4) and using the fact that t− hi
2
≤ z ≤ t implies that

hi
2
≤ z − t+ hi ≤ hi, yields;

30

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



δ

n∑
i=1

∫ 0

−hi

∫ t

t+s

b2i (z + hi)f
2(x(z))dzds

= δ
n∑
i=1

∫ t

t−hi

∫ z−t

−hi
b2i (z + hi)f

2(x(z)dzds

= δ
n∑
i=1

∫ t

t−hi

∫ z−t

−hi
b2i (z + hi)f

2(x(z))dsdz

= δ

n∑
i=1

∫ t

t−hi
b2i (z + hi)f

2(x(z))(z − t+ hi)dz

= δ
n∑
i=1

∫ t−hi
2

t−hi
b2i (z + hi)f

2(x(z))(z − t+ hi)dz

+ δ
n∑
i=1

∫ t

t−hi
2

b2i (z + hi)f
2(x(z))(z − t+ hi)dz

≥ δ
n∑
i=1

∫ t

t−hi
2

b2i (z + hi)f
2(x(z))(z − t+ hi)dz

≥ δ
n∑
i=1

∫ t

t−hi
2

b2i (z + hi)f
2(x(z))

(hi
2

)
dz

≥ δ
n∑
i=1

hi
2

∫ t

t−hi
2

b2i (z + hi)f
2(x(z))dz. (4.15)

Thus, in view of Equation (4.14);

V (t) ≥ δ
n∑
i=1

∫ 0

−hi

∫ t

t+s

b2i (z + hi)f
2(x(z))dzds

≥ δ

n∑
i=1

hi
2

∫ t

t−hi
2

b2i (z + hi)f
2(x(z))dz.
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Consequently,

V
(
t− hi

2

)
≥ δ

n∑
i=1

hi
2

∫ t−hi
2

t−hi
2
−hi

2

b2i (z + hi)f
2(x(z))dz

= δ
n∑
i=1

hi
2

∫ t−hi
2

t−hi
b2i (z + hi)f

2(x(z))dz. (4.16)

Due to the fact that V ′(t) ≤ 0, we have for t ≥ t0 + h∗/2 such that

0 ≤ V (t) + V
(
t− hi

2

)
≤ 2V

(
t− hi

2

)
.

Using (4.14) and (4.15), yields;

V (t) + V
(
t− hi

2

)

=

[
x(t) +

n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

]2

+ δ
n∑
i=1

∫ 0

−hi

∫ t

t+s

b2i (z + hi)f
2(x(z))dzds

+V
(
t− hi

2

)

≥

[
x(t) +

n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

]2

+ δ
n∑
i=1

hi
2

∫ t

t−hi
2

b2i (s+ hi)f
2(x(s))ds

+ δ

n∑
i=1

hi
2

∫ t−hi
2

t−hi
b2i (s+ hi)f

2(x(s))ds (4.17)
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≥

[
x(t) +

n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

]2

+ δ
n∑
i=1

hi
2

∫ t−hi
2

t−hi
b2i (s+ hi)f

2(x(s))ds

+ δ
n∑
i=1

hi
2

∫ t

t−hi
2

b2i (s+ hi)f
2(x(s))ds

≥

[
x(t) +

n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

]2

+ δ

n∑
i=1

hi
2

∫ t

t−hi
b2i (s+ hi)f

2(x(s))ds. (4.18)

By Schwartz inequality,

1

2

(
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

)2

≤
n∑
i=1

hi
2

∫ t

t−hi
b2i (s+ hi)f

2(x(s))ds.

Thus, inequality (4.16) becomes

V (t) + V
(
t− hi

2

)

≥

[
x(t) +

n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

]2

+ δ

1

2

(
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

)2


≥

[
x(t) +

n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

]2

+ δ
1

2

(
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

)2
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≥ x(t)

(
x(t) +

n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

)

+
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

(
x(t) +

n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

)

+ δ
1

2

(
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

)2

≥ x2(t)

+ x(t)
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

+ x(t)
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

+

(
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

)2

+ δ
1

2

(
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

)2

≥ x2(t)

+ 2x(t)
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

+
[
1 +

δ

2

]( n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

)2
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=
2

2 + δ
x2(t)

+
δ

2 + δ
x2(t)

+ 2x(t)
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

+
[
1 +

δ

2

]( n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

)2

=
δ

2 + δ
x2(t)

+
1√

1 + δ
2

x(t)

 1√
1 + δ

2

x(t) +

√
1 +

δ

2

n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds



+

√
1 +

δ

2

n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

[ 1√
1 + δ

2

x(t)

+

√
1 +

δ

2

n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

]

=
δ

2 + δ
x2(t)

+

 1√
1 + δ

2

x(t) +

√
1 +

δ

2

n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds



×

 1√
1 + δ

2

x(t) +

√
1 +

δ

2

n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds


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=
δ

2 + δ
x2(t)

+

 1√
1 + δ

2

x(t) +

√
1 +

δ

2

n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

2

≥ δ

2 + δ
x2(t).

Consequently,

δ

2 + δ
x2(t) ≤ V (t) + V

(
t− hi

2

)
≤ 2V

(
t− hi

2

)
. (4.19)

An integration of (4.7), from t0 to t yields

lnV (s)|tt0 ≤
∫ t

t0

Q(s, x(s))ds

=⇒ lnV (t)− lnV (t0) ≤
∫ t

t0

Q(s, x(s))ds

=⇒ ln
V (t)

V (t0)
≤

∫ t

t0

Q(s, x(s))ds

=⇒ V (t)

V (t0)
≤ e

∫ t
t0
Q(s,x(s))ds

=⇒ V (t) ≤ V (t0)e
∫ t
t0
Q(s,x(s))ds

.

But

Q(t, x) = a(t)f1(x(t)) +
∑n

i=1 bi(t+ hi)f1(x(t)).

Therefore

V (t) ≤ V (t0)e
∫ t
t0
[a(s)f1(x(s))+

∑n
i=1 bi(s+hi)f1(x(s))]ds.
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This implies that

V
(
t− hi

2

)
≤ V (t0)e

∫ t−hi
2

t0
[a(s)f1(x(s))+

∑n
i=1 bi(s+hi)f1(x(s))]ds.

It follows from (4.17), that

x2(t) ≤
(2 + δ

δ

)
2V
(
t− hi

2

)

≤ 2
(2 + δ

δ

)
V (t0)e

∫ t−hi
2

t0
[a(s)f1(x(s))+

∑n
i=1 bi(s+hi)f1(x(s))]ds.

Thus,

x(t) ≤

√
2
(2 + δ

δ

)
V (t0)e

∫ t−hi
2

t0
[a(s)f1(x(s))+

∑n
i=1 bi(s+hi)f1(x(s))]ds

=

√
2
(2 + δ

δ

)
V (t0)

√
e
∫ t−hi

2
t0

[a(s)f1(x(s))+
∑n
i=1 bi(s+hi)f1(x(s))]ds

=

√
2
(2 + δ

δ

)
V (t0)

(
e
∫ t−hi

2
t0

[a(s)f1(x(s))+
∑n
i=1 bi(s+hi)f1(x(s))]ds

) 1
2

=

√
2
(2 + δ

δ

)
V (t0)e

1
2

∫ t−hi
2

t0
[a(s)f1(x(s))+

∑n
i=1 bi(s+hi)f1(x(s))]ds.

Hence,

|x(t)| ≤
√

2
(2 + δ

δ

)
V (t0)e

1
2

∫ t−hi
2

t0
[a(s)f1(x(s))+

∑n
i=1 bi(s+hi)f1(x(s))]ds

≤
√

2
(2 + δ

δ

)
V (t0)e

− δh
∗

2

∫ t−hi
2

t0
[
∑n
i=1 b

2
i (s+hi)f

2
1 (x(s))]ds.

Next, for t ∈ [t0, t0 + h∗/2], Equation (4.1) can be written as

x′(t) = a(t)f(x(t)) +
n∑
i=1

bi(t)f(ψ(t− hi)).
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Since ψ is the known initial function we solve for x(t) using the variation

of parameters formula. That is,

x(t) = e
∫ t
0 a(s)f1(x)ds

[
ψ(t0) +

∫ t

t0

n∑
i=1

bi(u)f(ψ(u− hi))e−
∫ t
0 a(s)f1(x)dsdu

]
.

Thus, for t ∈ [t0, t0 + h∗/2] the above expression implies

|x(t)| ≤ e
∫ t
0 a(s)f1(x)ds

[
||ψ||+

∫ t0+h∗/2

t0

n∑
i=1

|bi(u)||f(ψ(u− hi))|e−
∫ t
0 a(s)f1(x)dsdu

]
.

This completes the proof.

In the next section, a corollary regarding the exponential stability of

the zero solution of equation (4.1) is stated .

Corollary 5.

Suppose condition (4.6) hold and f1(x) ≥ 1. If

n∑
i=1

b2i (s+ hi) ≥ γ (4.20)

for some positive constant γ and for all t ≥ t0 then the zero solution of

Equation (4.1) is exponentially stable.

Proof.

From inequality (4.12) in Theorem 4;

|x(t)| ≤
√

2
(2 + δ

δ

)
V (t0)e

− δh
∗

2

∫ t−hi
2

t0
[
∑n
i=1 b

2
i (s+hi)f

2
1 (x(s))]ds

≤
√

2
(2 + δ

δ

)
V (t0)e

− δh
∗

2

∫ t−hi
2

t0
γds

≤
√

2
(2 + δ

δ

)
V (t0)e

− δh
∗

2

∫ t
t0
γds

|x(t)| ≤
√

2
(2 + δ

δ

)
V (t0)e

− δh
∗γ
2

(t−t0).
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Thus, showing that the zero solution of Equation (4.1) is exponentially

stable. This completes the proof.

Instability Criteria

In this section, a non-negative definite Lyapunov functional is used

to obtained a criterion that can easily be applied to test for instability of

the zero solution of Equation (4.1).

Lemma 6.

Suppose there exists a positive constant H > h∗ such that

Q(t, x)−H
n∑
i=1

b2i (t+ hi)f
2
1 (x(t)) ≥ 0. (4.21)

If V (t, x) is as defined by (4.5), then along the solutions of Equation (4.1);

V ′(t) ≥ Q(t, x)V (t). (4.22)

Proof.

In view of condition (4.19) it is clear that Q(t, x) > 0 for all t ≥ 0.

Let x(t) = x(t, t0, ψ) be a solution of Equation (4.1) with V (t, x) defined

by (4.5). Taking the time derivative of the functional V (t, x) along the

solution of Equation (4.1) yields;

V ′(t) = 2

[
x(t) +

n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

]

×

[
x′(t) +

n∑
i=1

d

dt

∫ t

t−hi
bi(s+ hi)f(x(s))ds

]

− H
[ n∑
i=1

b2i (t+ hi)f
2(x(t))

−
n∑
i=1

b2i (t− hi + hi)f
2(x(t− hi))

]
. (4.23)
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But

x′(t) = Q(t, x)x(t)−
n∑
i=1

d

dt

∫ t

t−hi
bi(s+ hi)f(x(s))ds.

Hence,

Q(t, x)x(t) = x′(t) +
n∑
i=1

d

dt

∫ t

t−hi
bi(s+ hi)f(x(s))ds.

Thus, Equation (4.21) becomes

V ′(t) = 2

[
x(t) +

n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

]
Q(t, x)x(t)

− H
n∑
i=1

b2i (t+ hi)f
2(x(t))

+ H
n∑
i=1

b2i (t)f
2(x(t− hi))

= 2

[
x(t) +

n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

]
Q(t, x)x(t)

− H
n∑
i=1

b2i (t+ hi)f
2(x(t))

+ H

n∑
i=1

b2i (t)f
2(x(t− hi))

= 2Q(t, x)x(t)

[
x(t) +

n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

]

− H
n∑
i=1

b2i (t+ hi)f
2(x(t))

+ H

n∑
i=1

b2i (t)f
2(x(t− hi))
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= 2Q(t, x)x2(t))

+ 2Q(t, x)x(t)
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

− H
n∑
i=1

b2i (t+ hi)f
2(x(t))

+ H
n∑
i=1

b2i (t)f
2(x(t− hi))

= Q(t, x)x2(t)

+ 2Q(t, x)x(t)
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

− H
n∑
i=1

b2i (t+ hi)f
2(x(t))

+ H
n∑
i=1

b2i (t)f
2(x(t− hi))

+ Q(t, x)x(t)

= Q(t, x)x2(t)

+ 2Q(t, x)x(t)
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

− H
n∑
i=1

b2i (t+ hi)f
2
1 (x(t))x2(t)

+ H

n∑
i=1

b2i (t)f
2
1 (x(t− hi))x2(t− hi)

+ Q(t, x)x2(t)
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= Q(t, x)

[
x2(t) + 2x(t)

n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

]

− H

n∑
i=1

b2i (t+ hi)f
2
1 (x(t))x2(t)

+ H
n∑
i=1

b2i (t)f
2
1 (x(t− hi))x2(t− hi)

+ Q(t, x)x2(t)

= Q(t, x)
[
x2(t) + 2x(t)

n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

+

(
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

)2

−

(
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

)2 ]

+ Q(t, x)H
n∑
i=1

∫ t

t−hi
b2i (s+ hi)f

2(x(s))ds

− Q(t, x)H
n∑
i=1

∫ t

t−hi
b2i (s+ hi)f

2(x(s))ds

− H

n∑
i=1

b2i (t+ hi)f
2
i (x(t))x2(t)

+ H
n∑
i=1

b2i (t)f
2
i (x(t− hi))x2(t− hi)

+ Q(t, x)x2(t)
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= Q(t, x)
[
x2(t) + 2x(t)

n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

+
( n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

)2]
+ Q(t, x)H

n∑
i=1

∫ t

t−hi
b2i (s+ hi)f

2(x(s))ds

− Q(t, x)H
n∑
i=1

∫ t

t−hi
b2i (s+ hi)f

2(x(s))ds

− Q(t, x)

(
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

)2

+ H
n∑
i=1

b2i (t)f
2
i (x(t− hi))x2(t− hi)

− H
n∑
i=1

b2i (t+ hi)f
2
i (x(t))x2(t)

+ Q(t, x)x2(t)

= Q(t, x)
[(

x(t) +
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

)2

− H
n∑
i=1

∫ t

t−hi
b2i (s+ hi)f

2(x(s))ds
]

+ Q(t, x)H
n∑
i=1

∫ t

t−hi
b2i (s+ hi)f

2(x(s))ds

− Q(t, x)
( n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

)2

+ H

n∑
i=1

b2i (t)f
2
i (x(t− hi))x2(t− hi)

+ Q(t, x)x2(t)

− H
n∑
i=1

b2i (t+ hi)f
2
i (x(t))x2(t)
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= Q(t, x)V (t)

+ Q(t, x)H
n∑
i=1

∫ t

t−hi
b2i (s+ hi)f

2(x(s))ds

− Q(t, x)
( n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

)2

+ H
n∑
i=1

b2i (t)f
2
i (x(t− hi))x2(t− hi)

+ Q(t, x)x2(t)

− H
n∑
i=1

b2i (t+ hi)f
2
i (x(t))x2(t)

= Q(t, x)V (t)

+ Q(t, x)
[
H

n∑
i=1

∫ t

t−hi
b2i (s+ hi)f

2(x(s))ds

−
( n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

)2]

+
[
Q(t, x)−H

n∑
i=1

b2i (t+ hi)f
2
i (x(t))

]
x2(t)

+ H
n∑
i=1

b2i (t)f
2
i (x(t− hi))x2(t− hi)

≥ Q(t, x)V (t). (4.24)
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where condition (4.19) is used and the fact that by Holder’s inequality,

h∗
n∑
i=1

∫ t

t−hi
b2(s+ hi)f

2(x(s))ds−

(
n∑
i=1

∫ t

t−hi
b(s+ hi)f

2(x(s))ds

)2

≥ 0.

This completes the proof.

In Theorem 7, conditions for instability for the zero solution of Equa-

tion (4.1) is provided.

Theorem 7.

Suppose that condition (4.19) hold and f1(x) ≥ 1. Then the zero

solution of Equation (4.1) is unstable, provided that

n∑
i=1

∫ ∞
t0

b2i (s+ hi)ds =∞.

Proof.

Integrating inequality (4.23) from t0 to t, yields;

lnV (s)|tt0 ≥
∫ t

t0

Q(s, x(s))ds

=⇒ lnV (t)− lnV (t0) ≥
∫ t

t0

Q(s, x(s))ds

=⇒ ln
V (t)

V (t0)
≥

∫ t

t0

Q(s, x(s))ds

=⇒ V (t)

V (t0)
≥ e

∫ t
t0
Q(s,x(s))ds

=⇒ V (t) ≥ V (t0)e
∫ t
t0
Q(s,x(s))ds

.
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Thus

V (t) ≥ V (t0)e
∫ t
t0
[a(s)f1(x(s))+

∑n
i=1 bi(s+hi)f1(x(s))]ds. (4.25)

With V (t) given by (4.5), yields

V (t) = x2(t)

+ x(t)
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

+ x(t)
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))

+

(
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

)2

− H
n∑
i=1

∫ t

t−hi
b2i (s+ hi)f

2(x(s))ds

= x2(t)

+ 2x(t)
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

+

(
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

)2

− H
n∑
i=1

∫ t

t−hi
b2i (s+ hi)f

2(x(s))ds. (4.26)
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Let β = H − h∗. Then

(√
h√
β
a−
√
β√
h
b

)2

≥ 0

=⇒ h

β
a2 − ab− ab+

β

h
b2 ≥ 0

=⇒ h

β
a2 +

β

h
b2 − 2ab ≥ 0

=⇒ h

β
a2 +

β

h
b2 ≥ 2ab

=⇒ 2ab ≤ h

β
a2 +

β

h
b2. (4.27)

Using inequality (4.25), yields;

2x(t)
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

≤ 2|x(t)||
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds|

≤ hi
β
x2(t)

+
β

hi

(
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

)2

. (4.28)

But

(
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

)2

≤ hi

n∑
i=1

∫ t

t−hi
b2i (s+ hi)f

2(x(s))ds.
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Therefore, inequality (4.26), becomes

2x(t)
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

≤ h∗

β
x2(t)

+
β

hi
hi

n∑
i=1

∫ t

t−hi
b2i (s+ hi)f

2(x(s))ds

≤ h∗

β
x2(t)

+ β
n∑
i=1

∫ t

t−hi
b2i (s+ hi)f

2(x(s))ds. (4.29)

Substituting (4.27) into (4.24), yields;

V (t) ≤ x2(t)

+
h∗

β
x2(t)

+ β
n∑
i=1

∫ t

t−hi
b2i (s+ hi)f

2(x(s))ds

+

(
n∑
i=1

∫ t

t−hi
bi(s+ hi)f(x(s))ds

)2

− H
n∑
i=1

∫ t

t−hi
b2i (s+ hi)f

2(x(s))ds (4.30)
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≤ x2(t)

+
h∗

β
x2(t)

+ β
n∑
i=1

∫ t

t−hi
b2i (s+ hi)f

2(x(s))ds

+ h∗
n∑
i=1

∫ t

t−hi
b2i (s+ hi)f

2(x(s))ds

− H
n∑
i=1

∫ t

t−hi
b2i (s+ hi)f

2(x(s))ds

≤ x2(t)

+
h∗

β
x2(t)

+ (β + h∗ −H)
n∑
i=1

∫ t

t−hi
b2i (s+ hi)f

2(x(s))ds

≤ x2(t)

+
h∗

β
x2(t)

+ (H − h∗ + h∗ −H)
n∑
i=1

∫ t

t−hi
b2i (s+ hi)f

2(x(s))ds

= x2(t) +
h∗

β
x2(t)

=
β + h∗

β
x2(t)

=
H

H − h∗
x2(t). (4.31)
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Using inequalities, (4.18), (4.23) and (4.28), yields;

H

H − h∗
x2(t) ≥ V (t0)e

∫ t
t0
[a(s)f1(x(s))+

∑n
i=1 bi(s+hi)f1(x(s))]ds

|x(t)|2 =
H − h∗

H
V (t0)e

∫ t
t0
[a(s)f1(x(s))+

∑n
i=1 bi(s+hi)f1(x(s))]ds

≥ H − h∗

H
V (t0)e

H
∫ t
t0

∑n
i=1 b

2
i (s+hi)f

2
1 (x(s))ds

|x(t)| ≥
√
H − h∗
H

V (t0)e
H

∫ t
t0

∑n
i=1 b

2
i (s+hi)f

2
1 (x(s))ds

≥
√
H − h∗
H

V 1/2(t0)e
H
2

∫ t
t0

∑n
i=1 b

2
i (s+hi)f

2
1 (x(s))ds

≥
√
H − h∗
H

V 1/2(t0)e
H
2

∫ t
t0

∑n
i=1 b

2
i (s+hi)ds

≥
√
H − h∗
H

V 1/2(t0)e
H
2

∫ t
t0

∑n
i=1 b

2
i (s+hi)ds →∞ as t→∞.

This completes the proof.

Chapter Summary

In this chapter, sufficient conditions for exponential decay of solution

to zero of the nonlinear delay ordinary differential equation was obtained

by means of Lyapunov functionals. The Lyapunov functionals constructed

were used to deduce inequalities regarding the solutions of the nonlinear

delay ordinary differential equation from which the exponential stability

and instability of the nonlinear delay ordinary differential equation were

obtained.
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CHAPTER FIVE

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Overview

This chapter provides the summary, conclusions as well as recom-

mendation of the study. The summary briefly presents an overview of the

research problem, objectives, method and results of the study. The con-

clusions encompasses the overall results of the study with respect to the

research objectives of the study. Some recommendation based on the work

done is also presented.

Summary

This study generally determined the sufficient conditions for expo-

nential stability and instability of solutions of nonlinear delay ordinary

differential equations. Specifically, the study was carried out to; construct

a suitable Lyapunov functional that yields results concerning the exponen-

tial stability of the zero solution of nonlinear delay ordinary differential

equations, obtain sufficient conditions for exponential stability of the zero

solution of nonlinear delay ordinary differential equations and to obtain an

instability criteria of the zero solution of nonlinear delay ordinary differen-

tial equations.

The Lyapunov’s direct method was employed in the study. The direct

method was via a special function called Lyapunov function. The Lyapunov

functionals constructed were used to obtain inequalities regarding the so-

lutions of the nonlinear ODEs from which the exponential stability of the

zero solution was deduced. Also, instability criteria of the zero solution of

nonlinear ODEs by means of Lyapunov functional was provided.

Conclusions

Suitable Lyapunov functionals that can be used to deduce exponential

stability and instability for nonlinear ODEs with delay have been obtained.
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Sufficient conditions for the zero solution of nonlinear ODEs with

delay to be exponentially stable have been obtained.

A criteria for instability for nonlinear ODEs with delay has been

established.

Recommendations

This problem can fruitfully be studied again by making n = 1, to

reduce the ordinary differential equation.
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