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Mathematical Models of Breast and Ovarian Cancers
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Abstract

Women constitute the majority of the aging United States (US) population, and this has substantial 

implications on cancer population patterns and management practices. Breast cancer is the most 

common women's malignancy, while ovarian cancer is the most fatal gynecological malignancy in 

the US. In this review we focus on these subsets of women's cancers, seen more commonly in 

postmenopausal and elderly women.

In order to systematically investigate the complexity of cancer progression and response to 

treatment in breast and ovarian malignancies, we assert that integrated mathematical modeling 

frameworks viewed from a systems biology perspective are needed. Such integrated frameworks 

could offer innovative contributions to the clinical women's cancers community, since answers to 

clinical questions cannot always be reached with contemporary clinical and experimental tools.

Here, we recapitulate clinically known data regarding the progression and treatment of the breast 

and ovarian cancers. We compare and contrast the two malignancies whenever possible, in order to 

emphasize areas where substantial contributions could be made by clinically inspired and 

validated mathematical modeling. We show how current paradigms in the mathematical oncology 

community focusing on the two malignancies do not make comprehensive use of, nor substantially 

reflect existing clinical data, and we highlight the modeling areas in most critical need of clinical 

data integration. We emphasize that the primary goal of any mathematical study of women's 

cancers should be to address clinically relevant questions.
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INTRODUCTION

Women constitute the majority of the aging United States (US) population, as, on average, 

they outlive men by 5 years1. According to the US Bureau of the Census in 2010, the life 
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expectancy of a female at birth was 81.1 years versus 76.2 years for a male. In this latest 

census, women accounted for about 60% of the population aged 70 years or older. Moreover, 

based on these demographic data, the computed ratio of number of postmenopausal women 

to women of reproductive age was 2:3. This has substantial implications on existing clinical 

practices, as an increased proportion of aging women is associated with new disease 

patterns, such as differential incidence or prevalence rates.

In this review we focus on two subsets of women's cancers, specifically breast and ovarian 

cancers, which are diseases seen more commonly in postmenopausal and elderly women2. 

Herein, we assume that the transition to menopause represents the defining threshold 

between pre- and postmenopausal stage, or between reproductive and non-reproductive age. 

For a definition of menopause and subsequent terminology used throughout the review, we 

refer to the attached Sidebars 1, and 2. We seek to emphasize the complex degrees of 

heterogeneity of breast and ovarian cancers from a clinical perspective, and subsequently 

highlight the pressing need for developing mathematical models that accurately reflect 

emerging clinical data.

Breast cancer is the most common cancer type affecting women, representing 29% of all 

new cancer cases in US women2. Nonetheless, it has a good prognosis, with an 

approximately 89% five-year overall survival rate3. Breast cancer is most frequently 

diagnosed among women aged 55-64, with a median age of 61 years4. Ovarian cancer is a 

relatively rare women's cancer, representing 2.6% of all new cancer cases in US women2. 

However, it is the most fatal gynecologic cancer type, with an approximately 45% five-year 

overall survival rate5. Ovarian cancer is most frequently diagnosed among women aged 

55-64, with a median age of 63 years2.

Herein, we provide a summary of the clinical progression, and current detection and 

therapeutic strategies for these two malignancies. We begin by reviewing the latest clinical 

information and statistics regarding the progression and treatment of breast and ovarian 

cancers. To this end, we focus our attention on various malignancy-specific aspects such as 

target organ biology, existing prevention and early detection strategies, current systemic and 

targeted therapies, and proposed drug resistance mechanisms. In doing so, we highlight the 

open clinical questions we believe a substantial contribution could be potentially made to by 

mathematical modeling. Next, we systematically review and comment upon the existing 

mathematical models aimed at describing various aspects of the malignancies’ natural 

history and progression. We chose to compare and contrast disease etiologies whenever 

possible, in order to highlight areas of (di)similarity in view of developing relevant systems 

biology-oriented mathematical frameworks. In doing so, we note the scarcity of existing 

inferences aimed at modeling the spatiotemporal growth, progression, and therapeutic 

targeting of the breast and ovarian malignancies. We also comment on the limitations of the 

existing modeling frameworks in the context of the mathematical approaches utilized, and 

point out the areas where the modeling efforts could be further expended.

Our purpose here is two-fold. First, we show how current paradigms in the mathematical 

oncology community focusing on the two malignancies do not make comprehensive use nor 

substantially reflect existing clinical knowledge, and we highlight the modeling areas in 
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most critical need of clinical data integration. We seek to emphasize the pressing need for 

truly integrative mathematical-oncology collaborations that reflect and make use of the 

clinically known aspects of malignancy heterogeneity, progression, detection and therapeutic 

options. Second, we argue in favor of the potential of mathematical modeling to integrate 

clinically derived data and to suggest novel future directions for clinical research, given 

validated in silico mathematical models of the breast and ovarian malignancies.

Lastly, we note that the focus of the present review is on mathematical models of cancer 

dynamics, and not on statistical modeling (such as absolute risk prediction models, or 

multiple regression analyses assessing epidemiologic risk factors), or specific algorithmic 

approaches (such as machine-learning approaches to specifying rules for genetic and 

molecular stratification of individual patients). Additionally, we differentiate between 

mathematical modeling of cancer dynamics or drug resistance and other related topics such 

as cancer imaging or detection algorithms, in which mathematics has historically played an 

instrumental role6-10. We consider the latter topics to be beyond the scope of the present 

review.

Human breast cancers

In 2016, it is estimated that 246,660 new cases of breast cancer with an estimated 40,450 

deaths related to the disease will occur in the US, for a calculated 4:25 death to incidence 

ratio11. The high 5-year survival rate following diagnosis has been attributed to the higher 

rates of screening for breast cancer in the general risk population, patient presentation during 

early stages when prognosis is good, and to the effectiveness of surgery, radiation and 

systemic therapies, such as chemo- or hormonal therapies. Women with localized disease 

may have no symptoms and be identified by screening or they may present with specific 

disease symptoms such as a breast mass, skin changes or irritations, nipple discharge other 

than breast milk, or lumps in the underarm area12. These symptoms however, are not 

exclusively indicative of a malignant disease, and can also be signs of less serious 

conditions, such as infection, cysts or other benign masses in the breast.

The target organ—Breast cancers represent a collection of malignancies that arise in the 

epithelial cells of the breast (Figure 1). Histologic subtypes include the ductal (70-80% of 

diagnosed cases), lobular (10-15% of diagnosed cases), or medular13 (3-5% of diagnosed 

cases). About 65% of breast cancers are either estrogen receptor (ER) or progesterone 

receptor (PR) positive14; these hormone receptor-positive cancers tend to have a higher 5-

year survival rate compared to other subtypes15. Other subtypes include HER2-positive 

breast cancer, characterized by HER2 protein overexpression or HER2 gene amplification, 

and triple negative breast cancer (TNBC), which lacks ER/PR expression and HER2 

amplification or overexpression.

Morphomolecular analyses have revealed further novel ways of classifying breast 

cancers16,17. Based on comprehensive genomic classifications17, breast cancers have been 

divided into four groups: i) the luminal A subtype, which is ER and/or PR positive and 

HER2-negative, and has a low Ki67 proliferative index; ii) the luminal B subtype, which is 

ER and/or PR positive and may be HER2 positive, has a high Ki67 index and has a poorer 
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prognosis than the luminal A subtype18; iii) the HER2-enriched subtype, which displays 

extra copies of the HER2 gene and lacks ER or PR expression, and is more aggressive than 

the luminal subtypes; and iv) the basal-like subtype, which is largely comprised of TNBC. 

The latter is a high-grade cancer that grows quickly and has the worst prognosis compared to 

all other subtypes15. The triple-negative subtype tends to occur more often in younger, 

premenopausal women19, and is thought to be more prevalent in some high-genetic risk 

patients (as defined by the National Comprehensive Cancer Network Clinical Practice 

Guidelines in Oncology20), specifically in germline BRCA1 mutation carriers21. These high-

genetic risk patients also have an increased risk of developing ovarian cancer at some point 

in their life22.

Prophylactic and early detection strategies—The goal of any screening test for 

breast cancer is early detection and decrease in cancer-related mortality. So far, existing non-

invasive tools for screening and detecting early stage breast cancers of all subtypes in 

general risk women include imaging procedures, such as mammograms and magnetic 

resonance imaging (MRI), and clinical breast and self-breast examinations. Screening 

imaging procedures can be used to view and evaluate breast tissue changes, but do not 

always demonstrate adequate sensitivity or specificity23.

In 2016, the US Preventive Services Task Force (USPSTF) updated their recommendations 

for mammography screening24. Their most recent recommendation stratifies screening by 

age, recommending against routine screening in general risk women aged 40-49 years and 

for biannual screening mammography in asymptomatic women without known genetic 

mutations aged 50-74 years. In the case of high-risk women, USPSTF recommends that 

these women be considered for an annual MRI in addition to an annual screening 

mammogram. Additionally, some high-genetic risk women voluntarily choose to undergo 

prophylactic mastectomies, which have been proven to reduce breast cancer incidence in this 

subset of women by approximately 90%25.

For the time being, there is evidence that screening for breast cancer with mammography 

and MRI reduces breast cancer mortality, with the greatest benefit of screening occurring in 

women aged 60-69 years24. However, debate surrounding the issues of frequency of 

screening (i.e. annual versus biannual), low specificity of screening methods and 

overdiagnosing of non-invasive ductal carcinoma in situ in younger, reproductive age 

women remains26-29.

Current treatment strategies and targeted therapy—Standard treatments for breast 

cancer subtypes include surgery (usually a mastectomy or lumpectomy with either sentinel 

node biopsies or axillary lymph node dissection), adjuvant systemic hormonal and/or 

chemotherapy, and localized radiation therapy (externally targeted post-surgery, or 

administered internally during surgery). To exploit the synergistic effects of using multiple 

drugs, systemic combination therapies are used, through combinations of anthracyclines 

such as doxorubicin, alkylating agents such as cyclophosphamide, platinum compounds such 

as cisplatin or carboplatin, or taxanes such as paclitaxel or docetaxel. For example, dose-

dense doxorubicin and cyclophosphamide followed by paclitaxel is used in treating early 

stage breast cancers in the adjuvant or neoadjuvant setting30. Depending on the hormone-
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receptor status of the cancer upon diagnosis, subtypes of early, localized or metastatic breast 

cancers may also be treated with hormone-based therapies, such as tamoxifen, which blocks 

the estrogen receptor, or aromatase inhibitors, which prevent the production of estrogen in 

post-menopausal women31.

In addition to systemic chemo- or hormone-based therapies, targeted therapies blocking 

breast cancer cell growth in subtype-specific ways are also used. For example, monoclonal 

antibodies, such as trastuzumab and pertuzumab, are used in early stage and metastatic 

HER2 positive cases; lapatinib, a tyrosine kinase inhibitor, is used in metastatic HER2 

positive cases, and palbociclib, a cyclin-dependent tyrosine kinase 4/6 inhibitor, is used in 

treating metastatic ER positive, HER2 negative cases32.

Development of drug resistance: implications for predicting recurrence—Initial 

response rates to current standard treatments for breast cancer patients are very high (more 

than 90% of primary breast tumors respond to the first-line therapy5). Yet, with current 

treatments, more than 20% of the HER2 positive or ER/PR positive cases, and about 40% of 

the TNBC cases are expected to recur by 10 years after primary tumor diagnosis33. 

Recurrent breast cancer is often associated with drug resistance, and most patients die with 

progressive resistant metastatic disease34. Factors that mediate clinical breast cancer 

recurrence and the timing of drug resistance remain largely unknown, but may be strongly 

influenced by the presence of dormant breast cancer cells35.

Several mechanisms of cellular resistance to existing breast cancer therapies have been 

proposed. One possible mechanism of drug resistance is the overexpression of the multi-

drug resistance protein 136 (MDR1) , or the breast cancer resistance protein37 (BCRP). 

Other proposed mechanisms include the overexpression of β1-integrin levels in ER positive 

metastatic breast cancer patients38, or the acquisition of activating mutations in the ER in 

hormone resistant metastatic ER positive patients, previously treated with anti-estrogens and 

estrogen deprivation therapies39.

A further, more recently proposed drug resistance mechanism is the emergence of secondary 

mutations restoring BRCA function in BRCA1 or BRCA2-deficient patients and enabling 

cells to survive subsequent drug-induced cellular apoptosis and genomic aberrations40,41. 

BRCA1 and BRCA2 are tumor suppressor genes considered instrumental in repairing 

damaged DNA via homologous recombination repair mechanisms42. It is estimated that 

about 31% of diagnosed TNBCs and 50% of diagnosed high-grade serous ovarian cancers 

(HGSOCs) initially have some abnormality in their DNA repair mechanisms43. BRCA1 or 

BRCA2-deficient carcinomas have decreased capacity to repair DNA, and show high 

responsiveness to platinum agents44. They are also found to be susceptible to synthetic 

lethality via poly ADP-ribose polymerase inhibitors (PARPis) monotherapy. However, after 

the emergence of secondary mutations restoring BRCA function, some of the BRCA1 and 

BRCA2-deficient breast and ovarian cancers are no longer sensitive to PARPi-induced 

synthetic lethality45-47. The subsequent proliferation of these cells is thought to lead to the 

lack of response to subsequent treatment and disease recurrence41.
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We note that despite the recent advances in early detection and understanding of the 

molecular bases of breast cancer biology, the precise biological pathways implicated in the 

development of breast cancer resistance and recurrence remain largely unknown. Great 

interest in elucidating the molecular mechanisms contributing to clinical drug resistance in 

breast cancers exists. Exploring and classifying these mechanisms through joint basic, 

mathematical, and translational research efforts is clinically relevant and crucial for 

advancing therapeutics.

Human ovarian cancers

In 2016, it is estimated that 22,280 new cases of ovarian cancer with an estimated 14,240 

deaths related to this disease will occur in the US, for a computed 2:3 death to incidence 

ratio11. The high mortality rate following diagnosis has been partly attributed to the 

approximately two thirds of patients presenting with advanced stage, when recurrence is 

common, and leads to the incurable disease. Several studies suggest the usefulness of a 

symptom index tool to identify women who may have ovarian cancer; this includes new 

(within 1 year) and persistent (more than 12x/month) pelvic/abdominal pain, abdominal 

size/bloating, difficulty eating/feeling full, and urinary urgency/frequency48,49, which should 

trigger evaluation by a gynecologic oncologist. The extent and quality of surgical debulking 

has important prognostic value and is an integral part of the upfront management of ovarian 

cancer patients. In addition, the absence of accurate early detection screening methods poses 

additional difficulties in reducing ovarian cancer mortality levels50.

The target organ(s)—It is becoming increasingly recognized that ovarian cancers do not 

constitute a single disease, but rather a family of non-uterine tubo-ovarian cancers51-53 

(Figure 2). Ovarian tumors may develop from epithelial, stromal or germ cells54. About 

10-15% of all ovarian malignant tumors are nonepithelial in origin, are often found at an 

early stage, and generally have a good prognosis55. Epithelial ovarian cancers constitute 

about 85-90% of all ovarian cancer cases, with a subset of these epithelial ovarian cancers, 

HGSOCs, representing nearly 70% of all ovarian cancer cases56. HGSOC is considered to 

be an aggressive histological subgroup of the ovarian malignancies53. Although the 5-year 

survival rate for stage I ovarian cancer is greater than 80%, stage I diagnoses represent the 

exception rather than the rule11. Most patients present with stage III/IV tumors, for which 

the 5- year survival rate is less than 30%2.

One of the obstacles to the detection of early-stage HGSOC, has been the poor 

understanding of its histopathogenesis. It was initially thought that epithelial ovarian tumors 

originate from the ovarian surface epithelium, a single cell layer covering the ovaries, 

coming from the coelomic epithelium57,58. Recent data suggest secretory cells inside the 

distal fallopian tubes give rise to the earliest precursor lesions in a proportion of HGSOC 

cases57-60. This finding was first reported in women with germline BRCA1 and BRCA2 
mutations undergoing a prophylactic bilateral risk-reducing salpingo-oophorectomy 

procedure61-63. For the general-risk population however, it remains unclear whether 

diagnosed ovarian tumors commonly arise with apparently fallopian tube involvement, or 

constitute truly ovarian-derived diseases.
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Prophylactic and early detection strategies—Any proposed screening strategy 

should be highly sensitive and specific to detecting truly malignant ovarian cancer cases. 

Transvaginal ultrasound (TVU), serum biomarkers (CA125, HE4) testing, pelvic 

examinations or simultaneous TVU and CA125 testing have been examined as non-invasive 

tools for detecting early stage ovarian cancer in general risk women. However, mounting 

evidence suggests that annual screening with TVU and serum biomarkers, does not reduce 

mortality64. Furthermore, high false positive rates leading to intervention are associated with 

potential harm, such as unnecessary surgical intervention and related complications. The 

lack of utility of such screening tools is possibly due to the absence of adequate TVU 

sensitivity in detecting small increases in tumor volume and distinguishing between 

malignant and benign cases65. Furthermore, the addition of serum biomarkers testing (e.g. 

CA125 levels) does not improve early-stage detection levels either50,66.

The largest ever ovarian cancer screening study of 202,638 general risk women 

demonstrated that multimodal screening including serial TVU and CA125 level testing 

yielded a 15% mortality reduction rate compared with a 0% no screening or 11% unimodal 

TVU-based screening cohort mortality reduction rate over 0-14 follow-up years64,67. 

However, this study also showed increased CA125 levels can be detected in benign 

conditions, rendering it inadequate for use in screening asymptomatic women for early-stage 

ovarian cancer. The lack of adequate early-detection tools might be explained by the fact that 

any epithelial ovarian cancers diagnosed in stage I might be fundamentally different from 

those diagnosed in advanced stages, which are preponderantly high and not low-grade 

cases68.

USPSTF has recently reconfirmed their previous recommendation against screening in 

asymptomatic women without known genetic risk for ovarian cancer69; existing screening 

methods are either not recommended as uni- or multimodal prognostic markers for low 

HGSOC volume detection28,70,71, or have not been shown to confer a mortality benefit in 

general risk women72. High-genetic risk women should be considered for genetic counseling 

and offered the option to undergo regular monitoring via a combination of TVU 

examinations and CA125 tests. Additionally, many high-genetic risk women voluntarily 

choose to undergo various risk-reducing gynecologic surgeries, such as prophylactic 

oophorectomies, bilateral salpingo-oophorectomies or hysterectomies28,73-77, which have 

been proven to reduce mortality from both breast78 and ovarian cancer62,74,79. Collectively, 

the question of whether ovarian cancer is a valid target for routine screening in general or 

high genetic-risk women still remains highly controversial67,71,80,81.

Current treatment strategies and targeted therapy—Standard treatments for ovarian 

cancers include debulking surgery, (neo)adjuvant platinum-based combination 

chemotherapy, such as cisplatin or carboplatin, and a taxane such as paclitaxel or docetaxel. 

In addition to systemic chemotherapy, targeted therapies such as small molecule tyrosine 

kinase inhibitors are also used. For example, platinum-resistant recurrent ovarian cancers 

have been shown to respond to angiogenesis inhibitors (e.g. bevacizumab) in combination 

with chemotherapy, which restrict cancer growth by suppressing the development of blood 

vasculature to the tumor82. Additionally, PARPis have been used in clinical trial settings and 

the PARPi olaparib (Lynparza) was recently approved by the US Food and Drug 
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Administration (FDA) as a therapy for germline BRCA-mutations associated recurrent 

ovarian cancer83.

Development of drug resistance: implications for predicting recurrence—Initial 

response rates to current standard treatments for ovarian cancer patients are high 

(70%-80%), but the majority of women with advanced disease relapse with within two 

years5. Recurrent ovarian cancer is not curable, and most women eventually develop 

platinum-resistant disease.

Several mechanisms of cellular resistance to platinum compounds or PARPis have been 

described, such as intracellular cisplatin inactivation via augmented glutathione 

synthesis84-86, or reduced intracellular drug concentration via overexpression of MDR1 

protein acting as a drug efflux transporter87. Another possible mechanism of platinum 

resistance is the development of secondary mutations restoring functions of BRCA and other 

proteins of homologous recombination repair in BRCA-mutation related ovarian cancers. 

However, BRCA restored functionality does not explain all cases of cisplatin resistance in 

these patients40,41, since not all platinum-resistant recurrent ovarian carcinomas exhibit 

detectable secondary mutations. Norquist et al. showed only 12 of 26 (46%) platinum-

resistant recurrent cases had detectable secondary mutations restoring BRCA function45. 

Further pre-clinical and clinical investigations of mechanisms of platinum or PARPi 

resistance are thus needed. Larger-scale prospective and retrospective cohort studies are 

warranted in order to better examine therapy response heterogeneity and adaptability of the 

ovarian cancer genome under the selective pressure of cytotoxic therapies46,52,88.

MATHEMATICAL MODELS OF WOMEN'S MALIGNANCIES

While considerable mathematical modeling effort has been directed towards modeling 

carcinogenesis, cancer progression, and cancer treatment6,89-91, relatively few mathematical 

investigations have been published specifically targeting the breast and ovarian cancers. 

After a comprehensive literature search, we note that, to best of our knowledge, the models 

presented below represent the majority of the published breast and ovarian cancer 

mathematical models. We thus chose to discuss these mathematical models in detail, and 

highlight areas where novel in silico modeling frameworks could be further developed.

Breast cancer

Modeling disease natural history and the tumor growth law controversy—The 

pattern of growth of human breast cancers is clinically important, specifically for estimating 

the duration of pre-diagnosis silent growth and for the design of an optimal post-surgery 

chemotherapeutic schedule. The theoretical study of breast cancer growth patterns has been 

the subject of considerable debates and controversy among mathematical oncologists for 

over two decades. For a more comprehensive recent review and theoretical comparison of 

the various mathematical formulations used to model tumor growth dynamics, we 

recommend the interested reader to consult Ribba et al.92.

In 1984, Speer et al. proposed a stochastic numerical model of breast cancer growth wherein 

all individual tumors are assumed to grow with identical Gompertzian parameters but 
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subsequently develop kinetic heterogeneity by random time-dependent processes93. The 

basic growth model of Speer et al. is illustrated in Figure 3A. Speer et al. estimated that the 

average time for the tumor burden to increase from 1 cell to detection was on average 8 

years. Their model also derived quantitative relationships between the likelihood of 

remission versus number of years after mastectomy, and the number of metastatic sites 

versus number of positive nodes in an in silico cancer-positive cohort. This approach to 

modeling breast cancer growth kinetics allows for the generation of individual growth 

curves, rather than averaged, population-based cancer growth dynamics. However, growth 

dynamics similar to the one quantitatively proposed by Speer et al. are yet to be confirmed in 
vivo or in vitro, and may involve unnecessary additional parameterization.

In contrast to the Speer et al. model, Norton et al. demonstrated in 1988 that the 

deterministic Gompertz equation provided the best fit when used to relate clinical breast 

cancer tumor sizes and rates of regression post-therapy94. Using a data set comprising of 250 

women with untreated diagnosed breast cancer, during the years 1805 to 1933 in the UK95, 

Norton generated a hypothetical survival curve fitting the classical Gompertzian growth 

model to the percentage of surviving patients per year after diagnosis (see Figure 3B). He 

estimated the probability distribution function of the growth decay parameter to be log-

normal and dependent on the current number of tumor cells, in contrast to the stochastic 

nature of the equivalent parameter used by Speer et al93,96. While the model proposed by 

Norton fits clinical data on untreated breast cancer, it is unclear whether Gompertzian 

kinetics (or a variant of it) also applies to the disease progression during or post therapy.

Untreated breast cancer growth rates prior to diagnosis were also calculated by Spratt et al. 
in 199397. They used data derived from mammographic breast cancer tumor measurements 

and conducted a least squares regression analysis to prove that a generalized logistic 

equation provided the best fit to the observed data. The mathematical analysis performed 

excluded data from patients whose tumors were clinically detected between two consecutive 

mammogram screenings, or whose tumors showed no change in size during the period of 

clinical observation. Using their growth model, Spratt et al. generated probability distributed 

functions of tumor doubling time at mammographic detection and untreated tumor size 

increase after 1 and 2 years after detection. While the model quantitatively underscores the 

significant natural variability in untreated human breast cancer growth rates, it is unclear 

from this approach how histological and morphomolecular characteristics influence 

modeling results. Moreover, the reported mathematical results might have been selectively 

biased towards reflecting the progression of slower growing tumors, as these tumors are 

more representative of clinical cases amenable to detection via regular mammographic 

screening.

In a different attempt at modeling breast cancer natural history, Koscielny et al. considered 

in 1985 two patterns of growth, exponential and Gompertzian, in order to assess the timing 

of initiation of distant metastases using observed data in breast cancer patients98. For both 

growth patterns, Koscielny et al. estimated that the median metastasis growth duration is 

about 3.8 years, and that a 30% reduction in metastases incidence is predicted if the primary 

tumors are treated 12 months earlier. In order to assess the time at which metastases are 

initiated, Koscielny et al. assume a linear relationship between doubling times of primary 
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breast tumors and of their metastases. However, the validity of such a limiting assumption is 

empirically questionable as, to best of our knowledge, a deterministic relationship between 

the two has not been established in any published in vitro or in vivo investigations.

We note that none of the models discussed above, specifically focuses on a breast cancer 

subtype. It is however empirically known that different subtypes exhibit differential growth 

rates and clinical progressions99. For example, luminal ER positive breast cancers are 

thought to have a slower growth progression than the TNBC subtypes; moreover, interval 

breast cancers, defined as cancers detected between two consecutive screening examinations, 

are more likely to be ER and/or PR negative than screen-detected breast cancers100. 

Additionally, distinct morphomolecular tumor subtypes can be concomitantly reported in the 

same breast cancer patient101, underscoring the importance of prospectively assessing spatial 

intrapatient tumor heterogeneity prior to treatment initiation102. Arguably, considerable 

biological realism and any translational/clinical relevance of such modeling results are lost if 

existing mathematical models aggregate the various breast cancer subtypes into one singular 

disease. Moreover, the existing models use population-based cohort studies in order to 

predict aggregate clinical statistics of untreated breast cancer growth and model 

heterogeneous timing of cancer progression in the in silico cohorts. Yet, the extent to which 

such models contribute to understanding subsequent therapeutic outcomes remains unclear. 

We point out that hardly any clinically diagnosed breast cancer is nowadays left untreated 

and the impact of existing therapeutic strategies on growth rate dynamics remains an open 

clinical question that cannot be quantitatively determined using the existing mathematical 

models.

We thus argue the need for mathematical models that better integrate current clinical and 

morphomolecular data, and aim at modeling spatiotemporal breast cancer growth dynamics 

and heterogeneity.

Modeling sporadic and hereditary breast carcinogenesis—In a more recent 

attempt in modeling breast cancel natural history, De Vargas Roditi and Michor considered a 

mathematical model for the evolutionary dynamics of BRCA1 mutations in order to explain 

the differential role of BRCA1 mutations in sporadic and hereditary cancers103. Initially, the 

populations of cells within the breast tissue was assumed to be proliferating according to a 

stochastic Moran process. A linear ODE approximation of the stochastic process was then 

used to model the different evolutionary trajectories involving spontaneous or hereditary 

mutations in the BRCA1 and a different tumor suppressor gene. Tumorigenesis was assumed 

to initiate once sufficiently many mutations in these genes accumulated. The model was 

calibrated based on published statistics regarding the role of BRCA1 mutations in sporadic 

and hereditary breast cancers: sporadic BRCA1 mutation incidence, the prevalence of 

germline BRCA1 mutation carriers, and the differential probability of developing breast 

cancer in these two subsets of patients. The main results predict that the loss of one BRCA1 
allele in combination with the homozygous loss of a different tumor suppressor gene confers 

a fitness disadvantage compared to a single allele alteration in both genes. Moreover, a cell 

with two mutated BRCA1 alleles and one mutate tumor suppressor gene allele has a fitness 

advantage compared with a cell with alterations only in the BRCA gene.
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We note that the total cancer population size considered susceptible to genetic alterations in 

the model was kept constant at very low levels. It would be useful to extend the 

mathematical framework to more realistic tumor growth models and population size, to 

validate whether the effect of the heterozygous BRCA1 phenotype and its differential 

involvement in sporadic and hereditary tumorigenesis are maintained in human tumors.

Modeling therapeutic targeting and treatment—Mathematical models for the growth 

and invasion of breast cancer tumors into the surrounding tissue, together with modeling 

frameworks for surgery and radiotherapy were first developed by Anderson et al.104,105. To 

simulate breast cancer growth prior to diagnosis and quantify the effects of conventional 

fractionated radiotherapy versus more targeted irradiation, Anderson et al. initially 

developed a continuum model of ordinary (ODEs) and partial differential equations 

(PDEs)106. Numerical schemes were subsequently adapted to model the results of simulating 

radiotherapy treatment in the two scenarios107. A basic description of the ODE-PDE model 

incorporating the effects of radiotherapy is illustrated in Figure 4. Enderling et al. found that 

high doses of targeted internal radiotherapy administered immediately post-surgery are more 

likely to eliminate residual occult sources of cancer recurrence, rather than fractionated 

external radiotherapy doses. In the latter case, their model simulations showed that a fraction 

of the remaining tumor cells would be able to repair radiation-induced DNA damage and 

favor the development of a recurrent tumor.

It is important to note that like in many other mathematical models, some of the modeling 

assumptions could potentially influence the qualitative nature of the results. First, the 

radiotherapeutic doses were assumed to be uniformly administered throughout the 

simulation domains, which has not been validated in practice108. Second, tumors do not 

generally grow in a radially symmetric fashion, and thus spatial cellular heterogeneity could 

be an important factor when predicting disease progression or therapeutic outcomes. Third, a 

recently published phase III, randomized clinical trial performed on patients with early 

invasive and in-situ breast cancer showed no difference between intraoperative and external 

beam radiotherapy with respect to local recurrence, disease-free survival, and overall 

survival, in contrast to the predicted modeling results109. Lastly, it is well known that the 

heterogeneous nature of breast cancers mediates differential response outcomes among 

women treated with radiotherapy110. Hence, the models of Enderling et al. could be 

potentially improved by including the appropriate disease subtype, using corresponding 

experimental parameters and subsequently calibrating against the relevant clinical trial data.

In a different attempt to model breast cancer treatment, Roe-Dale et al. used an ODE model 

to incorporate cell cycle specificity and resistance to study why differential scheduling of 

CMF and doxorubicin doses used in breast cancer patients yield different clinical 

outcomes111. In their model, they simulated alternating and sequential regimens assumed to 

be delivered instantaneously to the tumor cell population and to kill a constant fraction of 

the cell each dose. Figure 5A illustrates the basic modeling framework used in this 

mathematical investigation. Roe-Dale et al. assumed cellular resistance induced by increased 

MDR1 expression, and modelled resistance following drug administration by 

instantaneously converting a specified fraction of the cells from the sensitive to the resistant 

compartments. To investigate differential treatment outcomes due to cellular resistance, Roe-
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Dale et al. used parameters derived from in silico uniform distributions, and performed 

sensitivity analyses for specific parameter combinations to determine the parameter spaces 

that yielded the greatest regression (or alternatively the lowest progression) of the in silico 
tumor cell burdens. Their computational results indicated that the sequential CMF plus 

doxorubicin treatment results in a 62% survival rate, compared with a 50% survival rate for 

the alternating regimen. Roe-Dale et al. also found that the two regimens resulted in 

differential outcomes at a statistically significant level in their simulated in silico patient 

cohort, and concluded that the sequential treatment would be preferred to the alternating 

one.

It is important to note that the constant cellular survival fractions illustrated in Equations (3) 

and (4) of Figure 5A and cellular interactions are not substantiated by current 

pharmacodynamic and kinetic models of CMF and doxorubicin in breast cancer patients112. 

It thus remains difficult to quantitatively extrapolate from the proposed model whether 

MDR1 resistance or rather cell cycle specificity is responsible for the observed superiority of 

the sequential treatment regimen versus the alternative one in breast cancer patient 

cohorts113. In addition, the value of the combination therapy mathematically studied in Roe-

Dale et al. (i.e. CMF plus doxorubicin) with respect to recurrence and mortality rates has 

only been clinically established in high-risk early stage cancer patients, but does not 

otherwise represent current standard therapy protocols for all breast cancer subtypes or 

stages114. Finally, choosing to model the dynamics as a system of linear ODEs enables Roe-

Dale et al. to derive analytical, closed form solutions. We note that such an approach is 

somewhat limited and could be mathematically adjusted to reflect non-constant dynamics, 

since clinical transition rates between the modeled compartments are most likely temporally 

varying.

Another attempt at incorporating cell-cycle specific drug kinetics and interactions is 

represented by the two-compartment linear ODE model proposed by Panetta115 and 

illustrated in Figure 5B. Panetta's model takes into account the proliferating cell population, 

which is assumed to be responsive to cell-cycle specific drug therapies, and the quiescent 

cell population, which is assumed to be non-responsive to paclitaxel treatment. Using 

published breast and ovarian cancer data116,117, parameters such as cell-cycle length, 

proliferative fraction, doubling time, transfer rates between the two compartments, and time 

spent in either resting or cycling phase were estimated for both the formulated breast and 

ovarian cancer models. Using the framework exemplified in Figure 5B, Panetta derived 

analytic, closed form solutions for the proliferating and quiescent compartments. A 

parameter sensitivity analysis with respect to active drug phase and drug administration 

times was performed. Using the model, Panetta studied the numerical range of the associated 

characteristic multipliers for which the simulated total cancer cell mass at the end of 

treatment period is substantially reduced. Considering a treatment period of 21 days, and a 

dose strength of 3 units, Panetta observed that for active phases smaller than 8.5 days, the 

maximum characteristic multiplier was greater than 1, which would translate in a clinical 

context into breast/ovarian cancer cell growth. For values of the active phase greater than 8.5 

days however, the maximum characteristic multiplier was less than 1, which implied that 

cancer cell decay was ongoing. In the context of the duration of the treatment period (e.g. 

every 21 days), Panetta was able to conclude that longer active drug phase times with respect 
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to the length of the treatment period lead to shrinking tumors, while shorter active phase 

times and fixed lengths of treatment periods lead to cancer growth in both the formulated 

breast and ovarian progression models.

While these modeling results correspond to current breast cancer clinical 

recommendations118, several of the modeling constraints used in the Panetta model could be 

relaxed in future work, in order to better integrate the related clinical knowledge. For 

example, the constant modeling parameters used in the current model could be modified to 

reflect the action of the drug. A further extension of the model could include a study of non-

constant or stochastic growth parameters calibrated against human breast tumor growth data. 

Moreover, different functional forms could be used to represent the drug action term, or 

expanded to reflect multi-drug based therapies under study in current clinical trials.

Modeling in vitro invasive cancer cell kinetics—To simulate carcinogenesis and 

account for the role of angiogenesis in tumor recurrences, Gatenby et al. developed an 

individual-based, hybrid cellular automaton model in which mutant cells are initially 

separated from the blood supply by an intact basement membrane119. Their working 

hypothesis was that a local variation in substrate and glucose metabolite concentrations in 

ductal carcinoma in situ cells would initiate cellular adaptations required for the emergence 

of invasive breast cancers120. To test this hypothesis, Gatenby et al. used a two-dimensional 

cellular automata model, with rules governing the cellular evolution of normal and tumor 

cells, oxygen, glucose, and H+ fields satisfying reaction-diffusion equations. Each 

automaton was assumed to be representative of a single cell. The parameters were set to 

match quantitative data derived from experiments performed on MCF-7/HER2 breast cancer 

cells growing in spheroids. Simulations of the model demonstrate that malignant cells may 

evolve towards a phenotype that exhibits constitutive upregulation of glycolysis and 

resistance to acid-induced toxicity via increased H+ concentrations. Gatenby et al. predicted 

that the distinctive pattern of nodular growth and cellular evolutionary sequence was 

representative of late carcinogenesis, in which malignant cells must breech the basement 

membrane in order to transition to an invasive cancer type.

We point out that it is unclear whether upregulation of the hypoxic and glycolytic metabolic 

pathways can be considered a universal, constitutive emergent cellular phenomena in the 

clinical evolution of human breast cancers. Further clinical investigations are warranted to 

elucidate the validity of these quantitative modeling results applied to patient cases.

Modeling in vivo invasive cancer cell kinetics in mouse xenografts—Marusyk et 
al.121 developed a mathematical model of an initially heterogeneous tumor growth 

incorporating clonality interference. This model was developed to investigate the long-term 

impact of sub-clonal heterogeneity on tumor phenotypes and the possibility of competitive 

expansion of individual tumor sub-clones, formed after orthotopic transplantation into the 

mammary fat pads of immunodeficient mice. Two scenarios were considered: sub-clones 

either compete against parental cells (monoclonal primary tumors or compete against each 

other (polyclonal primary tumors). The paper concludes that an exponential growth pattern 

best explains the dynamics of the growth of the monoclonal tumors. In addition, nested ODE 

models of exponentially growing competing sub-clones were used to study the impact of 
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sub-clonal heterogeneity on polyclonal tumor growth. The modeling results of Marusyk et 
al. suggest that in the absence of treatment, tumor heterogeneity is predicted to eventually 

vanish, in the presence of sub-clones with high proliferation rates that outcompete the less fit 

competitors. However, after treatment with doxorubicin, differences in competitive fitness 

between sub-clones are amplified. Additional clinical investigations are warranted to extend 

these conclusions to pre- and post-treatment patient samples.

Modeling stem cell dynamics—Liu et al. developed a mathematical model to explore 

the growth kinetics of breast cancer stem cells both in vitro (using cell culture experiments 

of MCF-7/HER2 cells) and in vivo122 (using tumor cells derived from primary MMTV-Her2 
transgenic mice tumors). A system of ODEs was used to describe the population dynamics 

of cancer stem, progenitor and terminally differentiated cells; the model also included a 

negative feedback regulation on the division probabilities to produce differentiated or stem 

daughter cells. The Liu et al. model is illustrated in Figure 6. Simulation of the model 

predicted that the majority of tumor spheres grown in their experiments were derived from 

progenitor cells. They also showed that the frequency of tumor sphere formation increased 

with time while the frequency of cancer stem cells decreased over time. According to Liu et 
al., the proportion of cancer stem cells in any tumor sphere culture would be determined by 

the self-renewal frequency of stem cells during tumor sphere formation and the ratio of 

tumor sphere derived from the primary stem or progenitor cells. The results of Liu et al. also 

suggest that a therapy aimed at targeting the breast cancer stem cell population would be less 

effective in immediately shrinking tumor sizes, but more effective in the long-term 

suppression of tumor growth and prevention of tumor relapse.

We point out that the mathematical model proposed by Liu et al. does support the empirical 

observations derived from the adjacent in vitro and in vivo MMTV-Her2 transgenic mouse 

experiments performed in this investigation. However, it is unclear whether the modeling 

inferences can be translated to human breast cancer recommendations, since the presence 

and effect of human breast cancer stem cells on therapeutic outcomes are highly debated in 

the literature13,123,124.

Ovarian cancer

Modeling disease natural history and early detection strategies—Focusing 

exclusively on unimodal TVU screening, Danesh et al. developed a mathematical model to 

study the frequency at which ovarian cancer screening should be done in order to be 

effective125. To model ovarian cancer growth and progression, Danesh et al. developed a 

multi-type branching processes model, where the different types represent stages in the 

serous epithelial ovarian cancer progression, but without differentiating between the low and 

high-grade subtypes. In their model, type 0 cells are present in the primary tumor in the 

ovary or fallopian tube, type 1 cells are floating in the abdominal cavity, and type 2 cells are 

attached to the peritoneum. Type 2 cells are assumed to infiltrate the cellular matrix and 

eventually metastasize to distant organs, so that when they are present in significant (and 

clinically detectable) numbers, the cancer would be classified as stage III. In addition to 

giving birth to nonmutant offspring or dying, cells may transition from type 0 to type 1 and 

from type 1 to type 2 at differential rates. These rates were then used as transition rates in a 
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continuous time Markov chain. In the model, transitions between types are assumed to 

involve migration of cells rather than genetic mutations. Results for the multi-type branching 

process that enables Danesh et al. to quantitatively estimate the behavior of all three cell 

types are illustrated in Theorems 1-3125.

In order to address their motivating question, Danesh et al. introduced the concept of a 

“window of opportunity” for screening, defined as the difference between the time when 

cells of type 2 reach 109 cells (corresponding to a late-stage tumor) and cells of type 0 reach 

6.5×107 cells (corresponding to the detection threshold). Using data on tumor growth from 

Brown and Palmer126, they concluded that the window of opportunity corresponds to 2.9 

years, with most of the distribution concentrated between 2.5-3 years. According to their 

model, TVU-based ovarian cancer screening should occur biannually.

The underlying assumption in the Danesh et al. modeling framework is that metastatic 

ovarian cancer cells growth at a significantly higher rate than primary tumor cells. This 

assumption has yet to be validated clinically. In contrast to the dynamics portrayed in this 

work, it is generally believed that ovarian cancers that present clinically during early stages 

do not necessarily represent precursors to cancers that, if left undetected, would otherwise 

present at advanced stages60,127. Moreover, the theoretical results derived assume 

exponential stage residence times and an infinite time period when determining cancer 

growth and progression. Using non-exponential growth kinetics and a finite observation time 

(as done empirically) could alter the modeling outcomes. Finally, in contrast to the biannual 

TVU-based ovarian screening recommendation based on the Danesh et al. modeling 

inferences, latest data from ovarian cancer screening randomized controlled trials 

demonstrate the failure of annual, unimodal TVU examinations to improve ovarian cancer 

detectability and overall survival rates64.

In another attempt to model the preclinical natural history of serous epithelial ovarian cancer 

as a function of tumor size, stage and its implications for TVU-based screening126, Brown 

and Palmer identified and analyzed available reports on occult ovarian cancers, and used a 

comprehensive meta-analyzed of published data to model the growth, progression and TVU-

based detection of ovarian cancer62,74,79. Data were collected from published studies of 

healthy germline BRCA1 and BRCA2 mutation carriers25,63, who had their ovaries and 

fallopian tubes removed prophylactically. In some of these women, unsuspected ovarian 

cancers were discovered upon surgery61. Brown and Palmer performed a Monte Carlo 

simulation of tumor life histories to fit an exponential in silico model for tumor growth using 

parameters derived from their meta-analysis, with separate growth rate parameters for early 

and advanced stage cancers. A basic description of the theoretical tumor growth model 

proposed by Brown and Palmer is demonstrated in Figure 7. In this model, the “window of 

opportunity” was defined as the time duration for early detection, i.e., the time during which 

the tumor is expected to remain early stage (localized or regional). They estimated the 

window of opportunity for TVU detection of early stage cancers to be around 4.3 years, and 

predicted that most detected advanced stage serous cancers would have become advanced a 

median of 0.8 years prior to detection.
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Similar to the Danesh et al. model, the underlying assumption in the Brown and Palmer 

quantitative analysis is that ovarian cancers that are clinically present during early stages are 

precursors to cancers that if left undetected, would otherwise present at an advanced stage. 

We point out that a timely detection of low volume ovarian cancer, which does not 

necessarily represent early stage disease, should be the goal of any screening studies as well 

as of any mathematical modeling framework aimed at exploring screening scheduling. 

Moreover, while prophylactic risk-reducing bilateral salpingo-oophorectomies or 

hysterectomies are predominantly performed in high-genetic risk women who exhibit an 

increased risk of developing HGSOC, the data used by Brown and Palmer to calibrate the 

estimated tumor growth rate were collected from studies where proper histological 

classification was not performed. Some of the reported clinical cases were non-HGSOC, and 

ovarian cancer subtypes were aggregated into one singular disease. Failing to recognize such 

confounding factors could potentially underestimate quantitative data generated by the 

mathematical model.

To assess dynamic plasma biomarker kinetics in relation to the genesis of cancer, Hori and 

Gambhir incorporated tumor growth into a linear one-compartment biomarker secretion 

model, beginning with a single parental tumor cell128. The model is shown in Figure 8. Hori 

and Gambhir aimed to quantify the time required for a growing malignant tumor cell 

population to reach a sufficient size so that its shed blood biomarker levels were high 

enough to be detectable by current clinical blood biomarker assays. The model was then 

used to calculate changes in the detection capability based on log-order perturbations in the 

parameters fundamental to biomarker shedding. Tumor cell growth was represented by 

either the exponential or Gompertzian model, while the healthy cell population was assumed 

constant. Hori and Gambhir aimed to identify the biomarker-related parameters that would 

most greatly impact blood-based early cancer detection, and quantify how far each baseline 

parameter value would need to change in order to achieve earlier, sub-millimeter tumor 

detection. It was found that tumors in the mm diameter range could only be detected under 

ideal conditions of extremely high rates of biomarker secretion by tumor-associated cells 

and zero background level from healthy cells.

Hori and Gambhir concluded that clinical implementation of a CA125 biomarker-based 

early serous epithelial ovarian cancer detection would be extremely difficult for the time 

being. Several limiting assumptions were made in the current model that could potentially be 

addressed by future mathematical framework modeling fluctuating biomarker levels in 

relationship with tumor progression. Specifically, Hori and Gambhir assumed that CA125 is 

shed only from malignant cells and not benign or healthy cells. The number of healthy cells 

considered in the model was assumed to be constant and all tumor cells were assumed to 

shed the biomarker. These modeling constraints could be relaxed in future models for a more 

realistic description of the dynamic biomarker blood levels and disease detection times. 

While the relationship between tumor sizes and CA125 biomarker levels is not entirely 

understood72 and serial CA125 measurements are not common practice64,129, further 

modeling efforts could potentially drive further cohort screening studies.

Modeling therapeutic targeting and treatment—A key question related to optimal 

sequencing and scheduling of chemotherapy and surgery is whether the optimal therapeutic 
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strategy would be to maximally debulk a cancerous tumor followed by chemotherapy or vice 

versa. Kohandel et al. considered130 one population of tumor cells, a non-cell cycle phase 

specific drug, and various growth/cell-kill laws in order to compare two approaches for 

therapy: a) chemotherapy followed by surgery, or b) surgery followed by chemotherapy. 

Kohandel et al. combined Gompertzian and generalized logistic growth models with 

different cell-kill hypotheses, and assumed that surgery instantaneously kills a fraction of the 

tumor cells at the time of the treatment. The model is illustrated in Figure 9. For both the 

Gompertzian and generalized growth models, chemotherapy followed by surgery proved to 

be the optimal approach.

We note that the constant parameters and the functional forms proposed in the model of 

Kohandel et al. can be generalizable to any solid cancer, and bear no affinity to ovarian 

cancer specifically. The results presented are general and independent of a particular choice 

of parameters or drug administration protocols. Furthermore, in contrast to the mathematical 

modeling results, recently performed meta-analyses of randomized trials comparing 

chemotherapy versus surgery for initial treatment in advanced ovarian epithelial cancer131 as 

well as locally advanced breast cancer132 showed no difference between the two clinical 

scenarios in terms of survival or overall disease progression. We note that a key assumption 

of the Kohandel et al. model is that chemotherapy administered prior to surgery solely alters 

primary tumor growth, rather than also affect the formation and growth of (micro)metastatic 

tumor foci, which could be clinically occult at the time of surgery. We point out, however, 

that the clinical rationale for adjuvant chemotherapy (i.e. after surgical resection) is to 

eliminate any systemic, distant microscopic disease that would most likely already be 

present pre- or post-surgical resection. A future mathematical investigation based on the 

Kohandel et al. model could, for example, address the open clinical question of how to 

reliably identify the subsets of patients without any microscopic, residual disease, who 

would not benefit from adjuvant chemotherapy. Lastly, while the choice of the appropriate 

tumor growth law for modeling disease kinetics is discussed at length130 and its impact on 

therapeutic sequencing outcomes is theoretically derived through mathematical analysis, 

ovarian cancer primary tumor growth dynamics and clinical progression prior to or after 

therapy are most likely more complex than the basic growth and progression dynamics 

considered in this work.

In a different attempt to model combination therapy, Jain et al. developed a mathematical 

model of ovarian cancer xenograft growth to study the effect of carboplatin, and ABT-737, a 

small-molecule inhibitor of anti-apoptotic proteins Bcl-2 and Bcl-xL, on tumor growth 

inhibition133. Their model of ovarian cancer growth and treatment was based on a coupled 

system of ODEs and PDEs134, representing the temporal dynamics of proliferating and 

arrested cancer cells, and concentrations of the two drugs inside the peritoneum, plasma and 

tissue. This combination therapy model carefully accounted for the pharmacodynamics and 

pharmacokinetics of both drugs, and was calibrated against in vivo experimental data 

collected from xenografted mice treated with carboplatin and/or ABT-737 on a fixed period 

schedule135. Their goal was to study dosage/timing combinations of the two drugs leading to 

the fastest time to minimal residual disease, or to the minimization of total drug lead in order 

to achieve a predetermined tumor growth inhibition. Simulations of the Jain et al. model 

suggest that when combined with ABT-737, the infusion time of carboplatin doses together 
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with the AUC of the drug were the most important predictors of the tumor long-term 

response to the combination therapy. While the model is validated by in vitro ovarian cancer 

cell lines xenografted from patient ascitic tumor cells, further clinical investigations are 

needed to explore and examine the synergy between carboplatin and Bcl-2 family inhibitors.

Lastly, the previously discussed two-compartment linear ODE model proposed by Panetta115 

attempted to mathematically derive optimal treatment strategies in the sense of promoting 

the biggest tumor cell burden reduction. Using clinical variables such as treatment period, 

drug-infusion time, and proliferative fraction of ovarian cancerous cells, Panetta 

quantitatively demonstrate that for short periods (i.e. close to the active phase time) more 

drug is required to notice a decay in the ovarian cancer cell population. The results were 

qualitatively similar to those obtained when simulating breast cancer cells. It is likely, 

however, that a careful calibration of the model may alter the results. For instance, the work 

of Panetta involved combining growth rates/doubling times from ovarian tumors xenografted 

in nude mice116 with cell cycle kinetics derived from ovarian cancer cell lines117.

Modeling in vitro invasive cancer cell kinetics—To simulate in vitro cancer-cell 

kinetics after cisplatin administration, Montalenti et al. developed a linear model of cell-

cycle phase transitions based on experiments using IGROV-1 ovarian cancer cell line136. 

They used flow cytometry variables (derived experimentally) and implemented them as the 

input to a quantitative description of the action of cisplatin on the carcinoma cells. The aim 

was to specifically model the intermitotic time of cell-cycle phases, delays and block-effects, 

with consequent repair or cell mortality following the exit from the blocks. It was assumed 

that drug administration forces cells to leave asynchronous growth, with the main effects 

being a) cell death; b) cell-cycle phase delays; or c) cell-cycle blocks. At the end of each 

cell-cycle phase, cells were assumed to progress to the next phase only if they passed an 

internal molecular checkpoint. Montalenti et al. considered various levels of complexity in 

their cell-cycle simulation: (i) inter-cell differences in phase duration (modeled via a two-

parameter probability distribution of the likelihood of a cell of a certain phase age leaving 

the specific phase); (ii) the probability that a cell can either bypass the quiescent phase or 

enter it for an indefinite period of time; and (iii) the probability that cells can be killed by 

cisplatin at a distinct rate in every phase, blocked but then repair damage and recycle, or 

frozen in a specific age compartment, inhibiting age maturation.

While a certain amount of information could be obtained by visual inspection of the raw 

experimental data performed and used, the task of the parameter-fitting simulation was to 

consider all experimental data together with a number of drug doses and recovery times, in 

order to derive a coherent kinetic scenario. Once the input baseline set of kinetic parameters 

was determined, the data were simulated on the cisplatin-treated IGROV-1 cells using a trial-

and-error-procedure to find biologically appropriate estimates of the cisplatin-induced 

delays, block effects and cell mortality induced at every cell-cycle phase. The Montalenti et 
al. modeling results yielded a very detailed kinetic description of the IGROV-1 cell cycle 

dynamics treated with cisplatin. It remains unclear whether their modeling inferences can be 

easily translatable to human ovarian cancer tumor-drug interactions. No such description of 

in vivo cancer cell kinetics has been described to date, and the clinical relevance of ovarian 

cancer cell lines remains an issue subject to further exploration137.
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Modeling stem cell dynamics—To estimate stem cell self-renewal probabilities in 

serous epithelial ovarian carcinomas, Ciampi et al. proposed a method for estimating the 

probability of self-renewal of serous epithelial ovarian tumor stem cells starting from 

experimentally derived distributions of clonal colonies obtained in cell culture138. The 

model was based on tumor cell populations being composed of (i) tumor stem cells, capable 

of self-renewal and subsequent tumor self-regeneration; (ii) transitional cells, not capable of 

self-renewal but characterized by a limited potential for further proliferation (i.e. de-

differentiation); and (iii) end-stage cells, incapable of further proliferation, and thus 

considered terminally differentiated. In this model, the proliferation of the cancer cell 

population was treated as a multi-type Galton-Watson process in which stochastic 

fluctuations lead to probability distributions in the number of each cell type, under the 

assumption that cell division does not necessarily occur at the same time for same-age cells. 

Using a Nelder-Mead algorithm and equating the theoretical moments of the distribution of 

cell types with the observed experimental colony size mean and variance, Ciampi et al. 
derived parameter estimates for the probability of self-renewal of a tumor stem cell, and the 

clonal expansion number expressed in the generations, i.e. the number of de-differentiated 

states.

We note that a key assumption of this model is that ovarian cell populations are organized in 

a hierarchy of decreasing proliferation potential and increasing degrees of cellular 

differentiation. However, it is unclear if stem cells are responsible for the initiation and 

progression of clinical ovarian cancers139. Moreover, the lack of unique markers that are 

able to identify stem cells in the context of ovarian cancers make it difficult to characterize 

the proliferative landscape of such cells in vitro or in vivo.

FUTURE PERSPECTIVES

In this review, we survey the existing mathematical oncology literature, focusing on two 

major subsets of women's cancers, specifically the breast and ovarian malignancies. First, we 

summarize the existing clinical data regarding malignancy progression and breast/ovarian 

cancer patients’ specific therapy response. From a systems biology perspective, we 

demonstrate that few mathematical modeling inferences have been concerned with any of 

breast cancer subtypes, and even fewer with ovarian cancer subtypes. Whenever possible, we 

compare and contrast the known clinical information about the families of breast and ovarian 

cancers, and complement the existing clinical paradigms with a description and discussion 

of the corresponding mathematical modeling attempts. In doing so, we show how current 

mathematical models that focus on the two women's malignancies do not make 

comprehensive use nor substantially reflect existing clinical data. We then highlight the 

modeling areas in most critical need of clinical data integration. Lastly, we argue that the 

existing mathematical models reviewed and discussed in this paper are not adapted to reflect 

the complex, heterogeneous behaviors of women's malignancies.

With respect to main themes addressed by current breast and ovarian cancer mathematical 

modeling, the models discussed in this review generally address primary tumor growth, 

optimal biomarker characteristics, and therapy sequencing, omitting to varying degrees 

disease-specific characteristics, such as histological classification, or specific drug-body 
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pharmacodynamics and pharmacokinetics. We note, however, that considerable biological 

realism and any translational/clinical relevance of such modeling results are lost if the 

existing mathematical models aggregate the various women's cancers subtypes into one 

singular disease. Moreover, existing mathematical models tend to either completely ignore 

current standard therapeutic approaches and existing combination treatments, or model any 

multidrug therapeutic combinations as single drugs, without reflecting the differential 

pharmacodynamic and pharmacokinetic behavior of the various drugs.

From a mathematical point of view, the quantitative tools employed in these models range 

from probabilistic techniques (e.g. branching processes, bootstrap resampling, time-

homogeneous Markov chains), through differential equation-based approaches (single or 

multiple compartment ODE, PDE or coupled ODE-PDE models). There are, however, 

several underlying, limiting assumptions with using such modeling approaches. Most such 

models rely on the “perfect mixing” assumption that cellular populations are spatially 

homogeneous, and are only able to quantify average cellular behavior, rather than 

heterogeneous genetic and phenotypic cellular profiles. In doing so, existing models are only 

able to generate aggregate statistics or outcomes similar to results derived from population-

based cohort studies. The extent to which such modeling results would contribute to 

understanding patient-specific cancer progression or subsequent therapeutic outcomes is 

thus unclear. Mathematical modelers of women's cancers should also devote careful 

attention to parameterization details and model calibration against experimental data, as 

more often than not, parameter estimations for a singular model are derived from various 

cancer cell lines, mouse models, and/or xenografted tumor data. The applicability of such 

modeling attempts to clinical scenarios thus remains tenuous at its best.

Outlook for the future

Studying the natural history, growth, progression or dynamic response to treatment of breast 

and ovarian cancers in an integrated systems biology/mathematical framework offers an 

innovative contribution and a complementary tool at the disposal of the women's cancers 

clinical community. If accurately and realistically applied to existing clinical data, such 

frameworks could represent a substantial step forward, and can be performed in a relatively 

inexpensive manner, that relies only on computing power. Mathematical modeling can 

provide insights about the disease dynamics that reach beyond contemporary clinical and 

experimental tools and are impossible to obtain even in large-scale cohort studies. Dynamic 

spatiotemporal mathematical models of women's cancers and their evolution can provide a 

quantitative understanding of the likelihood of occurrence of specific clinical scenarios in 

response to detection, treatment and the when and the why of emergence of resistance.

This is precisely why we believe mathematical modeling could potentially make a 

substantial contribution to cancer research and therapy. To that end, current and future 

modeling attempts should be properly integrated with clinical data, and thus parameterized 

to reflect disease heterogeneity in progression and therapeutic responses. We point, however, 

that this issue is double-sided.

First, we believe that an adaptation of the modeling attempts discussed in the present review 

to current clinical data does not require any revolutionary or novel mathematical modeling 
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framework. Existing mathematical approaches and techniques utilized in modeling the 

progression and therapeutics of one malignancy can be similarly translated to another 

malignancy, despite the complex degrees of heterogeneity of different malignancies from a 

clinical perspective. Instead, we argue that all that is needed are an increased awareness of 

the mathematical modeling community to the limitations of current models in providing an 

accurate representation of the contemporary clinical knowledge, and more sustained efforts 

at understanding disease specifics before attempting any modeling implementation. To that 

end, we believe that mathematical oncologists focused on modeling the breast and ovarian 

malignancies would greatly benefit from extensive collaboration with specialists outside 

their primary domain of expertise, in order to refine the aims of their modeling efforts, 

calibrate and mechanistically validate their modeling results in the context of clinical 

applications. We stress that augmented and sustained efforts at bringing together researchers 

with complimentary expertise (e.g. mathematicians, cancer biologists, and clinicians/

experimentalists) should be initiated to introduce a new research paradigm to women's 

cancers studies. There is a pressing urgency to bring in quantitative, truly integrated 

modeling to preclinical and clinical development of novel breast and ovarian cancer 

therapeutics.

Second, to successfully calibrate and validate modeling frameworks, it is crucial to point that 

more often than not, data collected by clinicians during therapeutic interventions or follow-

up of patients in trials is not reported in a format that is suitable for mathematical modeling. 

This may severely limit the translational value of any mathematical model. Mathematical 

modeling could substantially benefit from a more comprehensive data collection and 

reporting. Single values (such as tumor size at diagnosis, categorical thresholds such surgical 

debulking cytoreduction values, tumor shrinkage response and related endpoints, or single 

serum biomarker measurements), should be replaced by reporting dynamical information, 

such as the levels of change. Longitudinally measured markers, molecular and imaging data 

performed and measured over the course of a patient's care would provide excellent 

discriminatory and predictive power to mathematical models.

Several recent randomized controlled trials have begun incorporating serial measurements of 

relevant clinical parameters, and the inclusion of such temporal data yielded substantially 

improved predictive power when analysis was performed within tumor subsets stratified by 

patient characteristics. Examples include the I-SPY 1 TRIAL - a cohort of 221 patients with 

histologically confirmed invasive breast cancer whose pathologic complete response to 

therapeutic care and recurrence-free survival rates were temporally evaluated140, and the UK 

Collaborative Trial of Ovarian Cancer Screening that randomly allocated 202,638 post-

menopausal UK women to different temporal multimodal screening algorithms in order to 

establish the effect early detection by screening on ovarian cancer mortality64. Herein, serial 

CA125 serum levels and TVU examinations were collected and used to inform their risk of 

ovarian cancer prediction algorithm.

Open challenges

More recently, the increasing availability of high throughput genomic datasets to identify the 

molecular basis of a number of cancers has heralded an emerging approach to cancer 
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treatment, specifically precision medicine. The long term goal of such an approach is to 

identify and subsequently use the observed changes and patterns in a patient's individual 

cancer to better inform therapeutic outcomes and yield treatment options tailored to an 

individual's specific clinical parameters.

A significant amount of clinically motivated efforts has been aimed in producing dynamic 

molecular datasets. High depth sequencing is used to study the functional role of genetic 

heterogeneity during a cancer's evolutionary progression and to better disseminate between 

individual tumors of different subtypes based on their molecular profiling. Novel clinical 

trial designs are attempting to identify the rules for the dissemination of individual patients 

according to a comprehensive set of clinical characteristics and match them to therapeutic 

outcomes52,141-143. Such designs play a key role in providing data for mathematical models, 

and the relatively few modeling efforts informed by such datasets have yielded promising 

results, leading to the inference of novel mechanistic relationships and possible links to 

therapeutic outcomes in chronic myelogenous144 and chronic lymphocytic leukemias145, 

Barrett's esophagus146, or glioblastomas147, to name a few.

With regards to breast and ovarian cancers, such high throughput dynamic molecular 

datasets are yet not widely available, and enhanced serial data collection is not routinely 

performed. As such, numerous open questions remain, many of which cannot be feasibly or 

exclusively addressed experimentally. A list summarizing questions presently of great 

interest to the clinical community, that could potentially be addressed using mathematical 

models, is given in Table 1.

Conclusions

In this review, we seek to emphasize the pressing need for truly integrative mathematical-

oncology collaborations that reflect and make use of the clinically known aspects of 

malignancy heterogeneity, progression, detection and therapeutic options. We believe that 

the primary goal of any mathematical study of women's cancers should ultimately be to 

address current clinical open questions. In order to achieve this goal, the design of any future 

mathematical models will have to closely follow women's cancers biology, be driven by it, 

and be closely supported and informed by enhanced clinical and experimental data.
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SIDEBARS

Sidebar 1. Clinical terminology used throughout the review listed by order of reference.

Menopause is defined as occurring 12 months after a woman's last menstrual period and 

marks the end of menstrual cycles. It implies the permanent cessation of ovulation and 

menses without any obvious pathological cause.

Early detection refers to the discovery and diagnosis of a malignancy prior to the 

occurrence of any clinical symptoms.

Systemic cancer therapy refers to a type therapy that uses substances which travel 

throughout the body via the bloodstream, and affects cancer cells wherever they may be 

located.

Targeted therapy refers to a type of therapy that uses drugs or other substances to identify 

and attack specific pathways in cancer cells that are necessary for the cancer cell growth, 

with limited toxicity to normal cells.

General risk women are defined as asymptomatic women without any known genetic 

mutations or known family history of breast and/or ovarian cancer.

High-genetic risk women are defined as individuals from families with a known 

deleterious BRCA1 or BRCA2 mutation or women with a family history of breast or 

ovarian cancer, such as a first- or second-degree blood relative with a personal history of 

breast or invasive ovarian cancer.

Screening refers to monitoring of asymptomatic, apparently healthy patients with the 

intent of achieving an earlier diagnosis, if disease is found.

Tumor dormancy refers to clinically undetectable microscopic metastases that remain in a 

dormant state for prolonged periods of time, and that eventually progress to detectable 

cancer sometime during a patient's lifetime.

Sidebar 2. Mathematical modeling terminology used throughout the review listed by 

order of reference.

Temporal refers to the progression in time of a clinical variable, e.g. tumor size, 

biomarker levels, effects of a drug on the body.

In silico refers to a numerical simulation performed on a computer.
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Figure 1. 
“Breast Anatomy Female”: For the National Cancer Institute © 2011 Terese Winslow LLC, 

U.S. Govt. has certain rights.
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Figure 2. 
“Female Reproductive System”: For the National Cancer Institute © 2009 Terese Winslow 

LLC, U.S. Govt. has certain rights.
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Figure 0003

Figure 0004

Figure 3. The breast cancer growth models proposed by (A) Speer et al.93 and (B) Norton94

(A) The first equation corresponds to classical Gompertzian growth kinetics, where N(t) is 

the number of tumor cells measure at time t after the start of tumor growth, A0 is the initial 

growth rate, and α is the rate of growth decay. In this model, time is incremented in intervals 

of 5 days. A random number, r1, between 0 and 1 is generated at each time interval, and 

compared to a predetermined value A4, defined as the probability that α undergoes a change 

in a 5-day period. If r1>A4, the tumor continues growing at the previous rate. However if 

r1<A4, α is reduced by an amount depending on A4, r2, another randomly generated number 

between 0 and 1, and A3, the predefined determinant of the amount of change in α. This 

process is illustrated in the second equation. Computations of the simulated growth curves 

are performed until either simulation time runs out, set at 40 years elapsed since the 

beginning of tumor growth, or until a lethal in silico tumor burden threshold is reached, set 

at N(t)=1012 cells. The Speer et al. model beings with 1 cell at time 0 and uses predefined 

values of A0, α, A4, A3. A0 and α are expressed in units of days−1, and A3 and A4 are 

dimensionless. Simulation time is measured in days. Each computed growth curve is 

generated using the same baseline parameter set.

(B) The first equation corresponds to classical Gompertzian growth kinetics, where N(t) is 

the number of tumor cells measure at time t after the start of tumor growth set at t = 0, N(0) 
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is the tumor starting size, b is the rate of growth decay, and N(∞) is the limiting size. To 

generate the probability distribution function of b, the proportion, PL(t) of patients who have 

died by time t since the onset of symptoms after having reached the lethal tumor size, NL, is 

generated from the 250 breast cancer survival curve data set in (Bloom et al.). Re-arranging 

the Gompertz, Equation (2) is obtained, where PL(ti) represents the proportion of the 250 

cancers with growth decay rate b<bi. The model is initialized with a set of initial values for 

N(0), NL, and N(∞), and a least-squares based numerical algorithm is used to determine the 

mean and standard deviation of b. A randomly generated initial value for bi is then chosen 

from the computed distribution to calculate ti to ensure N(ti) = NL, and the process described 

in the second equation is repeated until the value of bi that provides the best fit to PL(ti) is 

found.
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Figure 4. The ODE-PDE framework used to model breast cancer development, treatment and 
recurrence105, subsequently used to model radiotherapeutic strategies107

The system of equations describing the interactions of tumor cells (n), extracellular matrix 

(f), and matrix-degrading enzymes (m) is illustrated in the first equation. Therein, the terms 

in the first equation correspond to cellular proliferation, random motility and haptotaxis, 

defined in the model as the movement of tumor cells according to gradients of chemicals in 

the tumor environment. The second equation corresponds to the extracellular matrix 

degradation by existing tumor cells. Lastly, the terms in the third equation correspond to the 

diffusion of matrix-degrading enzymes secreted by the tumor cells, the production of new 

enzymes and natural decay.

The fourth equation represents the biologically effective dose 102, where n is the number of 

radiotherapeutic fractions administered, d is the dose delivered per fraction, α is the 

coefficient of single-hit DNA double-strand breaks, and β is the number of DNA single-

strand break pairs that combine into forming double-strand breaks. d is measured in Gray. 

The surviving probability S, i.e. the proportion of cells that survive the radiation-induced 

damaged is modeled in the fifth equation.
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Figure 0006

Figure 0007

Figure 5. (A) The four compartment cell cycle and resistance framework modeled by Roe-Dale et 
al.111. (B) The two compartment cell cycle framework modeled by Panetta115

(A) In the system of equations illustrated in (1), cells are separated by cell cycle status in 

two states, and drug sensitivity status in two other states, for a total of four possible states: 

either G1 or S sensitive (N1) or resistant cells (N3) and G2 or M sensitive (N2) or resistant 

cells (N4). In this model, resistant cells are defined as cells that express the activated MDR1 
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gene. The terms in each equation correspond to cell-specific constant transitions rates 

between the four compartments.

The treatment equation for the Roe-Dale et al. model is illustrated by (2), where N 
represents the matrix-vector notation for the four different compartments whose temporal 

dynamics is modeled by (1), Ti is the corresponding treatment matrix for drug i, and m is the 

number of administered treatments with drug i at time intervals of τ hours. The fraction of 

cells surviving treatment with doxorubicin (TA in the model) and with CMF (TC in the 

model) are described in Equations (3) and (4), respectively.

(B) In the system of equations illustrated in (1), P is the number of proliferating tumors 

cells, and Q is the number of quiescent tumor cells. Additional parameters include γ, the 

growth rate of proliferating cells, α, the transition rate from the proliferating to the quiescent 

compartment, δ, the natural proliferating cell death rate, β, the transition rate from the 

quiescent to the proliferating compartment, and λ, the natural quiescent cell death rate. All 

parameters in the model are assumed to be positive, and constant. Herein, the system 

outlined in (1) represents a linear system of ODEs modeling the dynamics of the 

proliferating and quiescent cell compartments. The function f(t) described in Equation (2) 

represents a step function describing the effects of the chemotherapeutic treatment, e.g. 

paclitaxel. The periodic function modeling the paclitaxel effects is assumed to target only the 

proliferating cell compartment. In its functional representation, s is the strength of the drug, 

a is the active drug time, T is the period of paclitaxel administration and n stands for the nth 

administered drug dose.
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Figure 6. The Liu el al. breast cancer stem cell model122

The population dynamics of the cell types considered is illustrated in the above equations. 

Therein, xi(t) is the number of cells measured at time t of type i, where i=0 is the cancer 

stem cell phenotype, i=1 is the progenitor cell phenotype, and i=2 is the terminally 

differentiated cell phenotype. p0(p1) is the probability that a cancer stem cell (progenitor 

cell) divides into 2 cancer stem cells (progenitor cells), q0(q1) is the probability that a cancer 

stem cell (progenitor cell) divides into 2 progenitor cells (terminally differentiated cells), v0 

and v1 are the synthesis rates representing the transition rates from the cancer stem to the 

progenitor cell compartment and respectively, from the progenitor cell to the terminally 

differentiated cell compartment. Lastly, di, where i = 0, 1 or 2, represents the death rates of 

cells of type i.
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Figure 7. The tumor growth model proposed by Brown and Palmer126

Tumors in both early and advanced stages were assumed to grow exponentially. Specifically, 

the early stage tumor growth model is illustrated in Equation (1). Therein, a is the size at 

which a particular tumor is detectable by histopathology, b is the (exponential) growth rate 

constant and t1 is the time since the tumor became detectable by histopathology. Detection 

thresholds for each individually simulated growth curve were set to match the corresponding 

value found in the collected tumor data set.

The advanced stage tumor growth model is illustrated in Equation (2). Therein, c is the log 

value of the tumor size at disease progression from early to advanced stage (estimated from 

the Monte Carlo simulation of tumor life histories), d is the difference between the log 

values of the tumor size at empirical diagnosis obtained from the collected tumor data set 

and the log value of the size at progression from the generated simulation, and t2 is the in 
silico measured time since progression.
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Figure 8. The plasma biomarker temporal dynamics model of Hori and Gambhir128

The change in the mass of the plasma biomarker with respect to time is equal to the 

difference between the influx of plasma biomarker shed by the tumor cells, uT(t), healthy 

cells, uH(t) and the outflux of biomarker from the plasma, qEL(t), are as illustrated in the first 

equation. The rate of biomarker entry into the plasma is the sum of the input from tumor 

cells (as modeled in the second equation) and from healthy cells (as modeled in the third 

equation). Tumor cell growth is represented here by either the Gompertzian growth model 

(the fourth equation) or the exponential growth model (the fifth equation). The healthy cell 

population is assumed to remain constant throughout simulation time, and is set at NH(t) = 
NH,0.
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Figure 9. The one-compartment ODE model of Kohandel et al.130. Modeled are tumor growth, 
and surgical and chemotherapeutic treatments
Kohandel et al. considered one population of tumor cells, a non-cell cycle specific drug and 

various growth and cell-kill laws formulated in the following manner. The dynamics of the 

number of tumor cells at time t, N(t), is described by differential functional forms for the 

growth law, where f(N) is the tumor cell growth dynamics (e.g. f(N) = aN for the 

exponential growth law, where a is the constant proliferation rate), G(t,N) describes the 

effects of the drug on the system , and I(t = tsurgery) is an indicator function (equal to 1, if t = 

tsurgery, and 0 otherwise). Differential functional forms chosen for G(t,N) are provided in the 

second equation. Surgery is assumed to be instantaneous, and to remove a fixed fraction of 

exp(−ks) of tumor cells, where ks is the fraction of removed cells during surgery.
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Table 1

List of clinically relevant open questions regarding the breast and ovarian malignancies.

1. Cancer initiation Can we predict whether subtypes arise from distinct lineages or from a common precursor in both malignancies? 
Can we predict who is more likely to get breast or ovarian cancer in high-genetic risk cases? Can we integrate the 
knowledge about causative disease factors to identify more effective prevention and treatments?

2. Cancer progression Can we develop a quantitative metric to predict which ductal carcinomas in situ are more likely to progress to 
invasive cancer? Similarly, can we develop a quantitative metric to predict which in situ fallopian tube lesions 
would progress to invasive high-grade serous cancer? Can we predict which invasive breast/ovarian detected 
carcinomas are more likely to have become metastatic prior to diagnosis? Which specific women's cancer would 
be more likely to benefit from systemic therapy? Can we quantitatively stratify the risk of relapse and/or need for 
chemotherapy without being able to or having to conduct large scale prospective cohort studies?

3. Cancer dormancy Can we quantitatively predict why dormant breast cancer tumor cells start to grow and invade, as observed 
anecdotally? How do dormant residual cells switch to a proliferating stage and regenerate tumors? Can we 
determine what the qualitative mechanism behind dormancy activation is? Specifically, are dormant cancer cells 
already present within the tumor or are they induce by therapy?

4. Treatment of 
metastatic and/or 
resistant disease

Is it feasible to develop mechanistic models of drug penetrability and/or biological function in order to better 
study drug sequencing and emergence of resistance? Can we use mathematical analysis to guide the selection of 
drugs to be used for each patient? Specifically, can we mathematically quantify the spatio-temporal propagation 
of resistance in order to better predict treatment outcomes? Can we use generated in silico cumulative 
distributions of disease-free survival times prior to recurrence to guide subsequent therapeutic scheduling?
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