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CHAPTER ONE

INTRODUCTION

Brief Introduction

This Chapter presents the introductory section of the study. It starts with
the background to the study, the problem statement, the objectives and the
theoretical framework. It also presents an overview of the evolution of the
insurance industry in Ghana and finally outlines the concept relating to the

study.

Background to the Study

The operational process of non-life Insurance assumes different risks
profiles for the insured influenced by instabilities within the business
environment. Predicting the financial obligation for claims in non-life insurance
is quite complicated and usually depends on the structure of insurers’ liabilities.
Pricing premiums is one of the most critical issues facing the non-life insurance
industry across the world. The issue of charging fair premiums or price
differentiation among policyholders has been the bane for most insurance
companies (Mihaela, 2015). The question has always been, how much premium
to allocate to a policyholder to ensure fairness on the part of the insured and
how much to allocate to the insured to avoid bankruptcy. For researchers the
most critical task in insurance pricing is how to accurately predict the risk of
claim and the expected coverage for the insured. The task of modeling claims
has been a major challenge because of data structure which is usually highly

skewed with many zeroes but high claim severity.
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By insurance contract economic risk is transferred from the policyholder
to the insurer. Due to the law of large numbers, the loss of the insurance
company, being the sum of many comparatively small independent losses is
much more predictable than that of an individual. This means that the loss
should not be too far from its expected value. This leads us to the generally
applied principle that the premium should be based on the expected (average)
loss that is transferred from the policyholder to the insurer (Ohlsson &

Johansson, 2010).

Several statistical approaches have been used to approximate the risk of
accident. In the 1990°s, British actuaries introduced generalized linear models
(GLMs) as a tool for tariff analysis which was first proposed by Nelder and
Wedderburn (1972) and later developed by McCullagh and Nelder, (1989). This
has now become the standard approach in most insurance companies of the

developed world.

Generalized linear modeling (MacCullagh & Nelder, 1989) employs
exponential family distributions where spread and shape are related to the mean.
This means that any equation for the mean in terms of risk factors is indirectly
also a model for shape and or spread. But the connection is implicit and hence
does not permit the explicit flexibility of modeling the spread and or shape in
terms of the risk factors. Joint modeling of the mean and dispersion has recently
become popular in the statistical literature (Nelder & Lee, 1992; Rigby &
Stasinopoulos 1996). It is important to note that, with normal distribution, the
variance controls the spread and there is a similar shape for all values of the

variance. However, for exponential family distributions, the variance is of the
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form ¢Var(u), where g is the mean, ¢ isthe dispersion parameter and Var(u)
is a function of the mean that is dictated by the particular distribution. The

standard generalized linear model specifies a model for 4 and employs a
constant ¢. Joint modeling of mean and dispersion in terms of risk factors is not

useful, this is because for many distributions occurring in insurance, variance is

not a useful quantity for modeling.

Several other authors have come up with distributions for claims sizes
(Hogg & Klugman ,1984; Habberman & Renshaw, 1996). According to Hogg
and Klugman (1984), the distribution of total claim amount can be modelled as
a mixed discrete-continuous process with a probability mass at zero
corresponding to the probability of number of claims, and a continuous right-
skewed component to the right of zero for the density of positive claims,
corresponding to total of one or more claims. In other instances, models for
claim occurrence and claim severity are typically treated separately. This
according to the authors is to help identify different factor scenarios affecting
claims severity and frequency. The model for claim occurrence produces an
estimate for the probability of a claim while the model for claim severity
produces an estimaté of the expected claim size. The product of these is the total
expected policy claims cost known as the risk premium. It has also been argued

that the propensity of claim depends on several explanatory variables.

Most empirical models which have been developed are based on GLMs.
For instance, Haberman and Renshaw (1996), used GLMs to model total
nonzero claims as a function of risk factors. Mihaela (2015) analyzed claims
severity and frequency using the GLM technique. The literature on joint

3
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modeling of both zero and nonzero is rare. Jorgensen and de Souza (1994) and
Smyth and Jorgensen (2002) considered models for claim sizes, that includes
zero claims. This modeling framework assumes that claims arrival has a
Poisson distribution and claim severity follows a gamma distribution such that
the total claim structure could be modelled with Tweedie compound Poisson.
Also, Zuanetti, Diniz, and Leite (2006) considered a model without explanatory
variables. The authors proposed Poisson distribution for modeling number of
claims and lognormal for modeling the claim size. This method is woefully

inadequate since it fails to recognize risk factors inherent in claim processes.

Even though Tweedie GLM is often used, it has a major drawback. The
major drawback is that link between the variate and covariates that is usually
constrained to a linear form is rare in practice. For instance, in auto-insurance,
risk of claim is not necessarily inversely related with age (McCartt, Shabanova,
& Leaf, 2003; Anstey, Wood, Lord & Smith, 2005). To correct this drawback,
various procedures have been proposed. Wood (2006) proposed Generalized
Additive Models (GAM) to overcome some of the deficiencies of the GLM such
as the linear link to a more general form. However, with GAM the structure of
the model must be specified. The main and interaction effects must be specified
by the researcher. This often results in specification bias which likely affects the

predictive power.

To overcome the deficiencies of GAM, and GLM, Friedman (2001) and
Friedman (2002) extended the work of Freud and Schapire (1996), Freund and
Shapire (1997), Brieman (1998), Brieman (1999), Friedman, Hastie and

Tibshirani (2000) laid the ground work for a new generation of boosted
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modeling framework to allow for a variety of loss functions. It is an iterative
approach where several “weak” models are created and aggregated to form a
final prediction model. The framework requires a specification of loss function.
Using the connection betw-een boosting and optimization, Ridgeway (2012)
proposed an R integrated framework of Gradient Boosting Machine (gbm).
Guelman (2012) analyzed and developed an auto insurance loss cost modeling

using the gradient boosting machine.

However, this model is insufficient in capturing the data structure since
it only implements square error loss function for claims size modeling and
binomial deviance for probability of claim.  Yang, Qian and Zou (2016)
improved on the idea of Friedman by proposing a TDboost model; an important
tweak to the procedure specified by Friedman in 2001 with an implementation
option of Tweedie-based error loss function. Despite its strong predictive
power, its outcome depends on the data generating process and the associated
variables. The mechanism also fails to account for external risk factor effects
such as environmental risk. More so, for most of these frameworks described
the main source of data on which decisions are based use historical claims data
generated from the insurance company. An actuary uses this data generated by
the company or the industry to determine the model which describes how the
claim cost of an insurance policy behaves. The need for statistical methods
comes from the fact that the expected loss may vary among policies. This means
that rate of accident rate is not the same for all policy holders in the environment
in which it operates. More so, once a claim has occurred, the expected damages

may also vary among policyholders.

Digitized by Sam Jonah Library



© University of Cape Coast https://ir.ucc.edu.gh/xmlui

This study seeks to improve on the work of Yang, Qian and Zou, (2016)

by obtaining an auxiliary variate X; closely related to the study variable,

claims ( ;). The auxiliary varjable is used as proxy to incorporate location risk

which is an aspect of latent risk within the TDboost model framework.
According to Loisel (2004), the business of an insurance company may have
influenced and modulated within a Markovian environment process. Thus, the
study proposes a hybrid approach for deriving risk premium for an auto
insurance policy by considering both latent and historical risk within the
insurance industry. The fast-paced changes in business environment and
technological advancement require an all-inclusive dynamic risk treatment,
especially in Non-Life insurance. Cramer (1955) (as cited in Djuric (2013))
said that “the goal of risk theory is to provide a mathematical analysis of the
fluctuations in the insurance business and to suggest various means of
protection against their adverse effects”. This motive is what this study seeks to

achieve.

Statement of the Problem

The motivation of the study is described in two ways. Firstly, differential
pricing or risk-based auto insurance premium pricing has been in existence for
a while, at least for most developed countries and some other countries such as
India. In risk-based pricing the idea is to charge higher premiums for vehicles
that are more likely to get into an accident and therefore higher propensity to
claim and a lower for vehicles less likely to be involved in accidents. It is very
common to identify premium-modeling framework for most developed
countries that are based on generalized linear model in most actuarial literatures.

6
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Such models mainly depend on historical claims data to determine which model
describes the claim frequency and size. However, it is not common to encounter
studies that delve into situations where internal historical data is augmented
with external data to improve predictive power.
Secondly, in most sub Saharan countries, premiums are tariff based.
This means that price charges are mainly due to regulatory and economic
dynamics of the period, such as inflation, exchange rate as well as other
regulatory changes. For instance, in Ghana, the current premium computation
regime is based on 2015 underwriting and implementation guideline issued by
Ghana Insurers Association in consultation with General Insurance Council.
The premium computation is done in five steps:
1. Quote the basic premium indicated in the tariff class
2. Add cubic capacity and vehicle age loadings
3. Apply the approve discounts
4. Add other underwriting loading factors (where applicable) to arrive at
the office premium
5. Add NIC contributions, NHIS, NRSC and ECOWAS levies to arrive at

the total premium chargeable

The risk loading considerations for age of vehicles have been classified
as follows: 1 to 5 years free, 5 to 10 years 5% of base premium indicated in the
tariff, above 10 years is 7.5%. For cubic capacity loading: up to 1600 is free,
1600 to 2000 is 5%, above 2000 is 10%. Extra seat loading: vehicles with
seating capacities of up to 5 shall or do not attract seat loadings. For vehicles
with seats above 5, the extra loadings are as follow: private cars charged Ghe 5

per seat above 5 seats. For hiring vehicles and other commercial vehicles, Ghe
7
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8 per seat above 5 seats. Others such as underwriting discounts, fleet rebates,
ECOWAS peril as well as other statutory charges are considered. The guideline
is firmly controlled, and the industry is compelled to follow the guideline strictly
and uniformly. Failure of which sanction is meted out to members who undercut

to gain unfair advantage.

This pricing theory is fraught with a lot of challenges because the risk
captured in this pricing framework is inadequate. The price charge may not
cover the expected risk leading to unpalatable outcomes. For instance,
PricewaterhouseCoopers report (2010) indicated that the insurance claim ratio
relating to third party insurance is very high for commercial vehicles. For mini
buses and taxis, the claims always outrun the tariffs which make the insurance
company digging into other funds (compensation fund) to meet the liabilities.
The statistics indicate that for every cedi of premium paid, the claim ratio for
mini buses on third party was 92.26%, maxi buses were 62%, whilst 44.9% was
for taxis. For comprehensive taxis, it was 118.52%. This means that for every
100 premiums paid the insurance company would have to use up 92.26 for mini
buses and incurred a loss of 18.52 for taxi on comprehensive at the end of the
year. Claims ratio is a measure of underwriting efficiency. It indicates the gross
premium available to contribute towards profit. The lower the ratio the better

the underwriting efficiency.

In addition, according to the National Insurance Commission report
(2016) the claims ratio which is a measure of how well an insurance company
pays claim suggest that about 84% of the insurance companies are

underperforming in terms of payment of claims compared to acceptable
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standards (60-80%). This may be due to high claims, underpricing or excessive
expenditure. More so, the combined ratio which is a single measure of
profitability, discounting other investments, suggest that the industry average
has worsened considerably from 7% in 2011 to 19% in 2016. Out of the 25 non-
life insurance companies, about 80% of these companies were worse off in
2016. This means that the combined ratio was beyond 100%. The challenges
facing the insurance industry include both underpricing and overpricing of
premiums due to lack of actuarial pricing framework. Thus the continuous use
of the tariff system is probably because there are no efficient models that could
adequately capture the encumbrances inherent in the insurance industry data

structure in Ghana despite the existence of several models.

It is known that the most efficient way for a reliable predictive modeling
is based on well-designed choice of framework and appropriate statistical
model, which reflects not only the design of the study but also the characteristics
of the data. If the existing distributions do not fit the data well, the implication
is that different sets of characteristics are associated with the data and largely
differ from that used to build these models. Hence, inference targeted at such
models will be out of place and inefficient. The modeling framework envisaged
in this study consider two data structures to capture the policy characteristics
and the policy’s usual operating environment. The study proposes a differential
premium pricing strategy based on these two key ingredients for deriving risk
premium for an auto insurance policy in Ghana and alternative framework for
loss cost modeling in non-life insurance in general. Sound risk evaluation is
essential in terms of company profitability. Beyond the company level, risk

management is key to sustainable growth of the industry for the development
5
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of the broader economy and socio-economic wellbeing within the country

(Akotey & Abor, 2013).

Research Objectives
The study seeks to assess the performance of insurance companies in
Ghana and develop a model that is robust, risk-based and semi-parametric for

pricing auto-insurance premiums.

Specific Objectives
Considering the gaps and challenges, the general objectives has been

broken down into three specific objectives:

1. Assess the financial performance of the insurance companies via grey
systems theory.

2. To develop a robust, risk-based and semi-parametric pricing model for
premium determination

3. To demonstrate the superiority of the model using an underwriting

claims data from a local insurance company.

Relevance of the Study

The study examines how to price auto-insurance with practical data from
Ghana. Almost all the literature reviewed had used data generated for an
insurance company. One hardly finds a modeling framework that utilizes both
claim experience and relevant information outside the insurance industry. This
study is thus significant in two-fold. The study seeks to contribute to existing
literature on insurance pricing. Its usefulness is not only to statisticians but also

to researchers and practitioners in a wide variety of fields.

10
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Secondly, as earlier mentioned the continuous use of the tariff system is
_probably because there are no efficient models that could adequately capture
factors inherent in the insurance industry database. This study is therefore useful
for the auto-insurance industry in Ghana and could be the bases to consider risk-
based premium pricing regime. This will guarantee the avoidance of eventual

ruin; the glimpses seen in annual financial reports.

Data Acquisition and Source
The study utilized data from three various sources. Data set was also
obtained from National Insurance Commission report from 2012 to 2016 for

purpose of analyzing financial performances of the industry.

The data set for practical application of the theory was obtained from
two sources. Data was obtained from a major Auto-insurance company in
Ghana. The data spans from 2013 to 2016. Auxiliary data was also obtained
from National Road Safety Commission. ~The National Road Safety
Commission is a state agency responsible for safety education and accident
statistics in Ghana. The data includes records of both vehicle and motor

accidents in all the ten regions of Ghana from 1991 to 2015.

Overview of Insurance Industry in Ghana

The history of insurance in Ghana dates to 1920s by courtesy of the
British merchants with the establishment of the British of the Guardian Royal
Exchange Assurance Ghana Limited in 1924 now known as Enterprise
Insurance Ghana (Akotey & Abor, 2013). Towards independence, local
insurance companies begun to emerge. The first was Gold Coast Insurance

Company which was formed in 1955. Cooperative Insurance society also

11
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formed in 1958. Government of Ghana bought Gold Coast Insurance and
merged with Cooperative Insurance Society to form State Insurance Company
(SIC) and incorporated in 1962 (Abor, 2005). Through structural and legislative

changes, non-life insurance companies consisted of 26 as at June 2016.

The Ghanaian insurance industry is governed by National Insurance
Commission (NIC) under the Insurance Act 2006 (Act, 724). The object of the
NIC as detailed in Act 724 is to ensure effective administration, supervision,
regulation and control of the business of insurance in Ghana among others
(Act.724). There are three broad categorizations of insurance business namely:
Life and Non-life insurance, Reinsurance and Reinsurance broker business and

Loss Adjustment business which are briefly described.

Life and Non-Life Insurance

Life insurance is a contract in which the insurer, in consideration of
certain premium, either in a lump sum or by other periodical payments (yearly,
semi-annually etc.), agrees to pay to the assured. (Gupta, 201 1). Non-life or
general insurance on the other hand is basically the policy that protects the

insured against losses and damages other than those covered by life insurance.

Reinsurance and Reinsurance brokers

This is insurance for insurers. Reinsurance companies share the risk
borne by the insurance companies in return for part of the premium paid by the
insured. Reinsurance enables a client to get coverage that would be too great
for anyone company to assume. That is giving off part or whole of a risk

underwritten by one company to one or more companies.

12
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Reinsurance brokers play an integral intermediary role between the insurance
company and the reinsurance company. It brings the two entities together for

business of mutual benefit.

Loss Adjustment Business

Loss adjustment business is not too prevalent in Ghana. Loss adjusters
are independent claim specialists who assist in just and fair settlement of claims,
including complex and contentious claims on behalf of the company. They also
help policyholders to restore their proper and full working order. Loss
adjustment firms investigate at the scene of an incident to establish the causes
of the loss and ascertain whether it is covered by the insurance policy. They
engage legal experts and forensic scientists as appropriate to execute their
businesses. They write reports for the insurer, assess the validity of the claim

and recommend appropriate payment.

According to the National Insurance Commission database, as at June
2016, the insurance industry comprised 26 non-life companies, 23 life
companies, 3 Reinsurance companies, 70 Broking companies, 1 Reinsurance

Broker, 1 Oil and Gas company, 7000 insurance agents.

Limitation and Scope of the Study

There are twenty-six (26) non-life insurance companies in Ghana.
Efforts were made to obtain policy and claims data from at least 50% of these
companies. However, due to competition and the classified nature of data, only
one major company oblige to release data for this purpose. This limitation
notwithstanding, given the nature of the industry and the company involve, the
analysis and findings are still valid.

13
Digitized by Sam Jonah Library



© University of Cape Coast https://ir.ucc.edu.gh/xmlui

Theoretical Framework

Actuarial models are composed of equations that represent the
functioning of insurance companies, accounting for the probabilities of the
events covered by policies and the costs each event presents to the company
(Klugman, Panjer & Willmot, 2004). Events covered by policies are random in
nature, hence evaluation of their financial impact requires probabilistic
methods. Insurance companies attempt to estimate reasonably priced insurance
policies based on the losses reported by policyholders. The estimation considers
past data in order to grasp the trends that occurred (Weisberg & Tomberlin,

1982).

Information available to predict the price for a period in the future
usually consists of the claim experience for a population or a large sample from
the population over a period in the past. Precise estimation may consider many
exposures in a data set and a stable claim generation process over time.
According to Boland (2006), modeling claims is crucial since a good
understanding and interpretation of loss distribution is the back-bone of all the
decisions made in the insurance industry regarding premiums and its loadings,
expected profits, the reserves necessary to insure profitability and the impact of

re-insurance.

The basic probability models for actuarial situations tend to be either
continuous or discrete. In both cases the situation calls for counting something
which falls under discrete case or paying something which falls under

continuous case. In both cases the model does not assume negative values.

14
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Models are characterized by how much information is available; the number of
parameters needed to describe a complex model. When simple models are used,
it is more likely that each item can be determined more accurately but the model
itself may be too superficial. It is required that a model is more likely to be
stable across time and settings. A simple model may provide necessary
smoothing to offset the irregularities in the data. Complex models, however, can
more closely mimic reality. Regarding complex models with many parameters,
its specification can more closely match irregularities in the data. This study
derived its support from aspect of risk theory; the concept of gradient boosting

in the field of statistical learning, Markov theory and credibility theory.

The concept of gradient boosting emerged from the field of machine
learning. The basic idea is to boost the predictive accuracy of weak models by
aggregating various instances of such weak models into a more accurate

predictive framework.

The Markov theory helps to incorporate price differential strategy based
on location for each policyholder given the level of policy operational risk for a

given period.

Credibility theory is a set of statistical tools which allows an insurer an
opportunity to adjust future premiums based on experience on a risk or group
of risks. If the experience of a policyholder is consistently better than that
assumed to be in the underlying rate, the policyholder may demand rate
reduction. The reasoning is that the manual rate is designed to reflect the
expected experience of the entire rating class and implicitly assumes that the

risks are homogenous. However, no rating system is perfect. There always

15

Digitized by Sam Jonah Library



© University of Cape Coast https://ir.ucc.edu.gh/xmlui

remain some heterogeneity in the risk levels after all the underwriting criteria

are accounted for (Klugman et al., 2004).

The question has always been how much of the difference in experience
of a given policyholder is due to random and how one can identify whether the
policyholder is really a better or worse than average for the given rating class?
In other words, how credible is the policyholder’s own experience? Two facts

are considered by Klugman et. al. (2004).

The more past information the insurer has on a given policyholder, the more
credible the policyholders own experience ceteris paribus. In like manner, in
group insurance the experience of larger groups is more credible than that of
smaller groups. Competitive considerations may force the insurer to give full
(using the past experience of the policyholder only and not the manual rate) or
near full credibility to a given policyholder to retain the business. Buhlmann
(1967) provided a statistical framework within which credibility theory has

developed and flourished.

Several aspects of credibility theory have been proposed by several
authors, such as limited fluctuation credibility theory, greatest accuracy theory,

full credibility and partial credibility briefly explained below.

Limited fluctuation credibility theory (as cited in Klugman et al., 2004)
was initially suggested by Mowbray (1914) and improved by Buhlmann (1967)
and the greatest accuracy credibility theory proposed by Whitney (1918). The
problem of limited fluctuation theory is formulated as follows. Suppose that a

policyholder has experienced R; claims in the past, where ;e {1,2,3,...n} .

16
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Suppose that E(R))=w, this quantity would be the premium to charge net of
expenses and other loadings. Suppose Var(R,) = o> for all ;. The past

experience could be summarized by an average R= (R, +R,+..+R )/ n.ltis

known that E(R) = » and if the R ; are independent, then Var(R)=c?/n.The

insurer’s goal is to decide on the value of @. One possibility is to ignore past

data (no credibility) and simply charge the manual rate M .

Another possibility is to ignore M and charge R (full credibility). A
third possibility is to choose some combination of Rand M (partial credibility).
From the point of view of the insurer, R will be more appropriate if the

experience is more stable (o?is small). This means that R is a more useful
predictor of next year’s outcome. On the contrary, if the experience is more
volatile, then choice M makes more sense. It is important to note that, the

factors contributing to each R, could arise from a single policyholder, a class of

policyholders possessing similar underwriting characteristics, or a group of
insureds assembled for some other reason. The approach to deciding to assign

full credibility or partial credibility depends on the dynamics of past experience.

Full credibility is assigned when R is stable. One method of quantifying the
stability of R is to infer that R is stable if (R — @) is small relative to @ with

high probability.

This means that, two numbers ¢ >0, 0 <r <1 with g close to 0 and r close
to 1. Common choices are g =0.05, p=0.9. Thus, full credibility is assigned
if
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P(—~go <R-w <qo)=r (1.1)

In other words when

{

If full credibility is inappropriate, then it may be desirable to reflect the

27, (1.2)

E-w|<qa)\/;]
o/\Nn| o

experience R in the risk premium computation as well as externally obtained

mean M. An intuitive approach is by using a weighted average,
P =ZR+(-Z)M, (1.3)
where the credibility factor Z [0,1], need to be specified.

While the limited fluctuation method provides simple solutions to
premium determination, there are theoretical challenges. First there is no

underlying theoretical model for the distribution of R sand hence no

justification of a premium of the form (1.2). Secondly, even where it is

appropriate there is no guidance for the selection of ¢ and r. Finally, the

limited fluctuation method does not examine the difference between @ and M
. When Equation (1.2) is employed, it is essentially stating that the value of M
is accurate as fair representation of the expected value given no information

about a given policyholder.

An approach known as greatest accuracy credibility theory, which is an
improvement over that of Buhlmann (1967) was also promulgated. According
to this theory, it is possible that the given policyholder may be different from

what has been assumed. If this is the case, how should one choose an appropriate

18

Digitized by Sam Jonah Library



© University of Cape Coast https://ir.ucc.edu.gh/xmlui

rate for the policyholder. With greatest accuracy credibility theory, it is assumed
that the risk level of each policyholder in the rating class may be characterized
by a risk parameter &, vector valued, but the value of 9 varies by policyholder.
This allows us to quantify the differences between policyholders with respect to
the risk characteristics. Because all observable underwriting characteristics
have already been used, $ may be viewed as the representative of the residual,

the unobserved factors that affect the risk level.

Because risk levels vary within a population, clearly, the experience of
the policyholder varies in a systematic way with @. Suppose that the experience
of a policyholder picked (at random) from the population arises from a two-
stage process. First the risk parameter § is selected from the distribution T1()
. Then the claims or losses R arise from the conditional distribution of R given

8, fro(r|$) . Thus, the experience varies with & via the distribution given the

risk parameter & . The distribution of claims thus differs from policyholder to

policyholder to reflect the differences in the risk parameters.

Definition of Relevant Terms

Stochastic process

Suppose {X (1), ¢ 20} is a family of random variables indexed by the
time parameter f. The process X(r) is called a stochastic process. The values
assumed by the process are called the states, and the set of possible values is
called the state space. The state space can be continuous or discrete. The set of

values of indexing parameter is the parameter space. The parameter space can

also be either continuous or discrete.
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Markov Property

Suppose {X(f)} is a strictly stationary d-dimensional time series
process, where d is a positive integer. It follows a Markov process if the

conditional probability distribution of X,,, given the information set
7, ={X,, X, ..} is the same as the conditional probability distribution of
X, given X, only. Formally expressed as P(X,,, <x|7,) =P(X,,, <x| X))

almost surely for all xe R¢ and all £>1.
Actuarial Risk

Actuarial risk results from the selling of insurance policies and other
liabilities to raise funds. Actuarial risk according to Santomero and Babbel
(1997) is the risk that the firm is paying too much for the funds it receives or,
alternatively, the risk that the firm has received is too little for the risk it has
agreed to absorb. Actuarial risk may have adverse effects on the long-term
profitability of an insurance company due to underwriting losses and

overpricing liabilities.
Boosting

Boosting is a general procedure that combines simple models iteratively
to improve the predictive performance of a model instead of a single model as

in the case of traditional predictive modeling techniques that uses QR-

decomposition or factorization.
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QR-Decomposition

Given a matrix A4, its QR-decomposition is a matrix of decomposition

of the form 4=QR, where R is an upper triangular matrix and Q is an
orthogonal matrix, satisfying QQ' =1, where I is the identity matrix. This

matrix decomposition can be used to solve systems of equations. QR-

decomposition is implemented in several packages to calculate the least squares

fit.
Gradient Boosting

Gradient boosting is an approach where new models are created and
predicted on the residuals or errors of the prior model and then added together
to make final prediction. It is called gradient boosting because it uses gradient

descent algorithm to minimize the loss when adding new models.

Organization of the Study

This study is structured into five chapters as follows; Chapter One
describes the background, the statement of the problem, objectives, the
significance, limitations of the study and the theoretical framework on which

the study hinges.

Chapter Two presents a structured review of literature relevant to the
study. It also provides a brief history of the insurance evolution in general in
Ghana, and discusses studies related to it. It also reviews literature on the

various pricing techniques with a focus on tree-based methods, bagging, random
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forest and gradient boosting. Relevant codes for the benefit of the reader is

presented in APPENDIX D.

Chapter Three presents the methodology used to achieve the objectives;
the methods adopted and how it was modified to achieve the objective is
discussed in this chapter. The chapter also discusses numerical methods for

estimation as well as the procedure for evaluating the model.

Chapter Four presents a detailed analysis of the results of the study. In
order to get a fair view of the health of the non-life insurance sector, the study
adopted grey relational theory to assess the financial performance of the non-
life insurance companies as a prelude to studying the main objective of the
study. It then provides a step-wise approach to the model buiding processes and

asseessment.

Chapter Five presents the discussion of the key findings and appropriate
conclusions and recommendations. The limitations of the study to guide further

study in this area is captured in this chapter.

Chapter Summary

This chapter examined critically the task in insurance pricing. It
specifies the problem and identifies the research objectives. It identifies various
ways that total claim amount and size can be modelled and identified the main
drawback of the various strategies. The chapter provides a section on the

theoretical framework in which the study hinges.
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CHAPTER TWO
LITERATURE REVIEW

Introduction

This chapter presents a structured review of the literature related to the
study. It starts with an evolution of insurance and overview of the non-life
insurance industry in Ghana. It also presents relevant literature on the on various
assessment methods of financial performance in the insurance industry. It then
examines the core aspect of insurance pricing; the theoretical aspect of non-life
insurance pricing and the existing methods. The chapter also reviews papers that
involves both traditional and algorithmic modeling framework. The chapter

ends with a summary.

Evolution of Insurance

Protecting against risk dates back to earliest civilization and it all ties in
with major events, newly introduced legislation and the industry of the time. It
is believed that King Hammurabi, the 6™ Babylonian King introduced the first
basic insurance policy around 2100 B.C. The policy was paid by traders in the
form of loan to guarantee the safe arrival of their goods (Gadahn, 2010).  As
history progressed, the desire for insurance increased. The Phoenicians and the
Greeks wanted the same type of insurance their neighbors had. The Romans
were the first to have burial insurance where people joined burial clubs which
paid funeral expenses to surviving family members and this has progressed till

today.

Formally, marine insurance appears to be the earliest form of insurance

(Afriyie, 2006; Gadahn, 2010). Around 13™ or 14" Century in Genoa and
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Palermo in Italy, insurance policies were secured on landed estates. By around
1500, marine insurance was in use in England, Spain, France, Italy, etc. It was
London that held the reins in the insurance industry with 30 sworn brokers in
the capital by the later part of 16" Century. Despite the competition throughout
the 17" Century, the city of London’s commitments to marine risk overseas had
an annual total of several millions of pounds. Policies were signed by
individuals, either alone or in a group. They wrote their name and the amount
of risk they were willing to assume under the insurance proposal. The term

“underwriter” begun during this era.

In 1693, the astronomer Edmond Halley created a basis for underwriting
life insurance by developing the first mortality table. He combined the statistical
Jaws of mortality and the principle of compound interest to come up with this
table. The problem is that this table used the same rate for all ages and for both
sexes. In 1756, Joseph Dodson corrected the error and made it possible to
rescale the premium rate to age. During this time, the practice of insuring cargo
while being shipped was widespread throughout Europe. In 1688, the first
insurance company was formed and started in Lloyd Coffee House in London;
a place where merchants, ship owners, and underwriters met to transact business

(Gadahn, 2010).

Moreover, in 1666 the Great Fire of London that rampaged through the
city, destroying 13,000 houses also catalyzed the development of fire insurance.
At that time, the people of London did not have fire insurance so that if one’s
house was destroyed one would have to personally fund the rebuilding of it.

Fourteen years after the Great fire, a well-known physician and construction
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entrepreneur Nicholas Barbon was compelled to do something to help people to
protect their property against such disasters. He founded the “Fire office” in
London which was to be the very first fire insurance provider in the UK. In
exchange for a yearly premium, he would pay to rebuild a home should it burn
down. Within 10 years, | in 10 houses were insured. During 18" and 19"
Centuries, various other types of insurance sprang up, though out of Europe:
From hailstorm insurance designed to protect farmers and gardeners, to
livestock and steam broiler insurance. It was clear that the type of cover
matched with the predominant industry of the time. An early form of
employers’ insurance was also introduced around the mid-19" Century called
‘Fidelity Insurance’. It was designed to protect employers from staff fraud or
embezzlement and originated inlthe UK, as did the earliest form of employer’s

liability cover which was devised in response to the Employers Liability Act.

The first American insurance company was founded in the British
colony of Charleston, SC. in 1787 and the first fire insurance companies were
formed in New York city and Philadelphia in 1794. Other needs for insurance
were discovered and the practice of risk classification begun. The Workmen’s
Compensation Act of 1897 in Britain required employers to insure their
employees against industrial mishaps and risks. This has brought about what is

today known as public liability insurance.

Towards the close of the 19" Century, motor insurance was introduced.
It was initially designed for horse-drawn vehicles. This sector of insurance
cover became the fastest growing insurance in the 20" Century with various

levels of cover (Gadahn, 2010).
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It is clear from the foregoing that, industry transforms, legislation changes, and
major events and natural disasters are the defining metrics of insurance around
the world. Insurance cover evolves to stay relevant and to protect the newly

emerging risks.

Financial Performance Analysis

There are diverse ways of measuring financial performance. The most
basic ones are based on statistical procedures which usually depend on
normality assumption of the data. In most cases such assumptions are not met.
Sometimes the financial ratio data is limited, and this could make the outcome
bias. The grey system theory propos.ed by Deng (1982) can be used in cases
where a limited amount of data is available, and the normality assumption is not
satisfied (Kung & Cheng, 2004; Wen, 2004). It is especially suitable for the
determining and assessing the financial performance of companies (Kung &
Cheng, 2004). Kung and Cheng (2004); Wu, Hsiao and Tsai (2008) and Huang
and Peng (2011), used GRA methodology to measure the performance of

companies in various industries.

For instance, Kung et al. (2006) examined the health of 16 non-life
insurance companies in Taiwan during the 2000 to 2004 period. The study
selected 24 financial ratios as a basis of performance evaluation. These ratios
were segmented into five performance indicators namely profitability, capital
operational capability, capital structure, solvency and management efficiency.
The findings revealed that return on assets (ROA) ratio, funds utilization
efficiency ratio, current debt to capital ratio, equity ratio and retention premium

ratio exhibited high impact on the performance the selected companies. Tsai,
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Huang and Wang (2008) proposed a performance evaluation model for the
property-liability insurance companies using a combination of Analytic
Hierarchy Process (AHP) and GRA. The authors used three main evaluation
criteria that comprise of business, profitability and whole company operating
indices. The authors also used eleven (11) sub-evaluation criteria in the analysis
and ranked fourteen Taiwanese property-liability insurance companies based on

the results of the analysis.

Yan and Kung (2011) also applied the GRA method to rank the business
performance of 15 larger scale Tawainese insurance companies based on the
grey relational grade using data from 2004 to 2008. Twenty-four financial ratios
were selected for this study and these ratios were categorized into five. These
categories are capital structure, profitability, debt-paying ability, business
performance and capital employment. The results and many other studies have
indicated that the GRA method is a more flexible and convenient method for

assessing performance of companies.

Elitas, Eleren, Yildiz and Dogan (2012) as well as Kula, Kandemir and
Baykut (2015) have analyzed the performance of insurance companies using the
GRA method. These authors used 10 financial ratios and segmented these ratios
into three. Based on the analysis Perker and Baki (2011) ranked the financial
performance of three leading insurance companies operating in Turkey using a
one-year data (2008). The GRA method equally suggested that an insurance
company that has high liquidity ratios may have high performance. In addition,
Elitas et al. (2012) research study investigated the financial performance of

seven insurance companies traded in ISE for the 2010 to 2011 period and found
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that the most important ratios in the financial success of insurance companies

are the liquidity ratios.

More so, Kula et al. (2015) in their application of GRA method used ten
(10) financial indicators namely; current ratio, net profit margin, earnings per
share, equity to total assets ratio, return on assets, return on equity, market value,
total assets, short term debt to total debt ratio and debt to total assets ratio to
study and asses the financial performance of eight insurance companies traded
using the 2013 BIST data. The findings of the study indicate that the
profitability ratios have tremendous effect on financial performance an

insurance company.

In this study the financial performance of 25 non-life insurance
companies in Ghana as at 2016 was examined using the Grey Relational

Analysis approach.

The Concept of Non-Life Insurance Pricing

Insurance is based on risk. When you get an insurance policy, the
insurance company is taking on some of your risk. Having an auto-insurance
policy means that if your car gets damaged in an accident, the iﬁsurance
company will pay for the repairs. The insurance company makes up for the risk
it takes on by charging premiums and setting deductibles. If a company charges
too little, it could go bankrupt and when it charges too much it could lose
business to its competitors. In Ghana such argument is curtailed because prices
are set by NIC and punishes companies that do undercutting; charging prices

below what the NIC have set forth.
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Denuit (2003) posits that the pricing process is a procedure for
determining a fair premium corresponding to the insured’s risk profile. In other
words, the insurance pricing process can be understood as an ensemble of
methods that establish the price paid by the insured to the insurance company
in exchange for risk transfer. Within the context of insurance, the necessity of
different charging tariffs is emphasized by the insurance portfolio heterogeneity
that leads directly to the so-called concept of asymmetrical information. The
information problems between the insurance company and the policyholder

arise when the insurer has difficulties in evaluating the risk level of the insured.

In Economics literature, two aspects of asymmetrical information exist,
namely moral hazards and adverse selection. According to Denuit (2007),
adverse selection occurs when the policyholders have a better knowledge of
their claim behavior than the insurer and they take advantage of the information
unknown to the insurer, while moral hazard; according to Chiappori and Salanie
(2000) arises when the probability of risk occurrence depends on the insured
behavior and his decisions. The difference between the two is explained by
Dionne et al. (2001), that adverse selection is the effect of unobserved
differences among individuals that affect the optimality of insurance contract
while moral hazard is the effect of contracts on individuals® unobserved
behavior. Put differently, problems arise in insurance as a result of effect of

applying the same premium for the entire portfolio or class of portfolios.

Chiappori and Salanie (2000) and Dionne, Gourieroux and Vanasse
(2001) believed insurance pricing is efficient to combat the asymmetrical

information by dividing the insurance portfolio into sub-portfolios, where the
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risks can be considered independent. This leads to defining risk classes that will
have assigned different premium depending on the gravity of risk that define
them. In this respect, an important notion is emphasized by risk classification

criteria.

Hence if risks are grouped based on a priori information regarding the
insured or the insured assets, the obtained groups are called a priori class.
Conversely if claim history is considered for every insured, the groups are called
a posteriori risk class. The two concepts a priori and a posteriori pricing are

briefly explained.

Charpentier and Denuit (2005) suggest that the fundamental idea in a
priori pricing is to segment the insured risk in several categories so that within
each category the risks are considered equivalent and governed by same law.
According to Delaporte (1972), a priori pricing allows grouping the risks
assembly in tariff classes, each group including policyholders with identical risk
profile that will pay the same reasonable premium. An important remark on
independence of risk is given by Buhlmann (1967) who states that the

independence assumption is so natural, that many authors forget to mention.

The first a priori pricing in non-life insurance is the minimum bias risk
classification procedure proposed by Bailey and Simon (1960). This method
utilizes an iterative algorithm in calculating the optimal values for each risk
level by minimizing the bias function. Although it was created outside a
recognized statistical framework, the actuarial literature argues that this

“heuristic” iteration approach is a case of Generalized Linear Models (GLMs).
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GLM:s have become a common statistical industry practice for non-life
insurance pricing. McCullagh and Nedler (1989), highlighted the two main
advantages of GLM techniques. Firstly, the generalization of the linear
modeling allows the deviation from the assumption of normality, regression
being extended to distributions from the exponential family (Normal, Poisson,
Binomial and Gamma distributions). Secondly, the GLMs allow the linear
regression to be related to the dependent variable through a link function,
modeling the additive effect of independent variables on a transformation of the
mean, instead of the mean itself. In other words, this function connects the linear
predictor or the score with the mean of the dependent variable. Comparing to
the minimum bias procedure techniques, the GLM models have the advantage
of a theoretical framework that allows the usage of statistical tests in order to

evaluate the fit of the models.

Lemaire (1985) in his literature demonstrated the effectiveness of the
methods used to estimate the insured risks. A remarkable contribution goes also
to Charpentier and Denuit (2005) who have succeeded to cover in modern
perspective of the insurance business. Ohlson and Johansson (2010) also treated
in an exhaustive manner the methods considered to be the base in insurance risk
classification, giving attention to statistical techniques for calculating the auto-
insurance premium. Other studies have pointed out the contribution and the
merits of Jong and Heller (2008), Kaas et al., (2009) and Frees (2010) who have
emphasized the theoretical and practical aspects of the pricing methods to assess
the insurance premium. Antonio and Valdez (2012) also presented a conceptual

view and an empirical approach for insurance pricing process.
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In terms of posterior pricing, most actuarial literature has demonstrated
that the usage of a priori pricing involves the lack of causality between some
tariff variables and risk occurrence. Certain important risk factors cannot be
observed, leading to violation of homogeneity assumption of an effective risk
classification system. The limits of this type of pricing require the approach of
posterior actuarial models that take into consideration additional information

about the individual claims history of policyholders.

Posterior pricing is based on credibility theory. Savage (1954)
emphasized that the notion of credibility theory is closely related to perception
of risk; individuals are given different degrees of credibility to the occurrence
of certain events depending on perception of risk. Whitney (1918) introduced
the concept of partial credibility, arguing that the problem of assessing the
experience comes from the need to find a balance between collective
experience, on one hand, and individual risk experience on the other hand.
Hence Whitney declares that the basic principle of credibility is to establish a
weighting factor, emphasizing the definition of pure premium as a balance

between experience of an individual risk and that of a risk class.

Buhlmann (1967) solves the problem of finding an optimal estimation
for the premium corresponding to the »” period, by considering the observations
regarding the risks registered in previous periods. He succeeded in
revolutionizing the credibility theory by introducing a credibility factor.
Buhlmann (1970) together with Erwin, developed the Buhlmann-Straub famous

model. The main improvement of the initial model being the definition of the
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structural parameter estimators. Most of the principles of credibility theory

aligns with the basic model proposed by Buhlmann.

The fundamental idea of system is detailed in Lemaire (1995). Lemaire
indicated that within the bonus-malus system, described as a scale that consists
of a finite number of levels, policyholders are given a certain place according
to transition rules and to the number of claims at fault. Each level corresponds
with a certain coefficient that will be applied to the premium calculated in the a
priori stage of analysis. McClenahan (2001) observed that, in the 18" century,
the determination of fire insurance premiums was based upon the roof type and
the structure of buildings, and the premium for marine insurance considered to
be the oldest form of insurance, was based on the design characteristics of the
ship. The author argues that, considering the presence of uncertain events that
may occur depending on certain risk factors, actuaries have always aimed to
find a mathematical formulation to determine the probability of risk occurrence
and to establish the insurance premium. Under the notable tnfluence of
Lundberg’s (1932) and Cramer’s (1930) studies, who are considered as the
founders of mathematical theory of risk, actuaries were interested in

approaching the risks from the insurance company’s perspective.

The famous monograph published by Buhlmann (1970) requires the
recognition of actuarial mathematics as a fundamental subject in probability
theory and applied statistics of non-life insurance. Gerber (1979) in his paper
indicated that the determination of the probability law of risk occurrence cost

has always been the central topic in risk theory literature.
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Retrospectively, actuarial science was limited to the use of Gaussian
linear models. Thus, using linear regression models to quantify the impact of
explanatory variables on a phenomenon of interest. The linear model, proposed
by Legendre and Gauss in the 19" century, has taken lead in areas such as
econometrics and finance, but the applicability of tl}is model in insurance has
been suspect. Linear modeling implies a series of hypotheses that are not
compatible with the reality imposed by the frequency and cost of the damages
generated by the risk’s occurrence. While the complexity of the statistical
criteria has become more pronounce, the actuaries had to solve the problem of
finding some models that explain as realistic as possible the risk of occurrence.
Admittedly, no mathematical model will describe completely the reality, the
model analyses and the confrontation of theoretical properties of the studied
phenomenon with those observed is a pragmatic way to acquire a better

understanding of reality and to predict the future responses of analyzed events.

Denuit (2007), however, explained that although the credibility theory
can be seen as the art to combine different collections of data to obtain an
accurate overall estimate, its specific methods are difficult to implement in
practice due to their mathematical complexity. Therefore, insurance companies
have approached some methods which simplified versions of are imposed by
credibility theory. In this sense, one of the commercial versions of the
credibility theory is the bonus-malus system introduced by Pesonen (1962). He
tried to establish the rules for obtaining optimal premiums for each risk classes
depending on the bonus-malus levels. According to Denuit (2007), bonus-
malus systems allow premiums to be adapted for hidden individual risk factors

by taking into consideration the past claim record. Hence, in the context of
34

Digitized by Sam Jonah Library



© University of Cape Coast https://ir.ucc.edu.gh/xmlui
insurance markets, the main purpose of the bonus-malus system is to assess in
an equitable manner the individual degree of risk so that the insurance company
will demand a premium corresponding to the insured risk profile and claim

history.

Modeling Techniques in Insurance

Traditional modeling techniques such as generalized linear modeling
(GLM) technique as proposed by Nelder and Wedderburn (1972) has been the
major tool used for loss cost modeling and solving other insurance related
problems (McCullagh & Nelder, 1989). Haberman and Renshaw (1996)
demonstrated how GLMs can be used for solving a variety of actuarial statistical
problems such as survival modeling, loss distributions, risk classifications,
premium rating and claims reserving in non-life insurance. Konstantinides et
al., (2002), compared the adequacies of the Poisson model to each of the mixed
Poisson models with Belgian motor third party insurance portfolio concluded
that the mixed Poisson model fits better than the Poisson model. However, a
comparison amongst the mixed Poisson models, such as Poisson-Normal,
Poisson-Lognormal and Poisson-Inverse Gaussian revealed no significant
differences. The Gamma distribution has also been found to be extremely useful

for risk analysis, especially, for claim size modeling (Hogg and Craig, 1995).

Bourcher et al. (2008) studied models of insurance claim counts with time
dependence. The study concluded that Negative Binomial distribution models
exhibit better fits statistically than Poisson distributions. Boucher et al. (2008)
also implemented a zero-inflated generalized Poisson regression to estimate the

disability severity score of victims involved in motor accidents on Spanish
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roads. The model showed that the estimated mean of the severity score for the
disability of motor cycles was 2.8 times higher than that computed for car
victims. It was hence concluded that the settlement of bodily injury claims
represents the largest aggregate claim cost faced by motor insurers. Moncher
and Fu (2004), presented in Dzakwasi (2014), also presented a work on severity
distributions for generalized linear models considering Gamma and lognormal
distributions. In additon, a Monte Carlo simulation technique was applied to
examine the unbiasedness and stability of the generalized linear model’s
classification relativities when gamma, lognormal and normal distributions are
assumed. The gamma distribution provided better predictive accuracy and
efficiency. Willmot (1987), compared the Poisson-Inverse Gaussian (PIG)
distribution to the negative binomial distribution and concluded that the
negative binomial fit is superior compared with the Poisson-Inverse Gaussian.
This agrees with the paper by Dadey et al.,, (2011). Ruohonen (1987) also
considered a model for the claim number process. He considered a mixed
Poisson process with three-parameter Gamma distribution as the structure
function. The three-parameter Gamma was compared with the two-parameter

Gamma model giving the negative Binomial distribution.

Panjer and Willmot (1992), proposed the Generalized Poisson-Pascal
distribution with three parameters for modeling automobile claims. The fits
obtained were satisfactory. However, Denuit et al., (2007), cautions that the
Poisson-Inverse and the negative binomial are special cases for Generalized

Poisson-Pascal distribution.
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Chernobai et al. (2005) also worked on a procedure for constituent
estimation of the severity and frequency distributions based on insurance data.
The findings of the study revealed that thresholds lead to a serious
underestimation of the ruin probabilities. The theoretical study proposed a
practical solution to the problem and suggested that using truncated
distributions instead of regular (un-conditional) distributions provides for

accurate distributional parameters.

Dadey et al. (2011) compared the Poisson distributions and the negative
binomial distribution to determine which distribution best fit the auto-insurance
claims in Ghana. The results revealed that the negative binomial distribution
appear to be more effective than Poisson distribution for fitting insurance claims
and therefore, provides somewhat reliable estimates for planning and decision -
making as far as claim reserving is concerned. The paper also compared
bootstrap estimates with the normal estimates and indicated that the bootstrap
estimates did not vary from the estimates obtained by the probability models in

terms of claim modeling.

Mihaela (2015) also analyzed claims severity and frequency using the
GLM technique. This paper used Poisson regression distribution to model the
claim counts, whilst the gamma regression was used in modeling claim severity.
The data was categorized into four main types; third party property damage,
third party bodily injury, own damage and theft. This study focus on non-zero

counts.

Adeleke and Ibiwoye (2011) used data from prominent lines of non-life

insurance business in Nigeria to determine appropriate models for claim
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amounts by fitting theoretical distributions to the various data. The risk
premiums for each class of business were also estimated. The authors fitted
various distributions such as exponential, Lognormal and Gamma distributions.
In coming out with which distribution fits the data well, the researchers
employed goodness-of-fit test. Thus, the study made use of chi-square
goodness-of-fit, which is found to be suitable for both discrete and continuous
distributions. The study, however, did not consider the many zeros inherent in
the data. The chi-square goodness-of-fit was chosen over the Kolmogorov-
Smirnov test because the Kolmogorov-Smirnov test is often not good at
detecting tail discrepancies (Boland, 2006). The study established that a
Gamma distribution would be best for property, fire and commercial insurance
products, whilst lognormal is best to model theft and motor insurance. Weibull
was also found to be best fit for armed robbery plan. The researchers’ choice
of candidate models was purely subjective, because there are several other
candidate models such as Pareto, inverse-gaussian etc., that were left untested
which may have turned out to be better. Hence the study was not comprehensive
enough. Guiahi (2001), presented a paper on issues and methodologies for
fitting alternative statistical distributions to samples of insurance data. His
illustration was based on sample of data with log-normal as the underlying
distribution. He used the method of maximum likelihood to estimate model
parameters and used Akaike’s Information Criterion (AIC) to compare which

probability distributions fits the data set best.

Consul (1990) as cited in Denuit et al. (2007) fitted six data sets by the
Generalized Poisson distribution. Although the Generalized Poisson law is not

rejected by a Chi-square test, the fits obtained by Kestemont and Paris (1985),
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for instance was better. Elvers (1991) as cited in Boucher et al. (2008), reported
that the Generalized Poisson distribution did not fit the data observed in a motor
third party liability insurance portfolio very well. Consul and Famoye (1992)
suggested that the Consul distribution as a probabilistic model for the
distribution of the number of claims in automobile insurance. However, Sharif
and Panjer (1993) found serious flaws embedded in the fitting of the Consul
model, the restricted parameter space and some theoretical problems in the
derivation of the maximum likelihood estimators. Their findings also revealed

that Generalized Poisson-Pascal or the Poisson-Inverse Gaussian fits quite well.

Denuit (2007) demonstrated that the Poisson-Goncharov distribution
introduced by Lefevre & Picard (1996) provide an appropriate probability
model to describe the annual number of claims incurred by an insured motorist.
The findings revealed that the Poisson-Goncharov distribution successfully fit
the six observed claims as well as other insurance data sets. Wright (2005) fitted
models to 490 claim amounts which were drawn from seven (7) consecutive
years. He fitted loss distributions using maximum likelihood estimation for each
of the 7 years, after which he used P-P plots and Kolmogorov-Smirnov test to
assess the quality of fit. Wright employed several statistical distributions which

included the inverse Pareto, Pareto, bur, Pearson VI, inverse bur, and lognormal.

It is worth noting that all the modeling approaches discussed above fit
data to theoretical distributions without recourse to other relevant factors that
influence the outcome and judge for the best using goodness of fit tests. Other
approaches such as the GLM overcome the deficiency by considering factors

relating to claims. Even though GLMs are more intuitive relative to univariate
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modeling techniques, it has its drawback. In fact, GLM may be thought of as a
linear model for a transformation of the expected response or as nonlinear
regression model for the response. Several authors have proposed other
procedures. For instance, Wood (2006) proposed Generalized Additive Models
(GAM) to overcome some of the deficiencies of the GLM such as the linear link
to a more general form. However, with GAM the structure of the model must
be specified. The main and interaction effects must be specified by the
researcher. This often results in specification bias which likely affects the

predictive power.

It has now become customary practice in auto-insurance to let the risk
premium per unit exposure vary with geographic area when all other risk factors
are held constant. In most developed countries, auto-insurance companies have
adopted risk classification according to the geographical zone where
policyholder lives (urban/non-urban or according to zip codes). The spatial
variation may relate to geographic factors (eg. traffic density or proximity to
arterial roads) or socio-demographic factors. In such cases it is desirable to
estimate the spatial variation in risk premium and to price accordingly. Spatial
postcode methods for insurance rating attempt to extract information in addition
to that contained in standard factors (like age or gender). Often, claim
characteristics tend to be similar in neighboring post code areas (after other
factors have been accounted for). The idea of postcode rating models is to
exploit this spatial smoothness by allowing for information transfer to and from

neighboring regions (Brouhns et al., 2002).
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Patrik (1980) indicated that the risk associated with each district or
region can be assessed with the help of statistical models for spatial data.
Dimakos and Rattalma (2002) pointed out that this procedure is nevertheless
not totally satisfactory since it mixes a frequentist approach to estimate the
effect of all the risk factors (except location) with a Bayesian approach to
evaluate the riskiness of each geographical zone. Dimakos and Rattalma (2002)
proposed a fully Bayesian approach to non-life insurance rate making. This
approach still relies on GLMs and thus suffers from the challenges mentioned
earlier: continuous covariates as policyholders age enter linearly in the model
where as it is now well-established that the effect of some continuous variables
is far from linear (typically when it comes to the age of policyholder or age of

vehicle).

To correct for the drawback of the fully Bayesian approach to non-life
insurance rating, Denuit and Lang (2004) proposed a new modeling framework
known as Bayesian GAMs. The Bayesian GAMs allows to estimate
simultaneously possible nonlinear effects of an arbitrary number of continuous
risk factors, the risk variation, unit or cluster -specific heterogeneity and
complex interactions between risk factors. The Bayesian GAM was developed
from a Bayesian point of view, primarily because it allows for a unified
treatment of linear effects of caiegorical covariates, nonlinear effects of
continuous risk factors, spatial and or cluster-specific heterogeneity. This means
that the risk represented by each policyholder is assessed in a single model,
which avoids possible distortions in the process. The procedure yields a detailed
rating that can be used in the back office to monitor the portfolio (the amount

of premium is regarded as risk measure in that context). It also provides the
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actuary with the appropriated tools to decide about the commercial tariff that
will be effectively applied to customers (Markov, 2002). Denuit and Lang
(2004) performed numerical analysis of Belgian dataset using Bayesian GAMs.
The nonlinear effects are modelled by Penalized-splines (Eilers & Marx, 1996).
The authors performed the modeling of Bayesian GAM by incorporating spatial
heterogeneity. The method revealed key features of the claim process which

are not easily detected by traditional methods.

It could be observed from the literature that auto-insurance claim
modeling has been approached in two main ways: the first one disregards
observable covariates altogether and lumps all the individual characteristics into
random latent variable. The second one disregards random individual risk
characteristics and trries instead to catch all relevant individual variations by
covariates. The paper by Denuit and Lang (2004) takes the second view,
employing contemporary, advance data analysis. Itis worth mentioning again
that with all the covariates included, there remains substantial risk differentials
between individual drivers (due to temper and skill, aggressiveness behind the,
knowledge of the highway code, vehicle density etc). Random effects could be
added on the score scale to take this residual heterogeneity into account, in the

spirit of the model pioneered by Dionne and Vanasse (1992).

Cossette, Landriault and Marceau (2004) also proposed a compound
binomial model defined in a Markovian environment which is an extension of
the compound binomial model proposed by Gerber (1988). One interesting
feature of Gerber’s model is that it can be used as a proxy to the classical

compound Poisson risk model (Dickson et al., 1995). Moreover, since in
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Gerber’s model, there exist simple recursive formulas to compute the aggregate
claim amount distribution and the ruin probabilities, risk measures under the
classical risk model can be approximated by the corresponding ones obtained
under the compound binomial model. Other methods have been proposed in
the actuarial literature to approximate the risk measures. Among the proposed
alternatives are simulation procedures and approximation methods (e.g.
Diffusion method), which rely both on complex mathematical tools, to

approximate ruin probabilities (Asmussen, 1989; Rolski et al., 1999).

The compound binomial model defined in a markovian environment
differs from discrete-time models defined in a markovian environment by
Lehtonen and Nyrhinen (1992), Nyrhinen (1998), Lillo and Semeraro (2004).
In their models, the outcome variable corresponds to aggregate claims over a
single period. However, in the compound binomial model in a markovian
environment, the periods are of smaller lengths and at most one claim can occur

in each period in computing ruin probabilities.

Other alternative models have employed Tobit models by treating zero
outcomes as censored below some cutoff points (Showers & Shotick,1994),
these approaches also rely on a normality assumption of the latent response.
Jorgensen and de Souza (1994) and Smyth and Jorgensen (2002) used GLMs
with a Tweedie distributed outcome to simultaneously model frequency and
severity of insurance claims. Due to its ability to simultaneously model the zeros
and the continuous positive outcomes, the Tweedie GLM has been widely used
method in actuarial studies (Mildenhall, 1999; Murphy et al., 2000; Peters et al.,

2008). Despite the popularity of the Tweedie GLM, a major limitation is that
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the structure of the link function is restricted to a linear form, which can be too
rigid for real applications. For instance, it is known that risk does not
monotonically decrease as age increases (Owsley et al., 1991; McCartt et al.,
2003; Anstey et al., 2005). Although non-linearity may be modelled by adding
splines (Zhang, 2011), low-degree splines are often inadequate to capture the
non-linearity in the data, while high-degree splines often result in ".[he over-
fitting issue that produces unstable estimates. Generalized Additive Models was
introduced by Hastie and Tibshirani, (1990), Wood (2006) to overcome the

restrictive nature of GLMs.

Statistical Learning Techniques in Estimation

The last three decades have given rise to many new statistical learning
methods, including Classification and Regression Trees (Breiman et al., 1984),
Random Forest (Breiman, 2001), Neural Networks (Bishop, 1995), Support
Vector Machines (Boser, 1992) and high dimensional regression (Fan & Li,
2001;2002; Gui & Li, 2005; Hastie & Tibshirani, 1990). Boosting has emerged
as a powerful framework for statistical modeling. It was originally introduced
into the field of machine learning for classifying binary outcomes (Freund and
Schapire, 1996). Later, its connection with statistical estimation was established
by Friedman et al. (2000). Friedman (2001) proposed a gradient boosting
frar;lework for regression settings. Buhlmann and Yu (2003) proposed
component-wise boosting framework based on cubic smoothing splines for
squared error loss functions. Buhlmann and Horthon (2007) demonstrated that
the boosting procedure works well in high-dimensional settings. For censored

outcome data, Ridgeway (1999) applied boosting to fit proportional hazard
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models and Li and Luan (2005) developed a boosting procedure for modeling

potentially non-linear functional forms in proportional hazard models.

Thus, the rapid development in computation and information technology
has created an immense amount of data which has revolutionized the field of
statistics by the creation of new tools that helped analyze the increasing size and
complexity in the data structures. Most of these tools originated from an
algorithmic modeling culture as opposed to a data modeling culture (Brieman,
2001). In contrast to data modeling, algorithmic modeling does not assume any
specific model for the data but treats the data mechanism as unknown. As a
result, algorithmic models significantly increase the class of functions that can
be approximated relative to data models. They are more efficient in handling
large and complex data sets and in fitting non-linearities to the data. Model
validation is measured by the degree of predictive accuracy and this objective
is usually emphasized over producing interpretable models. It is probably due
to this lack of interpretability in most algorithmic models, that their application
to insurance problems has been very limited. In terms of practical applications
Chapados et al. (2001) used several data-mining methods to estimate car
insurance premiums. Francis (2001) illustrates the application of neural
networks to insurance pricing problems such as the prediction of frequencies
and severities. Kolyshkina, Wong and Lim (2004) demonstrated the use of

Multivariate Adaptive Regression Splines (MARS) to enhance GLM building.

Decision trees are intuitive concepts for decision making. They work by
splitting the observations into many regions and predictions are made based on

the mean or mode of the training observations in that region (James et al., 2015).
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Most regression problems have often relied on linear regression. A strictly linear
model is a poor fit for the data if the relationship between the response and the

predictors appear to be quadratic. Decision trees work through a process of

stratification as follows:
1) Divide the predictor space X = (X, X,,.., X,) into J distinct and
non-overlapping regions R, R,, ..., ;.
2) For every observation in region R, we make the same prediction which

is the mean of the response variable ¥ for all observations in R;.

Estimation of Decision Trees

Decision trees use stratification principle to divide the observations into R,

regions. As in linear regression, the goal is to minimize the residual sum of

squares (RSS) which is defined for a decision tree as

J

=9 @.1)

J=1 EERJ-

A e th | .
where y R, is the mean response for the observations in the ;™ region. To do

this, decision trees implement a recursive binary strategy. The process begins at
the top of the tree (top-down) and successively splits the data into new regions.
This split generates two new branches in the tree. Rather than selecting the
optimal split among all future possibilities, this approach is greedy in that it
selects the best split at that particular step. Given all the potential splits that

could be performed on one of the predictors (X;, X,, ..., X,), the algorithm

assigns a cut-off point that splits the data in the manner that reduces the RSS by
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the largest amount. As the number of predictors and observations increase, the
more potential cut-off points the algorithm must consider. However, even with
relatively large number of predictors and observations, the computational
process is quite efficient. This process continues until some designated stopping
criteria is reached, otherwise it could continue until each training observation is
sorted into its own node resulting in overfitting. Once this iterative process
stops, we can generate predicted values for the response of a given test
observation by calculating the mean of the training observations for the region

in which the test observation belongs.

Pruning the Tree

Decisions trees are highly susceptible to overfitting due to its natural
complexity. This means that if we set the stopping criteria at a higher level we
may miss crucial branches later in the process. Instead, we want a method that
allows to grow a large tree but preserve the most important branches or

elements. This is what is meant by pruning.

Cost complexity pruning is one predominant method for achieving this goal.
Thus, cost complexity pruning uses a tuning parameter to selectively prune or
snip branches that do not contribute significant predictive accuracy, resulting in
a subtree generated from the full tree. Different tuning parameter values will
lead to different trade-offs between model complexity and model accuracy.
Friedman (2001) recommends pruning in conjunction with K-fold cross-
validation to select a cost complexity parameter that optimally balances the

trade-off for the specific dataset.
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Building Classification and Regreesion Trees

A classification tree is like a regression tree, except that the response
variable is qualitative. In making predictions, we predict for a test set
observation that are the most commonly occurring class value in the given

region. However, we could also consider the class proportions or the proportion

of the training observations in the region R ; that fall into a given class. Rather

than using RSS to grow the tree, we have three options for minimizing error.
An obvious choice might be the classification error rate, or the proportion of

training observations in a given region that do not belong to the most common

class: E=1- m]?x( b..), where p,. is the proportion of training observations

in region m that do not belong to the most common class 4. In practice, two
other methods grow better and more accurate trees. The Gini index is defined

as
K ~ ~
G = mek (1 —pmk)'
k=1

It is a measure of node purity. The higher the proportion of observations

belonging to a single class, the closer this value will be to zero.

The alternative is cross-entropy:
K ~ ~
D= Z Pk log(pmk)
k=1

As more observations are closer to or near 0 or 1, cross-entropy will shrink

towards zero. This means that for classification trees, each split can be
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evaluated using one of these criteria but typically it is either Gini index or cross-

entropy.
Decision Trees versus Linear Regression

Linear regression and decision trees utilize entirely different functional
forms. Linear regression assumes linear and additive relationships between

predictors and the response is given by
P
fX)=B+D.X,8, , 2.2)
=l

whereas decision trees assume that the observations can be partitioned into the
feature space as

f(X) =2 Colxer, > 2.3)

m=1

I, isan indicator function which is 1 when x <z, and 0, otherwise.

]

If the relationship between the predictor(s) and the response are truly linear and
additive, then linear regression will likely perform better than a decision tree. If
the relationship is highly complex and non-linear, then decision trees may be

the better option (Haistie, Tibshirani & Friedman, 2009).

Bagging

According to Hastie et al., (2009), decision trees suffer from high
variance. This means that slight change in training set or test set may lead to
substantial changes in the estimated model as well as the resulting fit. Bootstrap
aggregation or bagging is a general method for reducing variance in estimates.

Bootstrap involves repeatedly sampling with replacement from a sample,
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estimating a parameter or set of parameters for each bootstrap sample, then
averaging across the bootstrap samples to form a bootstrap estimate of the

parameter. By averaging across all the bootstrap samples, reduce the variance

o? in the final estimate. Thus, we estimate j’\” (%), f 2(%),00s ]A' 5(x) using B

separate training sets, and average across the models to generate a low-variance

model:
Fos@ =23 7()

In bagging, we estimate a decision tree model on each bootstrap sample and

average the results of the models to generate the bagged estimate:
n | A
f;mg(x) = EZf (x)
b=1

Each tree is grown without pruning, so they have high variance but low bias.
However, by averaging across the results give an estimate that has low bias and

low variance.

For regression trees this is straightforward but for classification trees, we
estimate B trees and for a given test observation assign it the majority-class
result: the overall prediction is the most commonly occurring predicted outcome
across all the B predictions. Compared to the error rate for the corresponding

classification tree, bagged estimates generally have slightly lower error rates.

Random Forests
Random forests improve upon bagging by decorrelating the individual

trees. The problem with bagging is that if there is a single dominant predictor
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in the dataset, most trees will use the same predictor for the first split and will
bring about correlation and similarity among the trees. The goal of bagging is
to reduce the variance of the estimates of the response variable, however,
averaging across a set of correlated trees will not substantially reduce variance,
at least not as much as if the trees were uncorrelated. To resolve this problem,
when splitting a tree, random forests consider a random sample m of the total
possible predictors p. Thus, it intentionally ignores a random set of variables.
Every time a new split is considered, a new random sample is drawn. The main

question then becomes how to select the size of m. The random forests use
m= \/; for classification trees and m= p/3 for regression trees. In

comparison with bagging, it is observed that the out-of-bag (OOB) error rate is
smaller on random forests model. Also, the Gini index associated with each
variable is generally smaller using the random forest method compared to
bagging. This is because of the variable restriction imposed when considering

splits.

Boosting

The concept of boosting emerged from the field of supervised learning,
which is automated learning of data with observed outcome to make predictions
for unobserved data. The success story of boosting began with a question, not
with an algorithm. The theoretical question is, could any weak learning tool for
classification be transformed to become a strong learner (Kearns and Valiant,
1989). In binary classification a weak learner is defined to yield a correct
classification rate at least slightly better than random guessing (>50%). A
strong learner, on the other hand, is to a considerable extent nearly perfect
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classification (eg. 99% accuracy). This theoretical question is of high practical
relevance as it is typically easy to construct a weak learner, but difficult to get
a strong one (Zhou, 2012). The answer that laid the ground for the concept of
boosting is that any weak base-learner can be potentially iteratively improved

(boosted) to become a strong learner.

To develop this concept Schapire (1990) and Freund (1990) developed
the first boosting algorithm. Schapire and Freund later compared the general
concept of boosting with garnering “wisdom from a council of fools” (Shapire
& Freund, 2012). The “fools” here signify the solutions of the simple base
learners. These solutions only classify slightly better than a coin flip. The task
of boosting is thus to learn from the iterative application of a ‘weak’ learner and
to use this information to combine it to an accurate classification. The idea with
boosting is not to manipulate the base-learner itself to improve this performance
but to manipulate the underlying data by iteratively re-weighting the

observations (Shapire & Freund, 2012). This means that the base learner in

every iteration will identify a new solution hw(') from the data. That is,
through repeated application of the weak-base learner on the observations that
are weighted based on the base-learner’s success in the previous rounds, the
algorithm is forced to concentrate on objects that are hard to classify since the
observations that were misclassified before gets higher weights. Boosting the

accuracy is achieved by way of increasing the importance of “difficult”

observations. For instance, for each iteration m =1,...,m5,0p , the weight vector

w["'1=(wE"'],...,wLm]) indicates the individual weights of all observations

depending on the success of their classification in previous iterations. In the
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process of iteration, the focus is shifted towards observations that were
misclassified up to the current iteration /. In the final analysis, all previous
results of the base-learner are combined to form a more accurate prediction
model: the weights of better performing solutions of the base-learner are
increased via an iteration-specific coefficient, which depends on the
corresponding miscalculation rate. The resulting weighted majority vote
(Littlesone and Warmuth, 1989) chooses the class most often selected by the
base-learner while taking the error rate in each iteration into account. From the
foregoing it could be deduced that all weak-learners can be potentially boosted

to become strong learners.

Boosting is seen as another approach to improve upon the result of a
single decision tree. More so, instead of creating multiple independent decision
trees through a bootstrapping process, boosting grows trees sequentially, using

information form previously grown trees. Rather than fitting a model to the

-

response variable ¥, boosting fits many decision trees [ Lo f7 to current

residuals. Each time a new decision tree is estimated, the residuals are updated
combining the results of all previous decision trees in preparation for fitting the
next tree. Thus, rather than learning hard and fast like in bagging and random
forests, boosting learns slowly over time as new trees are added. Because
boosting is additive and slow, we can estimate relatively small trees and still
gain considerable predictive power. The three main tuning parameters when

boosting are:
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1) The number of trees B. If B is too large, boosting can overfit. Typically,
cross-validation estimate of the error rate or MSE is used to select the

optimal B.
2) The shrinkage parameter ( & ), which is a small positive number (i.e.

0.01, 0.001 or 0.005). which controls the rate at which boosting learns.

As ¢ gets smaller, B must increase.

3) The number of splits in each tree represented by d. essentially when
d =1 it is essentially an additive model (each tree is a stump with a

single predictor)

Statistical Perspective on Boosting
In statistical learning the major goal is the estimation of functional

relationship y, =~ h(x,)+a between an outcome variable y, belong to some set
Y and a vector of explanatory variables x, =(x,;, ..., x;; ) € R”. The function
h and the intercept parameter @ are unknown. The estimate of (h,a)is used to

get predictions of an unobserved outcome Ve, based on an observed value of

X . The classical assumption in statistical learning is that, the training data

new

(x,.,y,-) are independent and identically distributed from underlying unknown
distribution for a pair of random variables (X, Y,-),'l <i<n.. The quality of the
predictor h(x)+a is measured by some loss function defined by
L(y,.,h(x,.) +a). The goal is to find a predictor hp (x,-) +a, that minimizes the
expected loss, 1.

E,L(Y,hp(X) +a, =min E,L(Y,h(X) +a) (2.4)
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where E,L(Y,h(X)+a)= _[ L(y,h(x))dP(x,y) denotes the expectation of L
with respect to P. In the case of binary classification, we have

Y € Y= {—1,+1} and in regression situations J; € YcR.If P isunknown,

it is in general not possible to solve (2.4).

Adaboost Classification Framework
The early boosting algorithms by Schapire (1990) and Freund (1990)
were theoretical constructs for proving the idea of boosting than being suitable

for practical usage.

Table 1: Schematic Overview of Adaboost Algorithm

1 Initialize

Set the iteration counter m=0 and the individual weights W; for

observations i=1,..,n to ! . L
n

2 Choose base-learner

Set m:==m+1 and compute the base-learner for the weighted data

set. Re-weight observations with w{'""],...,w,[,""ll—ﬂ"i’”—'L)fz[”‘](-)

3 Update weights

Compute error rate and update the iteration-specific coefficient

a,— high values for small error rates. Update individual

weights w}"'] —> higher values if observation was misclassified.
4 lterate

lterate steps 2 and 3 until m=m,,,.
5 Final aggregation

Compute the final classifier for a new observation X, :

mlJD
= <f ALD|
an’aboosl (xmnv) - Slgn( Zf amh " (xm:w ))
=1 ~

~
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This notwithstanding it paved the way and hence formed the bases for the first
concrete and most important boosting algorithm. Adaboost was the first
adaptive boosting algorithm as it automatically adjusts its parameters to the data

based on the actual performance in the current iterations: both the weights

(W,) for re-weighting that data as well as the weights for the final aggregation

are re-computed iteratively. The setting for adaboost is devided into five. The
schematic overview of the Adaboost algorithm is in Table 1.

The introduction of Adaboost (Freund and Schapire, 1996)
revolutionized the success of boosting in the field of classification and machine
learning. Even though Adaboost results was very accurate the problem with it
is the fact that, the predictions are difficult to interpret. This is because the focus
of classical supervised learning approaches is often restricted to getting reliable
predictions for a new observation. How the prediction for the new observation

is derived in most cases is not considered important.

In practice Adaboost is often used with simple classification trees or
stumps as base-leaners and typically results in a dramatically improved
performance compared to the classification by one tree or any other single base-
Jearner (Ridgeway, 1999). Bauer and Kohavi (1999) reported an average of 27%
relative improvement in the misclassification error for Adaboost compared with
a single decision tree. They also compared the result with bagging and conclude
that boosting algorithms are able to reduce not only the variation in the base-
learners’ prediction error resulting from the used of different training data set
but also the average difference between the predicted and the true classes (bias).
Breiman who is a pioneer and leading expert in machine learning supported the
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view of Bauer and Kohavi. To Breiman, “Boosting is the best off-the-shelf

classifier in the world” (Hastie, et. al., 2009).

Dealing with overfitting and underfitting in Adaboost

One critical issue of Adaboost has been its overfitting and underfitting
behavior. Overfitting describes the common phenomenon when a prediction
rule concentrates too much on peculiarities of the specific sample of the data it
will often perform poorly out-of-sample. To avoid overfitting, the task of the
algorithms should not be focused on the best possible classifier for the
underlying sample but to find the best prediction rule for a new set of

observations. The main control mechanism for overfitting is the stopping
iteration M,,. Very late stopping of Adaboost algorithm will favour overfitting

and too early stoppage also lead to underfitting. Too early stopping often lead
to higher error on the training data resulting in as well as poorer prediction on a

new data set (underfitting).

One way to explain Adaboost’s overfitting behavior is based on the
margin interpretation (Mier & Ratsch, 2003, Ratsch et al., 2001). The margin
of the final boosting solution, in brief, can be interpreted as the confidence in
the prediction. With higher values of this margin may still increase and lead to
better predictions on the test data even if the training errors is already zero. This
theory was questioned by Breima.n who developed the “arc-gv” algorithm which
should yield a higher margin than Adaboost, but clearly failed to outperform it
in practice with respect to prediction accuracy. Reyzin and Schapire (2006)

explained the findings with other factors such as complexity of the base-learner.
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For more on margin interpretation see Zhou (2012), Schapire and Freund

(2012).

Another explanation on the overfitting behavior of boosting is the use of
the wrong performance criteria for evaluation (Mease and Wyner, 2008). In
most instances the performance of Adaboost has been measured by evaluating
the classification rate, and the resistance to overfitting has been demonstrated
usually by focusing on this specific criterion. However, the criterion that is
optimized by Adaboost is not correct classification rate by the exponential loss
function, and the two criteria are not necessarily optimized by the same
predictions. It is for this reason that some authors have argued that the
overfitting behavior of Adaboost should be analyzed by focusing on the
exponential loss function. It has been suggested by Buhlmann and Yu (2008)
that too many iterations can lead to overfitting regarding the exponential loss

without affecting the misclassification rate.

In recent times, boosting algorithms have been used in to estimate
unknown statistical quantities in general statistical models (statistical boosting).
The remainder of this section will broaden the scope for any outcome random
variable; count or continuous. The conceptual view and interpretation of
boosting from statistical view point has been promulgated by Friedman et al.
(2000). The authors provided the basis for understanding the boosting concept

in general by showing that Adaboost fits an additive model.

According to Mayr and Schimid (2012) most solutions of machine
learning algorithms, such as Adaboost, SVM, Bagging, Random forest etc. are

usually regarded as black-box prediction schemes. This is because even though
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they might yield very accurate predictions, the way those results were produced
and which role each single predictor played is difficult to explain. In contrast,
a statistical model aims at quantifying the relation between one or more
observed predictors and the expectation of the response through and
interpretable function E(¥|X =x)= f(x). With more than one predictor

variables, the different effects of each predictor are typically added, forming an

additive model;
EY|X=x)=f(x)=F+h(x)+..+hx,), (2.8)

where f,is an intercept and #,(-),...,7,(:) are the effects of the predictors

X)++s X, which are components of X . The corresponding model class is called

generalized additive model (GAM); (see Hastie & Tibshirani, 1990). The aim
is to model the expected value of the response variable, given the observed

predictors via a link function g(-) .

QB | X =)= P+ 21, () 29)

In this wise, GAMs are not black- boxes but contain interpretable additive
predictors. For instance, the partial effect of X, is given by hl(') . The direction,
size and shape of the effect can be shown pictorially and interpreted. This is the
main difference towards many tree-based machine learning approaches. The
core message in this review with statistical boosting is that the original
Adaboost algorithm with regression type base-learners (eg. Linear models,
smoothing splines) fits a GAM for dichotomous outcomes via exponential loss

in a stage-wise manner. The work by Friedman et al. (2000) provided the link
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between a successful machine-learning and the world of statistical modeling. It
is worth to note that there are two approaches to boosting namely: Gradient

boosting and likelihood-based boosting which we briefly discuss.

Gradient Boosting

Gradient boosting is one of the most successful machine learning
algorithm for non-parametric regression and classification (Freund and
Schapire, 1996, 1997). What Boosting does is that it adaptively combines many
relatively simple predictive models called base learners and aggregate them into
an ensemble learner to achieve a high predictive performance. The seminal
work on the boosting algorithm called Adaboost was originally proposed for
classification problems. Breiman (1998, 1999) pointed out an important
connection between the Adaboost algorithm and a functional gradient descent
algorithm. Friedman et al. (2000), Friedman (2001) and Hastie et al. (2009)
developed a statistical view of boosting and developed a gradient boosting

method for both classification and regression.

Gradient boosting is a more flexible statistical boosting technique that
does not depend on a likelihood but depends on the gradient of the loss function.
The most popular model class for survival data, the semi-parametric Cox
proportional hazard model, can be fitted both by gradient boosting (Ridgeway,
1999) as well as by likelihood-based boosting (Hofner et al., 2013). Statistical
boosting has also been made available for fitting Fine and Gray models in the
presence of competing risks (Binder et al., 2008). Schmid and Hothorn (2008)
extended the tool box for boosting survival data to fully parametric accelerated
failure time (AFT) models. A popular discriminatory measure for the
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evaluation of prediction model is the concordance index (C- index) by Harrell

et al. (1982).

Friedman et al. (2000) developed a more general, statistical framework
which yields a direct interpretation of boosting as a method for statistical
estimation. Friedman presented a boosting framework by optimizing the
empirical risk through steepest gradient descent in a function space. According
to the authors it is a “stage-wise” additive modeling approach. In general, the

optimization problem for estimating the regression function f(-) of a statistical

model relating predictor variable X with the outcome variable Y , is expressed

as

ff(-)=argfgnn{Ey‘X[p(Y,f(X)]} (2.10)

where, p(-) denotes a loss function. The most common Joss function is the L,

of the form

P, fO)=(y-FO)". @2.11)
This leads to classical least squares regression of the mean
FX)=EXY|X=x). (2.12)

Practically, with a sample of observations, the empirical risk is minimized as
~ S 1 L %
fO)= argf ?)nn {;Zp(y,-, f (x,-))} , (2.13)
: i=1

The fundamental idea of gradient boosting is to fit the base-learner not to re-
weighted observations, as in Adaboost, but to the negative gradient vector ™
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of the loss function (¥, f(x)) evaluated at previous iteration m—1, of the

form

Hl" =(_%P(ysf) lf=f'[nru) (2.14)

i=l,...n

In the case of L, , the loss function p(y, F(x)) = yz (y— 7)*- This leads to re-

fitting of the residuals (y—f). This means that for every boosting iteration 7

, the base-learner is fitted directly to the errors made in the previous iteration

(y- J} (')lm_”) . This suggests that both Adaboost and gradient boosting follow
the same fundamental idea. Both algorithms boost the performance of a simple
base-learner by iteratively shifting the focus towards problematic observations
that are ‘difficult’ to predict. With regard to Adaboost, this shift is done by up-
weighting observation that was misclassified earlier. Gradient boosting
however identifies the difficult observations by large residuals computed in the
previous iterations. See Table 2 for a schematic view of gradient boosting

framework.
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Table 2: Schematic Overview of Gradient Boosting Algorithm

e |nitialization

1) Let the iteration counter m=0 and initialize the additive
predictor 9 with a starting value, e.g. /@ =(0)., ,. As well

as specify a set of base-learners #,(x,),-»5,(x,)

o Fit the negative gradient
2) Let m:=m+1 and compute the negative gradient vector I of

the loss function evaluated at the previous iteration:

m m a
ul™ = (u:[ 1),.:] = =(_§P(yfs 5 lf=f‘|m—u(.))

i=l,...n

3) fit the negative gradient »'! separately to every base-learner:
u™ — hﬁ.'”](xj); for j=1,...p
. Update one component

4) select the component j' that best fits the negative gradient

vector:

j =argmin Y @™ - A" (x,))’

1£j<p =l
5) update the additive predictor f with this component
£y = fmey sl A (x ) where sl is a small step length

(0<sI<1).

¢ |Interation
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Likelihood-based Boosting

In considering statistical models, particularly in estimations that
involves low-dimensional settings, estimation is performed by maximizing a
likelihood. While such likelihood can also be used to define a loss function in
gradient boosting, a boosting approach could also be built on base-learners that
directly maximize an overall likelihood in each boosting step. This is the

underlying idea of likelihood -based boosting (Tutz and Binder, 2006). When
the effects of the predictors X;,X,,...,X, can be specified by a joint parameter

vector £33, the task is to maximize the overall log-likelihood /(5).

~

Given a starting value or estimate from a previous boosting step B,

likelihood-based boosting approaches use base-learners for estimating
parameters in a log-likelihood that contains the effect of a fixed effect offset
for obtaining small updates, like gradient boosting, a penalty term is attached to

I(y) by a base learner becomes standard least-squares estimation with respect

to these residuals. In this special case, likelihood-based boosting coincides with
gradient boosting for L, loss function. Component-wise likelihood-based
performs variable selection in each step. This means there is a separate base-
Jearner for fitting a candidate model for each predictor X; by maximizing a log-
likelihood {(7). The overall parameter estimate 7 is then only updated for that

predictor X, which result in that candidate model with the largest log-

likelihood. In linear models, 7; is a scalar and the penalized log-likelihood
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takes the form /(y;)— /lyf _where A is a penalty parameter that determines the

size of the updates. Component-wise likelihood boosting then generalizes state-

wise regression. See Table 3 for a shematic view.

Table 3: Algorithm for Component-wise Likelihood Boosting

¢ [nitialization
1) Let the iteration counter m=0 and initialize the additive

,,,,,

maximum likelihood estimate [3’0 from an intercept model ( if the

overall regression model includes an intercept term).
e Candidate models

2) Let m=m+l
3) foreach predictor X;, j=1,...p estimate the corresponding
functional
term fzj(-), as determined by parameter 7, by attaching a
\penalty term
to the log-likelihood I(¥;) , which includes as an offset.
o Update one component

4) select the component j' that results in the candidate model

With the argest log-likelihood (7 .): j =argmax/(7;)

1</sp
5) update ™ to
Fey = f["'—”(-)+h5’”](xj.); potentially adding an intercept
term from maximum likelihood estimation.

. Iteration

6) iterate steps (2) to (5) until m=n,,
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Chapter Summary

As discussed there have been instances where tree-based methods and
gradient boosting have been used in analyzing insurance data. For instance,
Guelman (2012) used gradient boosting methodology to model auto insurance
loss cost “at fault” accident using data from a major Canadian insurer. The
framework relies on squared error loss function and the findings indicated that
the level of accuracy in prediction was shown to be higher for Gradient Boosting
than the conventional GLM approach. Yang et al. (2016) used gradient boosting
approach called ‘TDBoost” that relied on Tweedie loss function. The findings
indicated the TDboost method performed better that the one with squared error
loss function by Guelman. The TDboost model also peformed better than the
standard GLM approach. This is not surprising because GLMs are relatively
simple linear models and thus constrained by the class of functions they can
approximate. Besides, Gradient Boosting provides interpretable results through
the plot of relative influence of the input variables and their partial dependence
plots. This is critical aspect to consider in a business environment, where models
usually must be approved by non-statistically trained decision makers who need
to understand how the output was produced. The methodology also requires
very little data preprocessing compared with the traditional methods, which is
one of the most time-consuming activities in data mining project. Last, but not
least, the model selection is done as an integral part of the Gradient Boosting
procedure, and so it requires little “detective” work on the part of the analyst as
opposed to the conventional data modeling or the conventional traditional
methods where analyst depends on p-values or statistical tables to make

decisions. In summary, Gradient Boosting is a suitable alternative approach to
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conventional methods for building insurance loss cost models. Appendex D is
a detailed and illustrative overview of the tree-based, bagging, random forest

and boosting methods.
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CHAPTER THREE

RESEARCH METHODS

Introduction

The previous section discussed the relevant literature of the study. This
chapter describes the methodology derived to achieve the main objectives of the
study. It starts with a description of the grey systems theory used in assessing
the financial performances of insurance industry as well as a brief description
of design of the research and how the data was obtained. It provides the
theoretical basis of the methodology and its application to actuarial modeling,
the model building processes and finally discusses the model validation

procedures.

Description of Methods used for Financial PerformanceAssessment
Financial statements are the most reliable sources that give current and
periodical information about the financial situation of a business. These
statements help business partners and stakeholders do financial analysis of the
related period or current period. Financial analysis is fulfilled with the basic
purpose of making business decisions in a healthier way. Where as financial
ratios can be used in financial planning, they can also be used in measurement
of realizing activities. The most commonly used method to make financial
analysis is the ratio analysis. Ratio analysis is the expression and mathematical
interpretation of the relationship between two items aimed to be examined in
the financial statements. It helps companies and business to ascertain their
obligations, profitability, liquidity status, financial structure and effective use of

assets (Kaya, 2016). Financial ratios seen in Table 1 and used in the study show
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similarities with ratios that were used in a limited number of studies in literature

intended to measure performance.

Table 4: Financial Ratios Used in Performance Evaluation

Indicators Ratio Code Aim
Capital Gross Written R1 Smaller the
Adequacy Premiums/Equity Capital better
(Gross insurance risk)
Technical Reserve cover R2 Smaller the
(Technical provisions to better
liquid investments)
Net Written R3 Smaller the
Premiums/Equity Capital better
(Net insurance risk)
Premium Retention Ratio R4 Smaller the
(NWP/GWP) better
Operating Combined Ratio R5 Nominal
Efficiency target
Loss Ratio R6 Nominal
farget
Profitability Return on Assets R7 Larger the
better
Return on Equity R8 Larger the
better

*NWP : Net written premium, GWP: Gross written premium

The financial ratios were calculated using the annual data of the

companies. These data were obtained from the annual reports of the companies.

The financial ratios used in the analysis were selected taking into account the

availability of data and based on the National Insurance Commission Annual

Reports on key financial indicators that summarizes the activities of insurance

companies. (National Insurance Commission report, 2016, 2015). The variables

are briefly explained:
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1. Gross insurance risk (R1) is the ratio of Gross Written Premium to
Equity capital.

2. Technical Reserve Cover (R2) is the ratio of Technical provisions to
liquid investments. It is an indicator of whether sufficient liquid assets
are being held to cover technical provisions, because claims should be
paid as when they fall due. Ratios above 100% mean that the company
do not have enough liquid investment backing their technical provisions.

3. Net insurance risk ratio (R3) measures the ability or capacity of the
insurer’s capital and surplus to absorb unforeseen shocks. It is calcﬁlated
as a ratio of Net Written Premium to Equity. The higher the ratio, the
less conservative the insurer, and hence the greater the potential risk that
the insurer cannot absorb shock or losses. Retention ratio (R4) is
computed as the Net Written Premium over the Gross Written Premium.
It represents the portion of the risk that insﬁrers have not passed onto
reinsurers. High retentions are usually considered riskier. High retention
will require sufficient capital to support the insurer.

4. Combined Ratio (R5) is the summation of claims ratio and the total
expense ratio. It is the single best measure of an insurers underwriting
and operational efficiency. Generally, a ratio of less than 100% indicates
underwriting profitability, while a ratio of more than 100% indicate a
Joss. This may not necessary be the case for companies with huge
investment and other related earnings to boost profitability.

5. Claim or Loss ratio (R6) is calculated as the net claims incurred divided
by the Net Earned Premiums. It is a key ratio which indicates how well

an insurance company pays claims and to some extent, of fair customer
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treatment. The optimal ratio ranges between 40% and 60%. Claims ratio
beyond 100% is regarded as inefficient.

6. Return of Assets (R7), This ratio is an indicator of general profitability
of the insurer. It is calculated as after-tax profits divided by total assets.
It seeks to measure the efficiency with which management utilize the
assets of the company to generate returns of the various stakeholders. In
practice, however, high ratios may not always be an indication of good
pérformance, as factors such as capital inadequacy can boost the ratio.

7. Return on Equity (R8), this ratio measures the return on the
shareholders’ funds over a period. It also indicates how effective
management is growing and funding the operations of an insurance

company using equity financing.

Grey Relational Analysis (GRA)

GRA is a method that can be used in decision making in situations where
there are many criteria by ordering them as to relational grade. It is especially
useful in ordering the alternatives in situations in which the sample is small and
sample distributions is not ‘known. Grey Relational Analysis (GRA) is an
analytical method in Grey System theory which was founded by Professor Deng
Julong (Deng, 1982; Wu and Chen’s, 1999). The term “Grey” means lack of
information or not being known at all. This method enables us to determine the
level of relation between each factor that come across in a grey system and the
compared factor (reference series). It is a distinct similarity measurement that
uses data series to obtain grey relational order to describe the relationship
between the related series (Kaya, 2016). It can be used to measure the

correlations between the reference series and other compared series.
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Accordingly, effect degree between factors is called grey relation grade.
One of the purposes of usage of GRA is to separate important variables in
groups between themselves by recognizing unimportant ones among various
variables. Besides, when data set is large and has a normal distribution, methods
such as factor analysis, cluster analysis and discriminant analysis can be used in

statistics.

Nevertheless, when sample is little and whether distribution is normal
or not known the reliability of these analysis decreases and hence GRA become
a useful alternative. The steps of GRA as summarized in (Kaya, 2016; Wu,

2002; Zhai, Khoo & Zhong, 2009; Wu and Chen’s 1999), is briefly outlined.
Step 1. Construction of the decision matrix

Given that there are 71 (number of companies) data sequences characterized by
m criteria (comprising 8 financial ratios). The sequences can be represented in

a matrix form as

x@ x@ - ox (m)
1) x (2 - - - x0m)

o o
x,1 x2) - - - x (m) )

where, x,.( J) is the value of the i" insurance company corresponding to the
j™ financial ratio. I = (1,...,n); j = (,...,m) .
Step 2. Normalization of the data set
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To obtain comparable scales, the data set is normalized (Feng & Wang, 2000).
The data can be normalized by one of the three regimes: larger the better,

smaller the better and nominal the best.

For larger is the better normalization, we transform x,(j) to x, (j) as follows.

o xemnlxO]
) ] min 5 (] 62

Where, min_ [x,(7)] is the minimum value of the 7" financial ratio and
max’_[x.(j)] is the maximum value of the ™ financial ratio
=1 L% \J g ;

For smaller is the better normalization, the formula is defined as

max [ x, (/)] = x,(J)
max__ [x,(7)] —min[x,(/)]

x (/)= (3.3)

For nominal is the best normalization, the formula is defined as

%, (1) = %, (1) o
max{max’, [%,(J)] = %,y (), Xosy () — minf [, (O}

x(j)=1- )

where X, (/) is the target (ideal) value of the 7™ financial ratio and

min_, [, (NI= X obj (/) € max [, (/)]

Step 3. Construction of the normalized matrix and generation of the reference
sequence
After the normalization process, the normalized matrix which is the

revised version of the original matrix or the initial decision matrix is presented

in Equation (4.5). Equation (4.6) also shows the reference sequence.
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[ * * *
51 %@ - - - oxm)
X1 x2) - - - x, (m)
X* . . .

X)) £@) - - - x(m)

(3.5)

Xy = X (1,55 (2)sv0s Xg (J)se0 X (1) (3.6)

xy(j) =max,[x; ()] G.7)

Step 4. Construction of the difference matrix

Let A, () represent the absolute value of difference between the normalized

value and the reference value of the j”’ financial ratio and is calculated using

Equation (4.8)
IWOEXOEEAG) (3.8)

After computing A, () values, the constructed difference matrix is shown in

Equation (4.9)
Ay (D) B2 - - Ay (m)
Aoz (1) A0?. (2) T Aoz (m)
o 09

kAOIT (1) AO::(Z) B AO.n (m)
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Step 5. Calculation of the grey relational coefficient

The grey relational coefficient of the * financial ratio is computed using

Equation (3.10)

m

min?=] minj=1 AO," (j) o é max?:] max'T:l ADI (j)

Ay (J)+ & max maxrj’;l Ay (J)

TOi(j) =

(3.10)

where 7,,(j) is the grey relational coefficient of the j'h financial ratio and &
is the distinguishing coefficient. This coefficient is value between 0 and 1.

However, & usually ranges between 0 and 0.5 and it reduces the effect of
extremely large max_max’_ Ay (j) in cases where the data variation is
large (Chang & Lin, 1999).

Step 6. Calculation of the grey relational grades

Given weights of financial ratios, the grey relational grade is calculated as

follows;

o =g‘[(w(j))(ro,u»];;wu) =1 @11

With equal weights the degree of grey coefficient is computed by

o =%"Z’[(ro.-u))] (3.12)

J=1

where 77,; is the grey relational grade and w(j) is the weight of the ;"
financial ratio in this study. For decision-making processes, if any alternative

has the highest 77,; value, then it is the most important alternative (Wen, 2004;
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Lin & Chang, 2010). Consequently, the performance of the insurance

companies can be ranked according to the grey relational grades.

Statistical Perspectives of Premium Pricing Variables

An insurance company collects a lot of information for each single
policy holder for each year and period. It is often accompanied with hundreds
of variables available for each customer. Most of this information belong to one
of the following categories: personal information such as name, type of policy,
policy number, other insurance policies. Demographic information such as
gender, age, place of residence, population density of the region where the
customer is living, occupation type, etc. Driver information such as main user,
driving distance within a year, car kept in a garage, etc. Family information such
as age and gender of other people using the same car, income, etc. History
include count and size of previous claims, property damage, physical injury,
occurrence of a loss. Vehicle information such as type, age, engine capacity or
strength etc. Response information such asclaim (yes/no), number of claims and
claim size. In practice, the claim size is not always known exactly apriori. For
instance, if a big accident oceurs in January, the exact claim size will often not
be known at the end of the year and perhaps not even at the end of the following
year, The possible reasons are law-suits or the case of physical injuries. In such
a case the statistician or actuary will have to use a more appropriate estimation
of the exact claim size to construct a new insurance tariff for the following year.
Hence, the empirical distribution of the claim sizes is in general a mixture of

what is really observed and estimated.
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An insurance company may be interested in determining the actual
premium charged to the customer. In principle, the actual premium is the sum

of the pure or risk premium plus safety loading such as administrative cost and

desired profit.

The focus of this study is on pure premium. Given a set of explanatory
variables, the primary response variable for the study is the conditional
expectation of the pure premium given the explanatory variables. The secondary
response variable is the conditional probability that the policy holder will have
at least one claim within one year given the information contained in the
explanatory variables. An estimate for the expected pure premium should have

the following four attributes;

It is fair: the expectation of the estimated pure premium E(Z | X = Xx)

should be approximately unbiased for the entire population and in sub

populations.

Tt has high precision: some of the precision criteria include mean squared error

(MSE) defined by ];E[(Z—Z)2 | X = x)], which should be small relative to
those of other competing models. It is robust against moderate violations of the
statistical model assumptions and the impact of outliers on the estimation is
bounded. It has the simplicity property, because too complex tariff structure

with many interaction terms may only have a reduced practical significance.

If the tariff is not fair, this will lead to bias which is of course bad from
the view point of the policyholder, because the premium is too high, and the

policyholder will have to pay too much. At first sight this case looks great for
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the insurance company, but there is a danger that the customer will turn to

another insurance company.

Research Approach

According to Saunders et al. (2007), the two overall approaches to
conducting research are through induction and deduction. When data is first
collected and after analyzing the data a theory is developed, the approach is
inductive. On the other hand, if a theory or hypothesis is first developed and
later a research strategy is designed to test the hypothesis, the approach is of
deductive nature. In this thesis, an inductive research approach was adopted to
achieve the desired objectives of the study.

Model Description and Assumptions

The Poisson distribution is commonly used to model claim number
distributions in non-life insurance. Such a choice assumes, among others,
mutual dependence among the number of claims occurring in a period.
Nonetheless, if one considers background factors such as weather conditions or
location risk and other claim-causing events, the risk propensity may vary
significantly from one policy to another as well as location. In as much as these
variations are deterministic, the Poisson distribution still applies. On the
contrary, if the intensity variations are considered as random, the independence
assumption no longer holds. More so, when a count data has variance greater

than mean (over-dispersion), assumption of independence does not apply.

In the classical risk model, it is assumed that the claim arrival process is
a Poisson process. This assumption implies a constant claim arrival intensity
and in most practical cases, such assumption is inadequate. In such situations,

78

Digitized by Sam Jonah Library



© University of Cape Coast https://ir.ucc.edu.gh/xmlui

Cox process can be used as an alternative. Cox process is a doubly stochastic
Poisson process which has stochastic claim arrival intensity rate. A general
treatment of Cox process is presented in Rolski et al., (1999). The study
considers a process (Markov-modulated), where the claim intensity is assumed
to be homogenous within each state but heterogenous among states. A brief

pictorial description is shown in Figure 4.

Figure 1: The conceptual framework of the study

n .
where Y = ZY j"), is the total claim size in state i, ¥ j(') is a non-negative
=1

random variable that represents the amount of ; "claim in state i
i=(1,2,..k), j= (1, 4 n) and NY(¢) represents the number of claims in

state i at time . The total number of claims at time ¢is given as

k k
N(©) =Y N®(t) and the total claim size at time £, is given as S(t)=>r®.

i=1 i=]

Suppose we assume that the number of claims is equally defined as a
function of the Markovian process M at time ¢ such that the number of claims

that occurs depends on the behavior of the events in the states. Hence, the

random variable Y ) will have a probability density function fy(,, and
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cumulative distribution function F @) In order to define the total claim
¥

amount process S ={S(¢),f >0}, denote Y}O as the amount of j” claim

occurring when the Markovian process is in state 7. Suppose that

{Yj(") , jeR*} isasequence of independent and identically distributed random
variables with probability density function fyc,., and cumulative distribution

function £, . Hence S can be defined as

S()= iiyj@ ).

i=1 j=1

Model Specification
The study considers a portfolio of policies of the form

{(yj,Xj,wj,;f,.)}’j;l,j==1...,n;i=1,...,k from #» independent insurance
contracts, where for the j”' contract, ¥, 18 the policy’s claim amount, X i

(historical and location risk factors) or the set of explanatory variables that

characterize the policyholder and the risk being insured, W; is the duration of
policy and 7, is the risk factor that characterizes risk specific to geographical
location i. Thus, the study assumes that the expected risk premium £ is

determined by a predictor function such that

E(Z ;| H,L)= 4 (3.13)

We thus define the expected risk premium for a policy in location L as

n(w)= 9L +aH,
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where, @ is the associated risk parameter for a policy in location L. The & is

the historial risk parameter associated with the claim history and 77 is the link

function that establishes the relationship between the expected premium and the
covariates. Historical risk is the risk specific to the policy characteritics. We
define location risk as the risk specific to the geographical location or
environment in which the policy usually operates. The study derives the location
risk for each policy from the distribution of crash data obtained via Markov

chain of which we briefly explain.

Given that occurrence of accident at time ¢ is a stochastic sequence, we
initially characterize and discretize our risk model into ten states i=1,...,10
based on geographic segregation. Given the initial probabilities X, of event E
in state i during period ¢, we compute the transition matrix for period f via
Bayes theorem.

Denote P(E) as the long run proportion of times the event E occurs
upon repeated sampling during period f, or how likely it is that the event £
will occur in state i . Denote by p(£,,) the risk of occurrent of an event in state

1 at time ¢ and e (E,Q)the risk of occurrence of an event at time { in state 2,

etc. In the context of our study and for mathematical tractability, define EE,
as the event that a vehicle operates between two states. This means that
P(E,E,,) represents the risk involved when moving from state one to state two.
Given that E, and E,, are independent, P(E,E,)=P(E,)P(E,) representing
the risk of accidents between states.
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Next, by noting that the number of times accident occurs represent a
sequence of random variables. The probability distribution of transitions
between states can be expressed as a transition matrix Q. If i=1,..,k the

transition matrix @ is shown as

Gy dw G - Gu |
9y 92 Y93 - Y
O0=\4qsyy 4 933 - 9u
Lle 92 i3 - 9u ]

where ¢,; represents accident risk from state i to state 7, {y; represents the

risk within state & .

If a discrete time Markov chain {Q(#)} is irreducible and aperiodic, then it has

a limiting distribution and this distribution is stationary. As a consequence, ¢
is a kxk transition matrix of the chain and X= (xl,---,xk) is the eigenvector of
© such that Z’_q,. =1, then we get ,‘,‘_EE‘, O" = y,, representing accident risk
within each of the states.
Estimation of Model-Based Risk Premium

In non-life insurance, the risk premium represents the expected cost of
all claims declared by policyholders during the insured period. The calculation
of the premium is based on statistical models that seek to incorporate all
available information about the accepted risk, thereby aiming at a more accurate

assessment of tariffs attributed to each insured.

The basis for calculating the risk premium is the statistical modeling of
frequency and cost of claims that depends on the characteristics defined in the

insurance contracts. The risk premium is the mathematical expectation of the
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annual cost of claims declared by policyholders and it is obtained by multiplying
the two components; the estimated frequency and cost of claims: the risk

premium for the i policyholder is

D%, = EEN,),

The claim amount (¥,%,,...Yy)are independent of the claim number N,

Several authors have considered a separate evaluation of frequency and cost of
claims in computing risk premium with the view to provide a perspective on
how the risk factors are influencing the two components. Others recommend a
convolution of the two components with the aim of ensuring data consistency
and accurate models. Suffice to say that the modeling choice depends on
structure of the data and the overall objective. The task of modern actuary is to
analyze and find the right formulation of his problem. The study adopted the
principle of convolution of the two components defined in a Markovian
environment. The formulation of the problem in this study is briefly described

below:

The Compound Poisson distribution and the Tweedie Model
This section briefly introduces the compound Poisson distribution and
Tweedie model which is essential for the methodology development. Let the

claim number N be a Poisson random variable denoted by Pois(A) .
Let the claim amount Y be independent and identically distributed gamma

random variables denoted by Gamma(e, @) with mean 0@ and variance aw’

. Define a random variable Z such that
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" 0, N=0
Y +Y+Y,+..+Y,, N=l.n

Thus Z is a Poisson sum of independent gamma random variables. The

resulting distribution Z is referred to as compound Poisson distribution

(Feller,1968, Smyth and Jorgensen, 2002). This distribution, E , is connected

to exponential dispersion models. The function could be expressed as

f7(z)=P(N = 0)d0(2)+]Z P(N=6)f,(z| N =0)

Giventhat E(N@)) =&,

55 § Sa-1,~zlw

f7 () =exp-0d @)+ % ? 0 )

where P(Z = 0) = exp(—1), P(Z| N =96) = Gamma(dc, @), fz (z|N= 0) is the
conditional density of Z given N=4, and d, represents the Dirac delta
function at zero.

The exponential dispersion model plays a significant role in actuarial
modeling as it is the underlying response distribution (Jorgensen, 1987). A two-

parameter representation of the exponential dispersion model is

z0— k(6
P(z|6,¢)=a(z,$) eXp[—ﬁ—éﬁ——)) (3.14)

where 0 and k are known functions, @ is the natural or canonical parameter

belonging to the open interval k(6) < and ¢ > 0 is the dispersion parameter.

The function k() is called the cumulant function of the exponential dispersion
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model since if ¢ =1, the derivatives of k() give the successive cumulants of
the distribution. For instance, E(z)=u=£k'(0) and Var(z)=¢k"(0)
(McCullagh and Nelder, 1989). The function "(@) can also be expressed in
terms of £ denoted by ¥ (u). This is what is referred to as the variance

function that uniquely defines an exponential dispersion model.

The study focused on the exponential dispersion model with a power

variance function V() = ,ng such that the index parameter ¢ lies in the interval
(1,2) . This is referred to as Tweedie distribution which is generated by a

compound Poisson-Gamma distribution with high probability mass at zero with
a skewed continuous distribution on the positive real line. Exponential
dispersion models could also be expressed in terms of moment generating

functions, a fact which is exploited by this study.

From Equation (3.4) the moment generating function is given by
M (t) = [exp(zt) f(z; . P)dz (3.15)

Hence the conditional expectation and variance for the compound Poisson

random variable z | N when W, #1 is

= E(Z)= E(E(Z,|N))= wAow,

1
Var(z,) = Ear(Z, | N)) +Var(BZ | N) =—(4a@; +Ao’a] )

w.

i

(3.16)

The conditional expectation and variance for the compound Poisson random

variable Z | N when W =lis
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:Llj = E(Zl ) = E(E(Z] | N,)) =3 A,awi

3.17
Var(Z,)= EWar(Z, | N ) +Var(E(Z, | N) = Aaw? + Aa's? o

This means the Tweedie distribution is scale invariant. W, is the duration for

policyholder i

The cumulant function of the compound Poisson-Gamma model is
Mz(t)=exp|:it{(l—wt)"“—l}] y1<&<2,4>0. (3.18)
: ; ’ ; V = 7jo >1

Given an exponential dispersion model of the form V(u)=p";¢21, the

cumulant function k(-) for the Tweedie model could be found by

% = 1* and solve for k(). Without loss of generality, we choose

k(8)=0,u=1at =0

K'(0) =

This gives the following results:

2=¢
=g _ y2! ~1 £x2
p=l e ;
A= - H = k(@) = 2-¢ ,r
o odi

p={00-&)+1".
In the context of the study variable in Equations (3.17) and (3.1 8), the parameter

representations for the Tweedie model is given by

;L_,uz_g—l

u=Aow ¢(2-&)
o+2
a=-2——:— (::Of'f']

-1
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_ Al (aw)2_§

= =g -Dp

Numerical approximation to the density function

From (3.3), the joint distribution of the compound Poisson can be derived as

exp(— ),), 0
P(z,t| A, a,@)= Pzt o, @)P(t]| A)=1 2" exp(- z/ @)X exp(~ A) -
C(to)zs! ’

Thus, Z is a Poisson sum of independent gamma random variables and for

each policyholder Z, ~ Tw( ,u,,,% ,&), where @ is the dispersion

parameter, £ index parameter (1< £ <2) and w, is the duration for the

policy. The loglikelihood of the Tweedie function is given as,

I(FQ 6,8z ms W)= 2108 175 o 1 1)

g 2= (3.19)
%A B Lioga(z,plw,¢)

=1 ¢g| ! 1-¢ T2-¢

To find the marginal distribution of Z, integrate out ¢ in (3.19). That is,

plz| Ao, @)= i p(z,t| A,a,@). The normalizing quantity in Equation (3.14)
1=0
is expressed as

w

W, (3.20)
=]

{

zZ

|
a(z,4,6) = ;Z €D gT0-&) 1)

i=1

pk
2
According to Dunn and Smyth (2005), the normalizing quantity in (3.20)

‘ .p * >
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to approximate the quantity reasonably well. Smyth (1996) suggests that for the
compound Poisson model, the mean # is orthogonal to ¢ and ¢ . This means
that the parameter estimates vary slowly as ¢ and ¢ change. Thus, the index
parameter (¢ ) significantly impacts the estimation of the dispersion parameter
(¢ ), which, in turn, has substantial influence on the estimation of asymptotic
standard errors of the model coefficients, and predictive measures. For this

reason, it is reasonable to specify the optimal index parameter based on the data

at hand or based on expert judgement.

Estimating the Premium Function via Gradient Boosting

To estimate the predictor function requires that the index parameter (¢)
of the Tweedie distribution is estimated. If the index parameter ¢ is known, the
compound Poisson GLM can be estimated using the Fisher’s scoring algorithm
(McCullagh & Nelder, 1989) and or the TDboost algorithm (Yang et al., 2016).
For unknown &, parameter estimation can be proceeded using the profile
likelihood approach (Cox & Reid, 1987). Thus, to estimate the predictor
function in Equation (3.1), optimal index parameter ¢ need to be estimated first.

The index and dispersion parameters (&, @) jointly determine the mean-variance

¢

d 2 i in eed. Od S he

I

timation of 4 depends only on ¢. This means that given a fixed ¢, the
esti

estimate ,[l(f ) canbe solved without knowledge of ¢ .
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Denote o = ; .
(f ) ¢) . For a given value of o , the maximum likelihood estimation

B(o) can be determined using the scoring algorithm, B profiles out of the

likelihood and maximize the profile likelihood to estimate o as

6 =argmax {(o | z, B(o)).
o

Since in general there are no closed forms for Tweedie densities, in likelihood

evaluation one must deal with an infinite summation in the normalizing

function

] ®
a(Z,O'):— ZI/VI

Z =]

Dunn and Smyth (2005) proposed a series expansion approach, which
sums an infinite series arising from Taylor expansion of the characteristic
function. Another alternative approach also promulgated by Dunn and Smyth
(2008) was based on Fourier inversion approach, which consists of an inversion
of the characteristic function based on numerical integration methods for
oscillating functions. It is noted that, the two numerical approaches coincide:

considering the case where (1< & <2), the series approach performs very well

for small Z but gradually loses computational efficiency as Z increases, whereas

the inversion approach performs very well for large Z but gradually fails to

provide accurate results as Z decreases. For this reason, the inversion approach

is preferred for large Z and the series approach for small Z. This means that the

two perform best in different regions of the parameter space. In this study, the

lgorithm P rovided in R package «Tweedie” was adopted for our profile
algori

because it provides an effective interpolation

i i tion. This is
likelihood computa Digitized by Sam Jonah Library
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sc i - . :
heme which blends the Inversion and series methods to provide

compr i ; . o
prehensive evaluation of Tweedie densities across the parameter space.

Conditional on the index parameter, the premium function F(x,) is

estimated as follows;

F(x)=argmin{~{(F(-),¢,& |{z,,x,w}.)=arg mini!//(zj, F(x)| &), (3.21)

i=1

where

_[ao00-8F@) exp@-£)F()
w(z.-,F(x,-né){ = s

Due to non-closed nature of Equation (3.19), the function is estimated

iteratively using the forward stage-wise algorithm.

The first initial estimate of F(x;) is chosen as a constant function that

minimizes the negative log-likelihood.

F = arg min Z w(z,1m18)

=

n
Z Wiz

=| log=L

S

i=1

This corresponds to the best estimate of F(:) without any covariates. Let

th
ﬁ' [m—l] be the current estimate before iteration 1. Atthe m  stage, the base

learner h(xz-;r[m]) is fitted such that

f[m] =argmin gl[ut[m] —h(x;; r[m] )]
l:

h (u['"] u[m]) is the current negative of ¥(| p), thus
where, 1 2 7n
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Jm 0¥z, Fx) 1)
i oF (xl.) F(xi): Flm-1] (xi) (3.22)

= w2 bl A" ey v exple - ) A

use L -terminal node regression tree, such that;

™) = 5 ™ 1(x < &)

(3.23)

With the parameters £ = {R,[m],ugm]}f:l as the base learner. To find R

and u,[ ", we use a procedure with a least squares splitting criterion (Friedman
et al., 2000), to identify the splitting variables and the corresponding split

locations that determine the fitted terminal regions {R'"}-,. {R"™}r, is

estimated jointly with u}”'] so that

" ]:-mean [m,(u,['”l), [=T..
I

Once the base learner A(X;37 U1y has been estimated, the optimal value of the

expansion coefficient ﬂ["'] is determined by a line search.

I/ 7 arg min _fzq)lw(zi, F [72-]] (x;)+ Ph(x;; ‘L'[m] [ £)
[:

m- L o]
—alglgnml‘é (e B 1](xi)+ﬁl§1u[ i e®™e 29
[m]

The regression tree in Equation (3.24) predicts a constant value U

. plml Thi s that Equation (3.24) can be solved by a
within each region R This mean q

. . A[m] v
; “thin each respective region R™. Thisreduces
: h performed wit
separate line searc
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to findi (m] . . . ,
ng a best constant 7" to improve the current estimate in each region

pl
R™ based on the following criterion

i sagmin %y, M) g0, (3.25)
iox,e R

/

The parameters are found by the function

z O,z expl1- &) A )|
:x.€ R
ﬁ}:m] _ 10g< lxlé l

- > (3.26)
% OnenplC2 —o ey

% m
L z.xl-eRl

Having estimated the parameters {17/}, , the current estimate of the function

Jaka (x,) is then updated in each corresponding region
Py = A I e gy, 1=1.,L (27

where ¢ is the shrinkage parameter 0 <& <1.

Following Freidman (2001), £ issetto 0.005 at the implementation stage. The
steps are repeated M times and the final estimate F*)(x) is thus reported.

Summary of the TDboost model is in Table 5.
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Table 5: Schematic Overview of TDboost Algorithm.

Initialize with . 2wy,
Flol — log r=l

2
=l

for m=1,..., M repeat steps 2a to 2d
a. compute the negative gradient {#"'}",
= w, {~z, exp[(1- &) F" ()] + exp[(2 - ) F"1(x,)]}
yi=lan
b. fit the negative gradient vector {#™}., to
X;>--»X, by L terminal node regression tree. This

gives us the partitions {R™}%,

compute the terminal node predictions U,[m] for each region
{RI"M | ,where

> wzexp(l-OF " (x)

[ml _ lo kxR e — ,l = l,...,.L
£ 3 > wexp-&F" 1(x,)

px eRI™

c. update £ (x) for each region {R"™}},
P (x) = A () + SR e R = 1L

d. Report F*"1(x) as the final estimate

Model Interpretaion

This section discusses the interpretation of the risk premium model

its ability to predict accurately but also how well model parameters could be
1ts aoill

partial dependency plots and variable imporatance.

as pictorial views through Rigitized by Sam Jonah Library
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This i ' :
section briefly explains these concepts in the context of the gradient

boosting framework.

Marginal Effects of Predictors

The main and interaction effects of the variables in the boosted Tweedie
model can be extracted. A tree with L terminal nodes produces a function

approximation of p predictors, with interaction order of at most min(L —1, p)

. For instance, when L=2, we have an additive TDboost model with only the
main effects of the predictors, since it is a function based on a single splitting
variable in each tree. When L =3, it allows both main effects and second order

effects.

Given the training data set {,,X.}_, with p -dimensionpal input
vector x=[xl,...,xp]’, let 4g be a subset of size §, such that

gg = {ql”qs} & {xl,...,xp} :

To study the main effect of the variable s, let ¢, ={g,}and to study
the second order interaction of variables i and 7 ,let g = {q"’qj}' Let 4\,

be the complement set of §g such that ¢\, 4, ={xl,...,xp}. Lt i

ediction function F (g.]19,) bea function of the subset ¢ conditioned on
pl‘ s S

I dence of F(x) on I
specific values of ¢, The partial depen x) q.,

fi lated as f?(q |q\ ) averaged over the marginal density of the
ormulate s 1

complement subset q\s
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Fsls)=1Flg1q,)p,, (@, )day (3.28)

where p = '[ p(x)dq,, is the marginal density of g .

- . . - 1 n .
Equation (3.18) is estimated by F,(q,) =—Z F(q,1q,,), where {9y} are
3y : s,ii=

i=1
evaluated at the training dataset. Pictorial view can be obtained by plotting

(F.(4,)-4,) .

Variable Importance
One of the key ingredients in model building is ability to extract relevant
predictors. The “TDboost’ model (Yang, et al., 2016, Friedman, 2001) defines

a variable importance measure for each candidate predictor X, in the set
X={X 1,...,X p} in terms of proportion of influence on response variable Y.

The main advantage of this variable selection procedure as compared to
univariate screening methods, is that the approach considers the impact of each

individual predictor as well as multivariate interaction among predictors
simultaneously.

Breiman et al., (1984) defined the variable importance measure as

I, (T,) of the variable X,. In a single tree T, is defined as the total
X; m

heterogeneity reduction of the response variable Y produced by X e whioh

be estimated by adding up all the decreases in the squared error reductions
can be est

5 i X . is chosen as the splittin
5, obtained in all L —1 internal nodes when A ; p o

variable.

Let [, = I(v(X;= 1)). Then
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L-1
lXij = IZ_:‘SIIJ.[ (329)

where 0, is defined as the squared error difference between the constant fit and

the two sub-region fits achieved by splitting the region associated with internal

node / into the left and right regions.

Friedman (2001) extended the variable importance measure / . forthe
J

boosting model with the combination of A4 regression trees, by average

Equation over {Tl 3oy TM} such that

1 M
—7 22, () (3:30)
m=]

Iy =

Despite the wide use of the variable importance measure as introduced by
Breiman et al., (1984), Kestemont and Paris (1985), White and Liu (1994)

among others suggested that the variable importance described in Equations

(3.29) and (3.30) are biased in the sense that even if X ; Is not informative to
the response variable, X ; may still be used as a splitting variable. Hence the

variable importance measure in Equation (3.30) is not zero.

Following Sandri and 7uccolotto (2010) and to avoid variable selection

bias. the study computed an adjusted variable importance measure for each

i i h X . described in six steps below;
explanatory variable by permutating €ac J

1) For s=1,...,,S repeat steps (2) to (4)
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2 G 1 5
) Generate a matrix Q" by randomly permutating (without replacement)

the 72 rows of the design matrix X , while keeping the order of columns

unchanged

3) Createan nX2p matrix X° =[x, O°] by binding O° with matrix X by

column

4) Use the data {¥,X’} to fit the model and compute the variable

. _ th
importance measures /3 for X ; and r; for OF, where Q7 ( ]
J

column of °) is the pseudo-predictor corresponding to X Iz

5) Compute the variable importance measure 7. . as the average of I}
2, X,

and the baseline 7,, as the average of / o »Where
J I

1&
=——Z[\j; Q; ;JQ;

6) Report the variable importance measure as Ig? =T, -1, for the

!

variable X

The basic idea of the above procedure is that, the permutation breaks the

association between the response variable and each of the pseudo-predictors

v s s (k#7 ;
Q;‘, while preserving the association between O ' and O ,( J ) Since

©° is re-shuffled from X ys QS has the same number of possible splits as
J

I ict oximately the same probability of
the corresponding predictor X ; and has appr y p

. 7 uld be viewed as bias
ected in split nodes. Hence 1 0 co

being sel 5

. ation of the importance of the predictor variable X;.
approxim
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Implementation Technique

This section discusses the choice of meta parameters required to
enhance the model framework in Figure 3: L ( the size of the trees), M ( the
number of boosting steps or iteration) and V (the shrinkage factor). The study
set up the optimal number of boosting iterations to avoid over-fitting as well as
improve out-of-sample predictions. Zhang and Yu (2005) recommend

regulating the boosting procedure by limiting the number of boosting iterations

M and the shrinkage factor.

Friedman (2001), Ridgeway (2007), Elith et al. (2008), have shown that
the predictive accuracy is almost always better with smaller shrinkage factor V
at the cost of more computing time. Thus, smaller shrinkage factor usually

requires a larger number of boosting iterations and hence more computing time.

The study chose v=0.005 and determine A by cross validation using the data.

Lastly, the value of L reflects the true interaction order in the underlying
model. Given no prior knowledge on such information on optimal L . The study

thus chose the optimal L and M using K - fold cross validation. Starting with

a fixed value of L the data are split into K equal parts roughly.

Let an index function 7@ {l,en} = {Lon K} indicate the fold to which

th ;
observation iis allocated. Each time the k" fold of the data is removed

k=1, K) the model is trained using the remaining K —1 folds.

A [M] ) .
1 d ute the validation loss
Formally, denote resulting model by F., (x)and comp 3

by predicting on each kth fold of the data removed:
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L[]

YO, 1) = FL (x5 2) (331)

The optimal A is thus selected at the point which the minimum validation loss

was reached.

M; = argﬂl}linCV(M, L) (3.32)

To select L, the process is repeated for several number of L, for
instance (L =2,---,”) and choose the one with the smallest minimum

generalization error which is a measure of how accurately an algorithm is able

to predict outcome values for test data or previously unseen data.

L= argmin CV (L, ML) (3.33)
i

It is important to note that for a given shrinkage parameterV, fitting trees with
higher L leads to smaller M required to reach the optimal threshold

(minimum error).

Model Evaluation Technique

One major ingredient in statistical models is the model ability to predict

well out-of-sample. After fitting on the training data set, the study predicts the

risk premium P(x)= [t(x) by applying the MMGB with location model with

location risk to an independent held-out sample called testing set. The result is
0

d with other competing models. It is worth noting that when measuring
compare

he differences between predicted premiums P(x) and real losses y , the mean
the differe

te loss is not appropriate because the losses
the mean absolu
squared error loss or

ich skewed to the right. Hence, an
: aoe of zeros and hig
have high percentage
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1t i : )
alternative measure is required. The study thus considered the ordered Lorenz
curve and the associated Gini index proposed by Frees et al., (2011). The

efficiency of different predictive models can be assessed by comparing their

Gini indices.

To explain briefly, the idea of the ordered Lorenz curve. Let S (x) bethe
“based premium”, which is calculated using the existing premium prediction
model, and let P(x) be the “competing premium” which is computed based on

an alternative premium prediction model. The ordered Lorenz curve is such

that, both the distribution of losses and the distribution of premiums are sorted

S(x,)

based on the relative premium. R = R(x;)=—= (Frees et al., 2011; Werner,

P(x,)
Modlin and Claudine, 2010) . The distribution for the ordered premium and loss
are respectively given by

ST P()I(R, < 2) Y PR <2)
Fo(s) =L and F,(s)=""— ; (3.34)

> Px) 2 PGs)

I(-) is an indicator function, that returns a 1, if the event is true and return a 0,

if the event is false. We then compute the Ordered Lorenz curve and Gini

coefficient for the portfolio. The two empirical distributions are based on the

sort order, which makes it possible to compare the premium and loss
same ;

distributions for the same policyholder. We then compute the ordered Lorenz
istribu

d Gini coefficient for the portfolio. Thus, the graph of (Fp(s), F,(5)) is
curve an

called ordered Lorenz curve, where
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When the proportion of losses equals the proportion of premiums for the
insurer, the curve results in 45-degree line. This is known as “the line of
equality”. Twice the area between the ordered Lorenz curve and the line of
equality measures the discrepancy between the premium and loss distributions,
which is defined as the Gini index. Curves below the line of equality indicate
that, given prior information of the relative premium, an insurer could identify
the profitable contracts, whose premiums are greater than losses. Hence a larger

Gini index or larger area between the line of equality and the curve below

suggest a more favorable model.

The Gini index could be computed using Trapezium or Simpson’s rule

as follows; suppose that the empirical ordered Lorenz curve is given by

{(ao =0,b,=0), (aubl)a---s(an =15, =1)} for a sample of size 7, we use
a,=F,(R,) and b; = F,(R).

The Gini coefficient could also be used to assess the profitability of portfolios.

Gini

(Fr(R)-F(R)) = (3.35)

=

I

i=1

This means that insurers that adopt a pricing structure with a large Gini index

e more likely to enjoy profitable portfolios. Denoting the tariff -based score
ar

by P1 = P(x), other competing models represented by P2=5(x), and and
y P1=P(x),

- _ o by
p3=T(x). The relativity premium 1s given
another represented by

S
R(x) =82 and R,(x) =70

P(x)
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The desired expected loss is denoted by S(x). If R(x)is small, then a small

loss is expected relative to the premium suggested. If R(x)is large, then a large

loss is expected relative to the premium suggested. Gini index becomes larger

(14 *
as one uses a “more refined” insurance score,

Following Frees et al. (2013), the study specifies and uses the

predictions from each model as base premium S(x) and use the predictions
from the remaining models as the competing premium P(x) to compute the

Gini indices.  The entire procedure of the data splitting and Gini index
computation are repeated 20 times and a matrix of the averaged Gini indices
and standard errors are reported. Using “minimax” strategy the “best” model is
selected. Thus, the minimax strategy selects the base premium model that are
least vulnerable to competing premium models. This means that the model that

provides the smallest of the maximal Gini indices is selected.

Chapter Summary

The chapter described the methods used in the study. The section

describes the metods used in assessing the industry performance. It also explains

the compound-Poisson distributions and in particular the Tweedie model as the

appropriate technique to be used in predicting the risk premium considering the

nature of dataset for the non-life insurance industry. Given the difficiencies

‘dentified in the literature the study utilized three theories; the Markov theory
i

hich helped t0 integrate the external risk factor (the location risk), the
which he

w tablish t model framework and
i 1 i theory was used to es ablish the
exponennal dlSpCI‘SlOl’l e

i smation of the model parameters. In the
-t boosting for estima
the theory of gradient

dels reviewed it is assumed that claim arrivals process is constant
classical models T 2
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b geographical regions, However, the MMGB model assumes that the
number claims vary from one region to another and from time to time. The

contribution of each factor considered in the model is measured by ‘variable

umportance’.  The model validation utilizes Ordered Lorenze curve and Gini

coefficient by Frees, Myers and Cummings (2011, 2013).

103
Digitized by Sam Jonah Library



© University of Cape Coast https://ir.ucc.edu.gh/xmlui

CHAPTER FOUR
RESULTS AND DISCUSSION

Introduction

This chapter presents the results and test efficiency of the methodology
developed using datasets obtained from two sources. It first starts with a
background and preliminary analysis of the performance of the insurance
industry during the period 2012 to 2016 using Grey Systems Theory. The
chapter then presents the findings in line with the objectives of the study. The
insurance data was obtained from the database of a major insurance company
in Ghana and the accident data obtained from Ghana Road Safety Commission
(NRSC). The chapter ends with a discussion of the model, its efficiency and

usefulness.

Assets and Liabilities

Aggregate insurance industry assets stood at GHS 3.76bn as at the end
of 2016, representing a growth of 23% from GHS 3.06bn in 2015. Life
insurance contribution to total industry assets as at 2016 was GHS 2.25bn
representing 60% as against non-life insurance contribution of GHS 1.51bn

representing 40%. Total assets mainly consist of Investments, Cash, Property,

Plant and Equipment (PPE). Figure 2 shows pictorial analysis of yearly

ggregate industry contribution of total assets between life and non-life from
a

2014 to 2016, while Figure 3 shows the composition of non-life insurance total
0 ’

asset from 2014 to 2016.
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Figure 2: Yearly Aggregate Industry Contribution of Total Assets (Ghc).
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Figure 3: Composition of Total Non-Life Insurance Industry Asset.

Premium Contribution by Class of Business

Th tor insurance class of business has dominated the non-life
e mo

jum 1 ting 50% of
ith a premium income of GHS 518m, represen
insurance sector wi pr
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¢ overall premium income for 201 6. It grew by 46% over the 2015 premium

of GHS 3 '
S5m. Fire, Theft and Property contributed 22% of the total premium

for 2016 and grew by 12% compared to the 2015 results.

Marine and Aviation, and Personal Accident and Medical both came
third with an overall contribution of 6% of the GHS1.07bn in 2016. Engineering

contributed a gross market premium of GHS 90m and a market share of 9% (see

Figure 4).

@ Motor BF,T&P = PH&M = M&A m Liability = Bonds/FG M Engineering @ Others

Figure 4: Non-Life Premium income by class of business.

Figure 4 suggests that the auto-insurance sector contributes significantly

ium i ind and thus have the
(50%) in terms of aggregate premium 1ncome for the industry

largest market share within the non-life industry-
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Table 6: i ;
¢ 6: Growth in Gross Premium for Non-Life Insurance (2012-2016)

Year Premium Income Growth Rate
2012 494E,C§I;18,2364 (%)
2013 582,456,306 17.7
2014 659,262,969 13.2
2015 854,825,825 29.7
2016 1,070,057,051 25.2

The result in Table 6 is consistent with the information displayed in Table 7 in
terms of the net written primium and net earned premium. However, it is
observed in Table 6 that there is aconsistent underwriting loss. Underwriting
could be positive or negative depending on the operational efficiency of the
company or the industry. Underwriting losses ix incurred after an insurance
company has paid out claims and accounted for administrative expenses for
their insurance policies over a certain period. When an insurance company must
pay out more claims than envisaged, and the premiums brought in do not cover

the overall expenses, it results in underwriting loss. The amount reflects the

inefficiency of the insurance company’s underwriting activities. Underwriting

losses mainly arise due to the result of huge claims and disproportionate

expenses. Table 6 records underwriting losses of about 24million in 2013,

29million in 2014, 65million in 2015 and 25million in 2016. This suggests an
miliio »

] : e pricing regime.
operational inefficiency or dlsproportlonate pricing reg
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Table 7: Non-Life ; .
on-Life insurance Industry performance indicators (2013-2016)

Indicator
2016 2015 2014 2013
— (GHSm)  (GHSm)  (GHSm)  (GHSm)
ross Premiu
g m 1,070 854 659 582
einsu
rance 402 355 272 204
Net Written
Premium 668 509 396 366
Net Earned |
Premium 37 475 394 325
Gross Claims
) 329
inourred 555 237 173
Management
445 273 274 210
Expenses
Commissions 124 103 80 64
Underwriting
25 -65 -89 -24
Results
Investment 260 118 29 53
Income
Other Income 25 30 22 20
Profit After Tax 88 61 22 73

Source: NIC annual report (2016)

The study observed combined ratio which is also a significant indicator

i d iting and operational
and the single best measure of an insurer’s underwriting p

efficiency. It is a summation of total expense ratio and claims ratio. Though the

tio does not entirely measure total profitability since it does account for other
ratio doe

: ¢ t incomes, it is an important measure should there be any systemic
investmen ;

0 (0] ilit 1 . han 100%
iti f tablhty, while a ratio of more t
100% indicates underwrltlng proii

usually indicate a 10ss.
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Figure 5 dis :
plays th .
¥S the Industry level combined ratio from 2010 to 2016.
A ratio beyo 0
Fon 1907 Tepresent operational loss. The result suggests that
industry pl . .
1Y players need to improve their underwriting efficiencies for a robust

profitability. On average all the 25 insurance companies have combined ratio of

above 100% for the year under review as shown in Table 8.

Combined Ratio (%)

160

140 136
120 107 111 n e
w0 i I
80
60
40

20

133

Percent (%)

2010 2011 2012 2013 2014 2015 2016

Year

Figure 5: Industry underwriting performance measure with combined ratio
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Table 8: Combj .
mbined ratio for 25 Non-life Insurance Companies (2012-2016)

No

1
2

3

I

10

11

12

13

14

15

16

17

18

19

20

21
22

23
24

25

Company

Activa International Insurance.

Allianz Insurance Cq

Limited

Best Assurance Company.

gonewell Insurance Comp,
ntreprise Ins

Limited - ranee Company

Equity Assurance Company

Ghana Union Assurance

Company Limited

Glico General Insurance

Limited

Heritage Insurance Company

Limited

Hollard Insurance Company

Limited

Imperial General Insurance

Company Limited

Milennium Insurance Company

Limited

NSIA Ghana Insurance

Company Limited

Phoenix Insurance Company

Limited

Prime Insurance Company

Limited

Priority Insurance Company

Limited

Provident Insurance Company

Limited

Quality Insurance Company

Limited

RegencyNEM Insurance Ghana

Limited

Saham insurance Company

Limited

SIC Insurance Company

Star Assurance Company

Limited

Unique Insurance Company

Vanguard Assurance Company

Limited

Wapic Insurance

mpany

(Gh), Limited

companies in Gh

Table 8 su
ana from 2012to 201

2012

mmarizes the combine

6. It could be observed that the combined

110

2013

2014 2015 2016 Average

106 107 143 151 142 1.298
149 154 170 196 158 1.654
- - = - 151 1.51
132 107 97 80 99 1.03
108 103 111 114 96 1.064
92 91 97 103 99 0.964
130 134 129 125 135 1.306
115 114 153 130 116 1.256
98 246 - - - 1.72
135 133 150 136 122 1.352
- 160 252 166 153 1.462
98 94 139 185 127 1.286
9 178 185 140 176 1.55
9 150 122 138 141 1.294
- 364 593 132 129 2.436

- 175 131 109 100 1.03
111 142 140 142 108 1.286
94 108 104 109 105 1.04
95 95 90 117 106 1.006
142 128 115 141 221 1.494
134 131 158 137 158 1.436
o0 108 135 130 128 1.202
168 151 119 128 119 1.37
100 101 117 131 113 1.124
104 130 106 197 202 1.478

d ratio recorded for 25 licensed
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ratio for most of th om 0
[ ol i
Panies recorded above 100% IS is an indication that
. Th ntha

, Improving

income or reducing rj
g risk. One of the key ways in reducing actuarial risk is to

charge actuarially fair premiums.

Empirical Analysis of Financia] Data

Table 9 shows the description of codes used to represent the insurance

companies in the analysis,

Table 9: Description of Codes Used in the Analysis

Code Company Name
Cl Activa International Insurance Company
C2 Allianz Insurance Comp. Ltd
C3 Best Assurance Company Limited
C4 Donewell Insurance Company Limited
C5 Entreprise Insurance
Cé Equity Assurance Co.
C7 Ghana Union Assurance Company
C8 Glico General Insurance Limited
C9 Heritage Insurance Company Limited
Cl10 Hollard Insurance Company Limited
Cll Imperial General Insurance Co.
Ci2 Milennium Insurance Company Limited
Cl3 NSIA Ghana Insurance Company Limited
Cl4 Phoenix Insurance Company.Li_mited
Cl15 Prime Insurance Company Lm.nt(.:d
Clé Priority Insurance Company le‘lte-d
C17 Provident Insurance Company.m.mlted
Cl8 Quality Insurance Company Limited
Cl19 RegencyNEM Insurance Ghar‘m-

20 Saham insurance Company Limited
52] SIC Insurance Co.

Star Assurance Co.

e Unique Insurance Company Limited
€23 vanguard Assurance C
g;: Wapic Insurance (Gh), Limited

fin i i lly preferred in firm’s
1 ur, I anc1al ratios are usua f
As indlcated chapter four,

this study 25 non-life insurance companies

performance evaluations. In
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, it is limited to

2016 si ;
since 2017 financial statement is not yet published. The five-year

averages of the financial ratios for each Company were computed. The summary

of financial ratios used in the analysis is displayed in Table 10.

Table 10: Financial ratios of Non-Life Insurance Companies (2012-2016)

Capital Asset Ratio

Operating Profitability
Eficiency
R1 R2 R3 R4 RS R6 R7 RS

Cl 2602 1352 0822 0314 1298 0290 0.048 0.178
C2 4616 1122 1368 0318 1654 0526  -0.046 -0.150
C3 032 0070 0240 0770 1510 0.026 0.020 0.030
C4 167 1232 1280 0776 1030 0336 0.078 0.176
C5 2.042 0624 1316 0648 1064 0556 0.120 0.256
C6 203 00914 1718 0842 0964 0236 0.092 0.234
C7 0634 4852 0242 0374 1306 0564 0.034 0.058
c8 277 1126 1340 048 1256 0538  -0.002 -0.012
C9 3235 2270 2600 0795 1720 0144  -0305 0875
€10 35 1.054 1494 0442 1352 0532 0.054 0.178
c11 0426 0304 0336 0606 1462 0164  -0.008 -0.018
Cc12 085 0314 0690 0812 1286 0.386 0.062 0.100
c13 0966 1.096 0792 0796 1550 0428 -g.gzg -8_1::
C14 1.892 0654 1352 0706 1294 o.ggi I I
c15 0352 1.396 0344 0610 2436 0 ; s

0.838  1.030 0.864 0.080 0.108
c16 0252 0234 0216 O :

0758 1286 0.344 0.120 0.284
c17 0802 0960 0620 O

0.814 1040 0278 0.058 0.162
c18 2098 1468 1712 O

4 0836 1006 0242 0.094 0.224
c19 2416 0862 201 ' 0382  -0.026 -0.048
1106 0572 1494 O

C20 1.902 0.938 ’ 0 B 1436  0.440 -0.008 -0.012
c21 1.682 1.566 1.068 O e 03 AEED TR
C22 1.644 0884 1.004 0812 30 o8 0088 00
c23 0928 2102 078 o ijp4 0416 0058 0178
c24 2772 0.662 1.940 0% s o5 0014 005t
c25 1666 0.608 1590
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marizes the general outlook of the non-life insurance

companies. The max; :
m .
um and minimum gross written premium was 4.62 and

>

and 0.216 corresponding to Heritage Insurance Company and Priority

insurance.

Table 11: Comparison Matrix

RL R2  R3 RE RS R6 R/ RS
Reference 0.252 0.07 0.216 0.314 0964 0.026 0.12 0.875
c1 2.602 1352 0.822 0314 1298 0290 0048 0178
c2 4616 1122 1368 0318 1.654 0.526 -0.046 -0.150
c3 032 0070 0.240 0770 1510 0.026 0.020 0.030
c4 167 1232 1.280 0776 1.030 0336 0078 0.176
cs 2042 0624 1316 0648 1.064 0556 0.120 0.256
c6 203 0914 1718 0.842 0964 0236 0.092 0.234
c7 0.634 4.852 0.242 0374 1.306 0564 0.034 0.058
c8 277 1126 1.340 0486 1.256 0.538 -0.002 -0.012
c9 3.235 2270 2.600 0795 1.720 0.144 -0.305 0.875
C10 3.5 1.054 1.494 0442 1352 0532 0054 0.178
c11 0.426 0304 0336 0606 1.462 0.164 -0.008 -0.018
12 0.85 0314 0.690 0812 1.286 038 0062 0.100
c13 0.966 1.096 0.792 0796 1.550 0.428 -0.038 -0.144
c14 1.892 0.654 1.352 0.706 1.294 0.402 0.060 0.134
c15 0352 1.396 0.344 0610 2.436 0314 -0.468 0.388
0.838 1.030 0.864 0080 0.108

16 0.252 0234 0216
0758 1286 0344 0120 0.284

c17 0.802 0.960 0.620
1.712 0814 1040 0278 0058 0.162
— 2.008 1457 0.836 1.006 0242 0.094 0.224
€19 2416 0862 2007 0572 1494 0382 -0.026 -0.048
L20 1902 0938 L% 0642 1436 0440 -0.008 -0.012
21 1682 1566 1099 0612 1202 0326 0080 0.176
28 1644 0884 L0V 0.816 1370 0378 -0.088 0.092
c23 0.928 2102 0739 0§98 1124 0416 0058 0178
24 2772 0662 19% 0868 1478 0510 -0.014 -0.056

C25 1.666 0.608 1.590 :
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ly obtain the grey relational

coeffici .
Iclent and grey rational grades in Table 14 and Table 135, respectively.

Gross insurance risk (R1) is the rati of Gross written Premium to Equity

capital. Technical Reserve cover (R2) is the ratio of Technical provisions to
liquid investment. The company that recorded highest for R] is C2 (Allianze
insurance). R2: records the technical reserve cover. The maximum recorded was
4.852 (485.5%) and the minimum was 0.07 (7%) corresponding to Ghana Union
Insurance and Best Insurance Company. Ratios above 100% mean that the
company do not have enough liquid investment backing their technical
provisions. Thus about 48% of the companies have the technical research
beyond 100% (See R2 in Table 11). Net insurance risk (R3) measures the ability
of the company to absorb unforeseen shocks. This figure suggests that Priority

insurance can withstand shocks and losses than the rest of the companies.

R4 is premium retention ratio, the maximum rate was 0.868 (86.8%) and

the minimum rate is 0.314 (31.4%) corresponding to Wapic Insurance and

Activa Insurance, respectively. High retentions are usually considered riskier.
2

High retention will require sufficient capital to support the insurer. This means

that Wapic Insurance is relatively riskier than Activa Insurance. RS is combined

recorded among the companies is 2.436 (243.6%) and

ratio, the maximum ratio

964 (96.4%). This corresp
o of more than 100% represent a loss.

ond to the companies’ Prime
the minimum is 0.

: ce. A rati
Insurance and Equity Assural

ty Assurance the rest of the companies at

From Table 10, apart from Equi

S; discounting other investments.
H

i ceteris paribu
CpRIaE at loss 114Digitized by Sam Jonah Library
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R6: Loss ratio is .
a Cb o
key ratio whicp indicates how wel] an insurance company

pays claims and .
to some €xtent, of fajr Customer treatment. From the Table 14

I‘atIO on avela i 1 e Q

companies.

According to Asset profitability R7 and R8: Return on Asset, This, ratio
is an indicator of general pr ofitability of the insurer. It is calculated as after-tax
profits divided by total assets. It seeks to measure the efficiency with which
management utilize the assets of the company to generate returns of the various
stakeholders. The highest profit was recorded by Enterprise Insurance of 12%.
Allianz Insurance company however experience the biggest loss (46.8%).
Normalized values and the reference seql;ence are presented in Table 12. The
reference sequence was determined by selecting the largest normalized value
for each financial ratio. Thus, after the comparison matrix is formed,
normalized matrix is obtained. By considering that business owners and
managers usually prefer the capital adequacy to be low, operating efficiency
indicators nominal (within some target range) while the profitability indicators

are expected to be high. Accordingly, Equation (3.3) for capital adequacy

indicators, Equation (3.2) for proﬁtability indications and Equation (3.4) for

operating efficiency indicators are used in the formation of the normalized

matrix, shown in Table 12.
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Table 12: Normalized Matrix

R1
Reference 1 e : R3 R4 RS R6 R7 R8
C1 04615 07319 (.74 . X ! 1 1 1
) 0.0000  0.7800 0:5122 ;'ggoo 01983 21742 08776 03200
c3 09844 10000 0.9890 0-172: 03802 1.1742 0.7177 0.0000
ca 0.6751 07570 05537 0-16 0.5741 0.2803 0.8299 0.1756
s OSBSE Diemay 015385 O. 61 04956 2.1742 0.9286 0.3180
C6 0.5926 0.8235 0.3700 0'3971 D45 10000 L0000 Q29
. BASS e 0-9891 0469 0.2527 0.1667 0.9524 0.3746
o 04230 07759 0-528 0.8917 0.1983 1.3788 0.8537 0.2029
i~ 0316s 0-5399 o.ooos 0.6895 0.3845 0.1364 0.7925 0.1346

. . 0000 0.1318 0.3573 0.2348 0.2772 1.0000
c1o0 0.2557  0.7942 0.4639 07690 0.6100 1.7273  0.8878 0.3200
Cc11 110.9601  0.9511 0.9497 0.4729 04096 0.2576 0.7823 0.1288
c12 0.8630 0.9490 0.8012 0.1011 0.4695 1.6515 0.9014 0.2439
c13 0.8364 0.7854 0.7584 0.1300 0.3736 0.8106 0.7313 0.0059
Cl4 0.6242 0.8779 0.5235 0.2924 0.5174 0.6515 0.8980 0.2771
C15 0.9771 0.7227 0.9463 0.4657 0.3780 0.7500 0.0000 0.5249
C16 1.0000 0.9657 1.0000 0.0542 1.0000 1.0833 09320 0.2517
Cc17 0.8740 0.8139 0.8305 0.1986 0.2342 1.0000 1.0000 0.4234
C18 0.5770 0.7077 0.3725 0.0975 0.3736 0.9697 0.8946 0.3044
C19 0.5041 0.8344 0.2458 0.0578 0.2397 1.2197 0.9558 0.3649
C20 0.6219 0.8185 0.6267 0.5343 0.2211 1.3561 0.7517 0.0995
c21 06723 0.6872 0.6426 0.4079 0.4869 0.8258 0.7823 0.1346
c22 0.6810 0.8298 0.6695 0.4621 0.4553 0.6061 0.9320 0.3180
c23 0.8451 05751 0.7760 0.0939 03279 1.0379 06463 0.2361
Cc24 0.4225 0.8762 0.2768 03069 04194 0.8403 08346 0.3200

25 0.6760 08875 04237 0.0000 02854 06970 07721 0.0917

After forming the normalized matrix, Absolute Value Table is constructed by

' ' between normalized values and
using Equation (4.8). Thus, the distance be

reference values are calculated. Table 13 is constructed by subtracting

€Ss.
normalized values from reference valu
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Table 13: Absolute Values Table

R1 R2 R3 ¥
C1 0.5385 RS R6 R7 RS
c2 1.0000 g'iggé 02542 00000 0.8017 1.1722 0.1232 06300
o3 P Oloooo 8.4832 00072 06198 0.1742 02823 1.0000
o 03200 0-2430 0.0101 0.8231 04259 07197 0.1701 0.8244
c 0105 0- 4463 0.8339 05044 11742 00714 0.6820

; 1159 0.4614 06029 07658 0.0000 0.0000 0.6039
Cé 0.4074 0.1765 0.6300 0.9531 0.7473 0.8333 0.0476 0.6254
c7 0.0875 1.0000 0.0109 0.1083 0.8017 0.3788 0.1463 0.7971
c8 05770 0.2208 04715 03105 0.6155 08636 02075 0.8654
€3 06835 0.4601 1.0000 0.8682 0.6427 07652 0.7228 0.0000

€10 07443 02058 05361 02310 03900 07273 0.1122 0.6800
Cll ~ 0.0399 00489 00503 05271 05904 07424 02177 0.8712
Cl2 01370 00510 0.1988 0.8989 0.5305 0.6515 0.0986 0.7561
C13 01636 02146 02416 08700 0.6264 0.1894 0.2687 0.9941
Cl4 03758 0.1221 04765 07076 04826 0.3485 0.1020 0.7229
C15  0.0229 02773 00537 05343 06220 0.2500 1.0000 0.4751
Cl6  0.0000 0.0343 00000 0.9458 0.0000 0.0833 0.0680 0.7483
C17  0.1260 0.1861 0.1695 0.8014 0.7658 0.0000 0.0000 0.5766
C18 04230 02923 06275 09025 0.6264 0.0303 0.1054 0.6956
C19 04959 0.1656 07542 09422 0.7603 0.2197 0.0442 0.6351
C20 03781 0.1815 03733 04657 0.7789 03561 0.2483 0.9005
c21 03277 03128 03574 05921 05131 0.1742 02177 0.8654
C22 03190 0.1702 0.3305 05379 0.5447 0.3939 0.0680 0.6820
23 0.1549 0.4249 02240 09061 0.6721 00379 03537 0.7639
24 05775 0.1238 07232 06931 05806 01591 0.1054 0.6800
25 03240 0.1125 05763 10000 07146 03030 0.2279 0.9083

Grey Relational Coefficient Matrix given in Table 14 is obtained by taking Grey

relation coefficient & =0.5 and using Fquation (3.10)- It also shows the

relational rank.
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Table 14: Grey Relation Coefficients Matrix

Cc1
c2
c3
c4
5
cé
c7
c8
c9
C10
Cil
C12
C13
Ci4
Ci5
Cile6
c17
Cc18
C1s
C20
c21
Cc22
c23
C24
C25

R1
0.522

0.370
0.974
0.644
0.589
0.590
0.870
0.504
0.462
0.441
0.936
0.811
0.782
0.610
0.962
1.000
0.823
0.581
0.542
0.608
0.642
0.648
0.791
0.504
0.644

R2
0.687

0.727
1.000
0.707
0.835
0.769
0.370
0.727
0.561
0.740
0.923
0.920
0.732
0.828
0.679
0.945
0.759
0.668
0.780
0.764
0.652
0.775
0.580
0.826
0.839

indicators; capital adequacy ratl
15, using Equation (
financial performances of

overall grey re

Finally, we sho

R3
0.698

0.549
0.983
0.568
0.560
0.482
0.982
0.555
0.370
0.523
0.921
0.747
0.708
0.552
0.916
1.000
0.776
0.483
0.438
0.611
0.622
0.640
0.724
0.448
0.505

lational gr ade S

R4
1.000

0.983
0.416
0.413
0.493
0.381
0.844
0.654
0.403
0.718
0.527
0.395
0.403
0.453
0.524
0.383
0.423
0.394
0.384
0.558
0.498
0.522
0.393
0.459
0.370

3.12). In order t©

RS
0.423

0.486
0.580
0.538
0.434
0.440
0.423
0.488
0.477
0.601
0.499
0.525
0.484
0.549
0.486
1.000
0.434
0.484
0.436
0.430
0.534
0.519
0.466
0.503
0.451

the non-life insur

R6
0.333

0.771
0.449
0.333
1.000
0.413
0.608
0.405
0.434
0.447
0.442
0.474
0.756
0.628
0.701
0.876
1.000
0.951
0.728
0.622
0.771
0.598
0.939
0.787
0.660

w the Grey relational gr

hown in Table 1

R7 R8 GRA Rank
0.827 0.463 0.619 10
0.675 0.370 0.617 12
0.775 0.416 0.699 3
0.892 0.463 0.570 22
1.000 0.493 0676 4
0.925 0.484 0.561 23
0.801 0.424 0.665 6
0.739 0.404 0.559 24
0.448 1.000 0.519 25
0.840 0.463 0.597 18
0.730 0.403 0.672 5
0.856 0.437 0.646 8
0.686 0.371 0.615 13
0.852 0.448 0.615 14
0.370 0553 0.649 7
0.896 0.440 0.817 1
1.000 0.505 0.715 2
0.848 0.458 0.608 15
0.930 0.480 0.590 19
0.703 0.395 0.586 20
0.730 0.404 0.607 16
0.896 0.463 0.633 9
0.624 0435 0619 11
0.848 0.463 0.605 17
0.720 0.393 0.573 21

ades for the three financial

o, operating efficiency and

profitability in Table
make a better evaluation intended for the

ance companies, we compute the

5 It was noticed that Priority
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3

followed b .
y Best Assurance Company Limited (C3) and Enterprise Insurance

Company Limited (CS) fourth. However, Heritage Insurance Company Limited
scored relatively high in terms of profitability (3. This is an indication that

even though, operationally very poor, other investment activities are helping to
cushion and sustain it. Table 17 shows the results of grey relational grade for

each of the three performance ratios used.

115i)igitized by Sam Jonah Library



© University of Cape Coast https://ir.ucc.edu.gh/xmlui

Table 15: Results of the Grey Relationa] Grades

Code Name
CAR P
= e Rank  Oper. Rank  FProfitabilly  Rank
tva Intemational Insurance 0.73 Effic.
Company ‘ 6 0.38 25 0.64 14
C2 Allianz Insurance Comp. Ltd 0.66 9 -
C3 Best Assurance Company 08 ' § 0.52 24
s Limited ot 1 0.51 18 0.60 16
Donewell Insurance Com
Limited ey 058 @b 0.44 23 0.68 7
(B4 Entreprise Insurance 0.62 14 0T b 075 R
Cé6 Equi )
quity Assurance Co, 0.55 22 0.43 2 0.70 5
Cc7 Ghana Union Assuraj
Company ranee o7y 5 0.52 17 0.61 15
C8 Glico General
T ral Insurance 0.61 16 0.45 22 0.57 17
C9 ]l:lie;liiltaegde Insurance Company 0.45 25 0.46 21 0.72 3
C10 I]:Iior:ii::{ Insurance Company 0.60 17 0.52 16 0.65 11
Cl11 Imperial General Insurance Co. 0.83 3 0.47 20 0.57 19
Cl2 Milennium Insurance Company (.72 7 0.50 19 0.65 13
Limited
C13 NSIA Ghana Insurance 0.66 10 0.62 9 0.53 23
Company Limited
Cl4 Phoenix Insurance Company 0.61 15 0.58 11 0.65 12
Limited
CI5 Prime Insurance Company 0.77 4 0.59 10 0.46 25
Limited
Cl6 Priority Insurance Company 0.83 2 0.94 1 0.67 8
Limited B
C17 Provident Insurance Company 0.69 8 0.72 3 0.75 1
Limited
C18 Quality Insurance Company 0.53 24 0.72 2 0.65 10
Limited
c19 RegencyNEM Insurance Ghana 053 23 0.58 12 0.70 4
5 5 21
C20 Saham insurance Company 0.63 12 053 15 0.55
Limited 6 057 18
C21 SIC Insurance Co. 0.60 18 0.65
0.65 11 0.56 13 0.68 6
Cc22 Star Assurance Co. 2
0.62 13 0.70 5 0.53 22
C23 Unique Insurance Company :
Limited A 0.65 7 0.66 9
56 21
C24 Vanguard Assurance C 9 0.56 14 0.57 20
; : (Gh), Limited ~ 0.59 19 :
C25 Wapic Insurance (Gh),

the most important
i in Table 15, on average
Based on the findings

on financial performances of the non-life
2

financial indicator impactin

hana is the capital adequacy indicator (65.0%). In
ana

. ies in G
insurance compani _ follows with 62.5% and 57.6%
" bility and operating efficiency
addition, profit Best Assurance Company Limited (C3) is
hows that Des
ively. The Tables
Tespectively 12q)igitized by Sam Jonah Library
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the most efficient (84 39,

in i
) in terms of Capital adequacy. It is the company with

the ability to wi

ty to withstand shocks or loss with Heritage Insurance Company
Limited (C9) bej _

(C9) being least capable to withstand losses (44.9%). Priority Insurance

Company Limited (C16) holds the second position with adequacy (83.2%).

When ord TPy o
ered operating efficiency indicators is examined, it is found

that Priority Insurance Company Limited (C16) was the best in terms of

underwriting and operational efficiency (93.8%). The second position is taken

by Quality Insurance Company Limited (C1 8), and third is Provident Insurance
Company Limited (C17). The worst in terms of underwriting and operational

efficiency is Activa Insurance Company Limited (C1) with 37.8%.

According to the profitability indicators, Provident Insurance Company
Limited (C17) is more efficient (75.2%). The second position is taken by
Enterprise Insurance Company Limited (C5) with 74.6%. This is interpreted as

good despite its poor capital adequacy position. The worst is Prime Insurance
Company Limited (C15) (46.1%).

Assessment of financial performances of insurance companies is quite

important for regulators and industry players. Assessment of insurance

jes i within the Ghanaian insurance industry and hence this
companies is rarely seen

financial performance regarding the
is t to measure the financ
study is the first attempt

i i ios. The findings of
life i ce companies in Ghana using financial ratios g
non-life insuran
ial indi i ital
; financial indicator 18 the capi
t important
d that the mos

the study showe | .
y proﬁtability and then operating efficiency.

; d by

indicators, followe .
adequacy 1ndl ty Tnsurance Company Limited has the most
ori

The results also indicated P11

e 2 ; = i 1 i ana.

m
successful performance @
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The performance .
o Prioity nsurence Company Limited is driven by very high

underwriting and : -
g efficiency Indicators as wel] a5 op capital adequacy with

relatively | " _
yiowprofitability. In the light of these findings, it can be suggested that

Priority Insurance Company Limited is the best managed financially.

Provi o
dent Insurance Company Limited is the second best also driven by

high profitability and operating efficiency, second and third, respectively, in the

ordering table. This company is 8™ on CAR or dering. This means that this

company is high net insurance risk. Heritage Insurance Company Limited
exhibited worse performance overall. Heritage Insurance Company Limited
was also ranked last in terms of capital adequacy requirement and 21 in terms
of operating efficiency. This means that the company was not managed well

during the period under review.

Developinga robust, risk-based and semi-parametric pricing model for

premium determination

The previous section quantitatively analyzed the financial performance

of the insurance companies. This is important because it gives a fair view of the

: and lays the foundation
ife i i erational performances
non-life insurance industry op

_ ) ) o
for thi tion. Using accident and claims data sets as described in Chapt
or this section.

i esults of the modeling framework
i i the analysis and r
T'hree, this section presents y

s of the study. The sum
n the Tables in APPENDIX A-1,

: mary of regional distribution
in line with the objective

sets is presented 1

4 APPENDIX A-4.

of the accident data

-3 an
APPENDIX A-2, APPENDIX A-3a
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Summary of Accident Data

2015) consistent with accident rate computation, it was established that about
15.5% of crashes occurred in Ashanti region, 5.9% crashes occurred in Brong
Ahafo, 8.9% occurred in Central region, 10.5% occurred in Eastern, 42.4% in
Greater Accra region, 2.9% Northern, 1.4% in Upper East, 1.5% in Upper West,
4.9% in Volta region and 6.1% occurred in Western region. Majority of the
accident crashes occurred in Greater Accra followed by Ashanti region. This is
not surprising because the vehicle density in Greater Accra and Ashanti regions
are higher than the rest of the regions (see APPENDIX A-1 for details).

The Table in APPENDIX A-2 presents the annual record of the number
of deaths as a result of accidents in the various regions. If we focus on data from

2013-2015. out of a total of 4676 deaths recorded, about 19.8% of deaths were

recorded in Ashanti region, 9.8% in the Brong Ahafo region, 9.3% in Central,

about 11.1% in Eastern 24.6% in Greater Accra region, 4.8% in the Northern

region, 3.3% in Upper East, 3.0% in Upper West, 6.6% in Volta region and

: i umber of deaths were recorded in the
7 8% in the Western region. The highest n

JJlowed by Ashanti, Eastern, Brong Ahafo, Central etc.

erved in APPENDIX A-1.

Greater Accra region fo

: was obs
This statistic correlates with what

| traffic fatalities Was also obtained, which isthe
ra

ua
Data on actual ann | o
; summary is provided in
ffic crashes that resulted in death. The
ic -
e o 82 tion of casualties; crashes that involve
u

e
APPENDIX A-3. The annual distr!

injuries is also s
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The regional ra
nk order when considering fata] crashes during the three
ear period 2013- , )
year p 13-2015 remains nearly the same (see Appendix A-2). Greater-

Accraregio . i _
glon remains the highest in terms of fatal crashes with 24.6% followed

by Ashanti region (19.8%), Eastern (11.1%), Brong-Ahafo (9.8%) and Central

0 .
(9.3%). Expectedly, in 2015, the highest number of fatal crashes occurred in

Greater Accra (439; 27.6%), followed by Ashanti Region (310; 19.5%), Eastern

(181; 11.4%) and then Central region (149; 9.4%). Together, these four regions

accounted for slightly over two-thirds (67.9%) of all the fatal crashes in Ghana.

From year 2014 to 2015, five (5) regions recorded increases in fatal
crashes. Qreater-Accra region recorded the highest percentage increase of
14.6% followed by Ashanti region (13.6%), Western (13.1%), Upper West
(8.1%) and then Eastern region (7.1%). Reductions in fatal crashes were
however recorded in the Upper East region (-33.8%), Northern region (-13.7%),

Volta region (-13.0%), and Brong Ahafo region (-8.4%). Central region

recorded no change in fatal crashes from 2014 to 2015.

In terms of the distribution of road traffic fatalities among the regions,

the pattern virtually follows that of fatal crashes. During the year 2015, the

highest regional number of road traffic fatalities of 458 deaths, representing
ighest regi

. N )
25 4%, were recorded in Greater Accra region followed by Ashanti region (35
470, [
I 185
deaths: 19.5%), Eastern region (197 deaths; 10.9%), Central region (

d Brong Ahafo region (1
of all the road traffic fatalities in Ghana. It

70 deaths;9.4%). These five regions
deaths;10.3%) an

(1)
alone contributed slightly over 75%

i the worst region, in terms
ion has been
r Accra reg

should be noted that Greate

of regional fatalities in Ghana.
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.3%), Western
region (19.7% &

) and margj i i regi
ginally in Ashanti regjon (0.3%). Figure 10 gives a

pictorial view of road crash and fatalities trend from 1991 through 2015

4000
Lo General trend of Crashes and Fatalities (1991-2015)
=== All Crashes
3000 ====== Al| Fatal Accident
All Casualties
2500
2000 /
1000 L T
500 -
p3= %\‘:-.-_,e—_—/'-’:' ~- e
e —— f
0
R I Y, SR S SRS 7 6T
GO ™ S Se SR S O S
YEAR

Figure 61: General trend of crashes and fatalities from 1991 to 2015.

Figure 6 shows the plot of crashes, fatalities and casualties from 1991 to 2015.

graph shows an upward trend during the year under

ncreased from 1991 to 20015.

Generally, the

. i ve 1
consideration. This means that accident ha

e claim’s records for the insurance

This may have corresponding impact in th

companies.
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Figure 7: Regional distribution of fatal crashes from 1991 to 2015.

In Figure 7, Greater Accra region ranks highest in all fatal crash and the
Upper West ranks lowest. In terms of fatalities, the Ashanti ranks highest and
the Upper West region ranks lowest whilst in terms of casualties the Greater

Accra ranks highest. The trend is an indication that accident risk is high when

there is high traffic intensity.
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The lowest ities i
1n fatalities ig Upper West (1.9%) and the highest is Ashant
region 21.4%. From APPENDIX A

Accra region (Table 8). The question is, can these statistics form the basis of
risk classification in general insurance? The study notes that insurance claims
are contingent on an occurrence of an event., This event is the occurrence of an
accident that may involve vehicles and pedestrians from an insurance
perspective. In view of the statistics, the study wishes to test the effectiveness
of a new classification model based on location in which the policy usually
operates. We argue that the risk of claim is not only influenced by policy or
vehicles characteristics but also by the environment in which the policy
operates. The study thus examines the distribution of risk of accident across all

the ten regions and used that as a basis of model refinement.

Summary of Insurance Data Used

The insurance data consists of policy and claim information for each

vehicle. The data contains one hundred and forty thousand, nine hundred and

sixty-one (140,961) vehicle records out of which contains five thousand, four

3
hundred and fifty (5450) claims records for four (4) years, from 2013 to 2016.

. ; ataset.
Table 16 summarizes the variables of the datase
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Table 16: Insurance Policy Variables

Policy characteristics
U V

se type chicle characteristics ¢

; laims histo
1. Commercial Vehicle malce e
> 1. Opel No. of claims

2. Nissan

Usage category 3, M_itsubishi
1. Taxis, g Kia
2. Ambulance, 6. "ll:ztyaota
3. Tanker, 7. BMW
4. General cartage, 8. H :

5. Maxi-bus, 9' Dyunda1

: . Daewoo
6. M%m-bus, 10. Honda
7. Private individual, 11. Audi
8. Corporate individual, 12. Peugeot
9. Motor, 13. Ford
10. Own goods carrying, 14. Daf
11. Hiring, 15. Mercedes
12. Special types 16. Mazda

17. Make.Other

Policy coverage Vehicle age Claim amount

1. Comprehensive Region

2. Third Party
3. Third Party Fire and Theft

Table 16 presents the insurance policy variables considered as historical risk in

this study. These are the available variables associated with the data collected.

5 i istics, claims
The variables include policy characteristics, vehicle characteristi

: curred, vehicle age,
history, policy coverage claim amount where claim has oc¢ ,
2
3

region and claim amount.

i by Region
Distribution of Claims and Premiums DY

i 1 i fi 2013 1o
l ives the regional diStI'lbutIOll Of clalms or
Iable 1 7 be OWg

2016.
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Table 17, R o e austomens e
s of which aboyt 5450 (3.9%) fi

for claims. About 85% of the ¢lqim« : et
m
S In the study period occurred in Greater

17.6% of aggr ' '
G ggregate claims. This meang that less than 20% of claims was

accounted for by the premium income for the period. In terms of regjonal
distribution of total claims, Greater Accra region recorded the highest of the
aggregate claims (85%) and contributed about 83% of the premium income.
Upper West recorded the lowest (0.09%) proportion of claims. These figures
are not surprising since nearly 75.4% of the total number of vehicles insured are
in the Greater Accra region, and less than 0.3% of same are in the Upper West
region. In terms of third party and comprehensive policy types, the data showed
that a claim of approximately GHe 5,284,407 was recorded for Third Party
representing 12.06% of total claims and the remaining majority for

Comprehensive. No claims were recorded for Third Party Fire and Theft.

In line with the study objectives, tis required that the predictor function

considered in Equations (3.12) and (3.19) i estimated. The study first considers

across the ten regions of Ghana. To the best of

the distribution of accident risk
idered in pricing insurance

; : een CONS
our knowledge no such information has b

policies.
i ihsurance outcomes.

kons that several factors influence 1NSY

The study reckon | d
. 1 +ive changes, claim trendas,

. and legislatty
' regulation
Some of the factors include

nd regulation,
¢ and investment- -

Legislative 2
vehicle density, interest 1t
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period to the other.
More so, factors such as roadway design, roadway

maintenance have bee :
n shown to contribute significantly to road accidents

which vary from one region to another. For these reasons, these phenomena are
characterized and incorporated into the pricing framework. The study used
Markov theory to categorize the claims data set based on accident risk derived
for each region. By noting that the number of times accident occurs represent a
sequence of random variables, the probability of transitions between states or
movement of vehicles between and within regions could be expressed as a
transition probability matrix with finite state space {i =1,...,10}. The initial
state distribution was obtained using (2013-2015) distribution of accident

claims, with initial probabilities given in Table 18.

Table 18: Accident Distribution (2013-2015)

Region All Crashes (%)
4
Greater Accra 42
15.5
Ashanti -
Eastern ”
Central "
Western 59
Brong Ahafo
49
Volta 29
Northern 15
West
Upper We »
U East
pper Ea "
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Given that OCCurrence of gp accident at ,
) ' alany given time is stochastic and
heteroskedastic betweep Tegions, the st d
Stionaloxch udy employes Bayes theorem and
conditional probabiliti
b Ities to compute the accident risk between and within states
to generate the iti T
g transition probabilities for the Markov chain Using the crash
" . -
data, risk of accidents within each state were computed to generate the transition

probability matrix. Table 18 displays accident risk distributions for the ten

states, which is the maximum likelihood estimate of risk in the various regions.
The Bayes formula has two interpretations: given the probability of an event A,

the first interpretation is the long run proportion of times that the event A occurs

upon repeated sampling.

The second interpretation is the subjective belief in how likely it is that

the event A will occur. If A and B are two events, and P(B)>0, then the
conditional probability of A given B is P(4] B)= P(AB)/ P(B), where AB
denotes the event that both A and B occurs which in the context of the study

denotes the probability of accident occurrence between states ot within two

states. The frequency interpretation of P(4|B) is the long run proportion of

bet states. The subjective probability interpretation is that P(4]5)
etween ;

. . — if it is known
s the updated beliefof how kel it 1 e, DU
represents th

— P(An B). Table
that the vehicle 18 moving from state Bto A. P (4] B)P(B) (
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All things being equg)] :
> the I'lSk of :
aC(_‘,ldent Wit

: hin Greater Ac G 4
0.4240 and the risk of accident if 4 vehicale ; Cra region 1s
ale 1s

i moving from Grea
region to Ashanti ter Accra

region ig 0.06
) 57. Frqm Table 19, we derive the transition
probability shown in Table 20

The transition Probability matrix is aperiodic and irreducible and
therefore the limiting distributiop exist. Thus, from the Tabje 20t s possible o
events between states or 3 vehicle can freely move from one state to another
without any hindrance (irreducible) and observing the event within each state is
3159 possible (aperiodic). On the basis of this it possible to find the limiting and

stationary distribution of the transistin matrix. This means that there exist,

limM" =y, . The summary of long run distribution (lim A" = ¥, ) is shown in

n—oo 3w

Table 21.
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Table 21: Long run distribution of accident rigk
risk.

GR AS BA

egions of Ghana. :

reg ana. Thus, in the long run accidents risk within Greater Accra
region, for example is 19.64% and 19.43% inAshanti region. Based on the
outcome in Table 21, the risk for the ten regions are classified into three risk

zones based on risk similarities described in Table 21 and consistent with

Occam’s razor.

Table 22: Classification of Risk Zones

Range Classification Region

0.0-0.05 Low risk NR, UW, UE
0.06-0.15 Medium risk WR, VR, CR, ER, BA
0.15-0.25 Considerable risk GA, AS

As shown in Table 272 the result of the risk classification is considerable
S S

isk (Greater Accra and Ashanti regions), medium risk (Brong Ahafo, Central
I1S T

stern region and Volta regions), and low risk zone

region, Eastern region, We

(Northern, Upper West and Upper East regions).

were adopted to integrate the location risk,

Two indicator variables ¢ and dy
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2= 8k +8), 43k
A (4.13)

where [ and , are the levels of rigk into a single model, and R th
3 ; are ine

historical risk. The levels of the indicator variables are in Table 19

Table 23: Location Risk Variable Classification

g, q, Variable Description

0 0 if the observed claim is in State 3
1 0 if the observed claim is in State 2
0 1 if the observed claim is in State 1

This means State 3 is used as the reference. This implies that when policyholder

is in low-risk zone (state 3), the expected premium is related by the function

77(2') :inRi (4.14)
i=1

i th
F other states, the risk premium for a policyholder depends on the
or any ;

; i ich the polic
a . £ the risk associated within the environment in which policy
ynamics of the I

that influence
tes. It is therefore required that the relevant factors
usually operates.

itude of their effects on the premium function
magn

premium function and the

is determined.
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um Fllnction

for out-of-sample validation of the model. The first choice in building a

modelwith gradient boosting algorithm involves selection of the appropriate
loss function which we specify as Tweedie. The use of Tweedie loss function
requires specification of the index parameter (¢), the shrinkage, the optimal
number of trees and the interaction depth. The optimal index parameter was
obtained using profile likelihood estimation procedure. Figure 9 shows that, the

optimal ¢ obtained was 1.61 at 5% level of significance.

19400
19600 —
-19800 -
-~

20000

-20200

Profile-loglikelihood

-20400

1.2 1.4 1.6 1.8

* index
(95% confidence interval}

Figure 9: Estimating index parameter (¢)

! | ing rate £
inkage or the learning ra
sary to select the shrinkag

Secondly, it is neces |
['h 05 as sugge ed by F iedman (2001) to give
e learning rate Z | | g
o ( seter for the model 18 the size of trees or

paran

' t tuning
optimal results. The nex
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the number" of BOOSting. o P 9
8 lterationg M. Th
S was speciﬁed via 5

y s ) 4 onoss
tion.
validation. To illustrate the selection Procedure, we f
» WE Hi1st grew man

= : Yy trees with
M =5000. The result is displayed i Figure 10

wn
(/7]
S
o _|
s 9
‘m
o W0
a o~
»
0O o | L
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I=
o)
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S | | l
% | T =
i3]
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lteration

Figure 10: A Plot of CV error showing the optimal iteration number.

Figure 10 plots the error rate obtained at each level of iteration. The
study used a 5-fold cross validation. This means that the data was randomly

divided into five (5) samples not necessarily equal size. Each of the five (5)

ich the optimal number of
samples is fitted separately to the model, out of whic p

trees is obtained. Figure 10 showstwo lines one black and the other green. The

(0) onwards the error rate reduces suggesting an
ero

the tree grows from point 2

moves beyond 2000
i ment of error reduction rate. As the model
1mprove | 1
i . :oiching returns in mode
he curve tum ypwards suggesting dimin! g
] ions, the cu | ot
. reaches minimum and begins to r1se 18

. he error rate
accuracy. The point where the . M =1788.
he Figure 1418 about M =

:ch from t
the optimal tree number which
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of trees 1s inversely related to fhe shrinkage parameter. As the shrinkag
' e

eter
param gets smaller the number of trees increase at the expense of

computational time. Thus, the parameter was tested at various levels; 0.1, 0.01,

and 0.05. From the analysis the shrinkage parameter at 0.05 (c=0.05) was

most approapriate.

Thirdly we evaluated the optimal number of splits for each tree or size
of interaction effects. A model with a one-way interaction effects is simply an
additive model, without any interaction effect. The study set out to investigate

interaction effects specification that gives the best results, given ¢ =0.05 and

M =1788 . We evaluated 20, 10, 5,4,3 and 2-way interaction effects using the

training data set. The result showed that the ten (10) way interaction effects

(L=10) gives the best results. - The model framework makes it possible for

i i i = , & =008
higher order interaction offects to be investigated. Given M =1788,6

: e o
d L =10 the predictor fanction in Equation (4.13) is estimated using the
,and L=

function described in Equation (3.1 1).

involved
_6 illustrate the procedures Invo
-1t APPENDIXB 61
APPENDIX B-1to

4 which presents the relevant predictors

] 2
in getting the outcome 11 Table

I jtude.
arranged in order of magnitu
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Relative |
Variable No. mportance

- Variable Name TSP~
Vehicle Age lative influence

g Comprehensiye 322243
3 Usage.0 ; okt
y Tmfk wn.Goods.Carrying ~ 7.8849
s i
6 U§ageMaxi.Buses 2..9536
; lgr‘gateﬁcars(individual) 2.4073
2.3541
9 Usage.Tankers 29604
10 Toyota 1.9629
11 Make.Other 1.4143
12 Ford 1.3968
13 Daf 1.3809
14 Usage. Ambulance/Hearse 1.2331
15 Mercedes 269
16 Motor 1.0991
17 HGV 1.0517
18 UsagePrivate_cars(corporate) 1.0 124
19 Tata 0.9235
20 Mitsubishi 0.8395
21 Type.Private 0.7919
0% Type. Commercial 0.7497
23 Pickup 0.7357
0.6034
24 State2 0.5927

5 Make.Nissan > 4
Third.Party a0
26 ’ Taxis 0.5348
27 ey 0.5124
28 Kia 0.5040
29 General cartage 04187
30 U(s}a\%eMlm'Buses 0.3326
L 0.3177
- Make. Opel 0.2933
02 Usage Motor.Cycle (Corporate) 0.2671
22 Hyundai 0.2576
35 Audi 0.2068
SUV 0.1173
gg Usage. Hired 0.1102
Honda 0.1033

38
L/M/
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Variable No.

Variable Na
me Relative influence
40 State 1
; . | 0.0767
ge.Special Ty
pes (Road) 0.0649

42 Daewog 0.0604
43 .
° Usage. Motor. Cycle (Individual)  0.0114

Make.
) ake.Motor 0.0074
y Mazda 0.0017

Third Party(ft) 0.0000
A5 Stype 0.0000
48 Bmw 0.0000
49 Peugeot 0.0000

Thus, Table 24 presents the summary of the relative importance of
model parameters. This is an attempt to assess how important each variable is
to the model. In this procedure, in regression trees we calculate the total amount

of reduction in the residual sum of squares (RSS) attributable to splits caused

by the predictor averaged over the qumber of trees. In classification trees, we

do the same using average reduction in the Gini index. The variables that are

relevant to the model have been arranged in order of magnitude. Out of the 49

iables tested out-of sample, 4 of variables were found not relevant to the
variables te -oi- ’
' location effect
del (variable importance recorded zero as 1 Table 24). The
mode |
| was significant Thus, while State 1 contributes about
el was :

as specified in the mod o |
0.6% (Table 24). This 18 significant

0.08%, State 2 contributes about

ness of the non-life m

severity of claims when 1
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have OC%ngH, as g result of i g9

(23.86%), own goods carrying (7.88%), etc
Partial Dependence Plot

Partial dependence o '
P plots offer additional Insights into the way the
variables influence the dependent variable. Recall that one of the criticisms of
the previous study utilizing procedures such as generalized linear models is that

the fuctional form or relationship of claims with some other variables in the
predictor space may not be necessarily monotonic and linear. The partial
dependence plot therefore seeks to display or validate among others this
assertion or otherwise. In this plot the vertical scale is designated as the log
odds and the hash marks at the base of each plot show the decile of the
distribution of the corresponding variable. The partial dependence accounts for

the average joint effect of the other predictors in the model. The variable

“yehicle age” have a roughly monotonically decreasing partial dependence

(Figure 11). The nature of dependence of vehicle age and price of the vehicle is

nsive cars would cost more to

: ¢ expe
natural. This is because newer and more exXp

' of vehicle
ir in the event of accident (collis1on). The nature of dependence
repair in
i ioures 11 and 12). As
is fairly linear over the vast majority of the data (see Figu
age is fair

al dependence of third-party fire and theft on the
ia

expected, there is no part

. . 1 relationship-
premium model since therels 2 horizonta
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€ve 1Cle iS Wi .
1dely T€Cognized as gp important predi
claims (Brockman & Wright predictor of

3

model. Positive relationship means that when the risk in State 1 goes up, the

average premium also goes up.

3.60
HEREN
L1

[ ?) I I [ I T = | | | I | l
0.0 0_4 0-8 0-0 0-4 T
: b
[ ]
B £ \
o 5 ]
= _ T g o
= 8 | = § > A —
© 1 1 T |
” 0.0 0.4 0.8
00 04 08 d
c
Key |
i cles
a) SUV b) State 2 ¢)State 1 d) Private type vehi
Figure 11: Partial Dependence Plots (a)
144

Digitized by Sam Jonah Library



© University of Cape Coast https://ir.ucc.edu.gh/xmlui

Vo]
[
Q
©
[\p]
E es)
) 3 &
= @
15]
00 04 o038
a
b
v ] ]
— T — e
= o7 T 0 ]
UL NN T T T 1
0.0 04 0.8 i - 05
Y d
Key

a) Vehicle age b) Third party c) Comprehensive d) Third party (fire and theft)

Figure 12: Partial Dependence Plots (b)

i i i thness
These plots are not necessarily smooth, since there 1s o SmMOO

is i of using a
constraint imposed on the fitting procedure. This is the consequence g

t t i ljse] Ved then it iS the reSUlt Of the
ree 00 h trend 1S O )
based mOdel. If a sm

nce of the predictors on the response and it 15

estimated nature of the depende
The rest of the variables

zero signify that the observation is

close to
For instance, for State 1, responses

ate 3 and response

plot suggests a log

close to 1 means the observed response
S

either in State 2 or St
artial depeﬂdency

it function. We interpret

is in State 1. The p
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€nce plot for
the dum .
MY variab]eg in terms of its direction of

dependence with claj

ms. The nature of the curve for State 1, suggest
. .. » Suggests a positive
relationship with the clajmsg function P

Model Evaluation

One of the objecti i
objectives of the study is to demonstrate the superiority of

the model summarized in Table 24 using underwriting data from a local

Insurance company. According to Klugman et al. (2004), model-based approach
to solving real life problems should be considered in the context of the
objectives of any given problem. Many problems in actuarial science involve
the building of a mathematical model that can be used to forecast or predict
insurance costs in the future. A model is a simplified mathematical expression
or description which is constructed based on the knowledge and experience of

the actuary combined with data from past. The data guide the actuary in

selecting the form of the model as well as in calibrating unknown quantities

usually called parameters. This means the model provides the balance between

rmity with the available data. The simplicity is measured

simplicity and confo
in terms of such things as the number of unknown parameters. The conformity
. d the model.
of data is measured in terms of the discrepancy between the data and the

between the two criteria; fit
Co d on the balance
Model selection 18 usually base

- 04).

and simplicity (Klugman et al., 2004)

tives the study compares the model developed
ecltv

ine with the 0bJ TT
In line & ventional Generalized Linear

; uch as th
against other competing models $
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To examine t
he performance of these competing models, after fitting

each on the training data, we predict the risk premium Z(X)=(X) by

applying each model on the independent out-of-sample data. It would not be

appropriate to measure differences between predicted premiums Z(X) and real
losses y by depending on mean square error loss or the mean absolute loss.

This is because the losses or claims have high proportion of zeros and very much
positively skewed. An alternative statistical measure was considered. The
ordered Lorenz curve and the associated Gini index proposed by Frees et al.,
(2011) was considered. This measure captures the discrepancy between

premium and loss distributions without the influence of either the zeros nor

skewness. As discussed in Chapter Four, we compute the Gini index and

calculate the ratio of the rate we would charge based on MMGRB mode] and the

GBM.
rate we would charge based on GLM, TDboost and

) ) ively
i i from each model is successive
i s, the prediction
Based on the discuss1ons,
icti om the remaining
fied as the base premium and use the predictions fr
specified as the - |
the Gini indices. Using
i -ym to compute
ng premlm

the compet
models as forming model, the study selected the

st per
“minimax’’ strategy to select the best P

f the maximal indices over the competing

to
mode] that provides the smalles

models.
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Digitized by Sam Jonah Library



©-University of Cape Coast https://ir.ucc.edu.gh/xmlui

. standar .
coefficients. d errors of the gini

Table 25: Matrix of Ginj Indices

M
S I\gC(})l;(()Pl) TDB(;CSST(Pz) GLM(P3) GBM(P4)
: -8.013
TDBOOST 12,027 0.000 9% Fy
2;1\1\//1[ 28.406 27.225 0.000 19.837
36.296 35.729 30.025 0.000

Table 26: Matrix of Standard Errors

MMGB(P1) TDBOOST(P2) GLM(P3) GBM(P4)

MMGB 0.000 3.062 3 588 3.107
TDBOOST 3.045 0.000 3.570 3.140
GLM 3.246 3266  0.000 3.412
GBM 2.273 2.304 2.869 0.000

From Tables 25 and 26, we have the Gini indices and the standard errors

respectively. We find that the maximal Gini index is 1.38 when using MMGB

as the base premium, 12.07, when using TDboost as base premium, 28.406 is

when using GLM as base premium and 36.296 when using GBM as the base.

MMGB is the smallest. Therefore, MMGB has the smallest maximum Gini

the least vulnerable to alternative scores. Figure 14

index of 1.380, hence it 1S
base premium, the area between

: the
also shows that when GLM is selected as

Lorenz curve is large when choosing MMGB

the line of equality and the ordered
. dicating that the MMGB model represents the
, indi

¥ H 1
as the competing premiu

d 14 fora pictorial overview.

: i 13 an
most favorable choice. See Figure
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ar :
Chaptor NES lysis and results of the research findings.
e ana

The chapter presents th

e insurance com

panies 18 performed. The study found

Financial analysis of th
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Adequacy Ratio, followed by Profj

tbility and Qperyt:
2 : v perating Effici )
identifies Priority Insurance 25 the mg g Efficiency. It

not among the high :
g ghest. The second is the Provident Insurance Company Limited

which 1s driven mainly by profitability gng efficienty
I

In general Heritage

nsurance is found to be the worge performing non-life insurance company
during the period. The study employed gradient boosting methods to estimate
the parameters for estimating the premium. Among the relevant variables is the
location, particularly, Greater Accra region and Ashanti regions. The study
used the Gini Index to compare the MMGB model with three other models:
GLM, TDBoost and GBM. The study found that the MMGB model is a

preferred alternative method for building insurance cost models.
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CHAPTER pyyy

SUMMARY
» CONCLUSIONS Anp RECOMMEND
o ATIONS

In this stud 1
¥> We have discusseq the theory of gradient boosting, the
Markov-modulated approach which the study deve

loped and its application to
isk premi ici i
risk premium pricing. The practica] Steps required to build a mode] using this

methodology has been described. This chapter discusses the findings of the
study and make appropriate conclusions based on the study outcome. It outlines

some challenges of the study and outline recommendations and suggestions for

further research.

Summary

Several statistical techniques have been proposed to price premiums
such as modeling the frequency and severity of claims and computing the
product of its expectations. Models such as Poisson, negative binomial and
generalized Poison have been suggested for claim frequency data whereas

Gamma, lognormal, Pareto etc. have been recommended for claim severity
2 3

(Renshaw, 1994; Mihaela, 2015). There is constantly the need to improve on

ways in which policy premiums are priced. In many actuarial risk models,
that are obtained in

i istorical data
consideration 18 mostly placed on internal historl

ithi :syrance firm or industry.
li f the data generating processes within the insuranc
leu o |
m extrapolations based on
ici lyst usually perfor
ce pricing, and

Typically, in insural ’ |
"’ y aim cost or proﬁtablllty as discussed

, oot future cl

internal historical data to project f | 1

| risk and for that matter external data s rarely
al i

hic
in section one. Thus, geograp

data is used, the focus has been quantifying the
al data ’

it
used. In cases where extell

.« ipherent 1
iations inher
effects of seasonal varid 151

insurance portfolios, given that the
n
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external data i
13 observable, With
Unobservap|e

usually employ hidden Markoy Phenomenon, researchers

chains to maj :
2013). € extrapolations (Guillou, et. al.

Practical tools for studying such phenomenon in a more flexible way has been
a challenge. The substantial number of categorical and sometimes numerical
predictors, the presence of nonlinearities in the data and complex interactions
among the predictors has been norm. Additionally, missing values for some
predictors could pose a challenge. As oppose to other non-linear statistical
learning methods such as neural networks and support vector machines,
gradient boosting provides interpretable results via the relative influence of the

input variables and their partial dependence plots (Guelman, 2012).

By considering location risk of a policy, the flexible Markov Modulated

Tree- Based Gradient Boosting method is designed to integrate location risk

i ified in the
factor into insurance pricing framework. Thus, location effect as specl

del in Equation (4.13) was significant. Thus, while State | contributes about
model in 1 (4.

t 0.6% reduction in errors in

ion in er 7 contributes abou
0.08% reduction in errors, State 2,

€ | i ideri e nature of business of
jum function his is significant considering the n
the premium functiofl-

business. The results

odel 18 vehicle age (29.4
carrying (7.88%)

in Table 4.18 also shows that the

the non-life insurance 6%). The rest

nfluencing the M

- rincipal factors i
most princip 93.86%), OWI goods

i S (
include comprehensive pohcyholder
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the phenomena of probability of ruin

Based on the sa .
mple data used i this analysis, the level of accuracy in
redictions was _
P shown to be higher for MMGB relative to other models

including the conventional generalized linear mode] approach. This is not

surprising since GLMs are relatively simpler linear models and are thus

constrained by the class of functions they can approximate. The MMGB

method can enhance capacity of insurers to refined insurance premium

predictions to reflect policy operational risk. For the industry that still rely on
tariffs, the model presents a framework for evaluating their portfolios at both
individual and aggregate level. It is worth noting that the Markov modulated
(MMGB) framework can be an important complement to the Gradient Boosting
model and the traditional Tweedie Generalized Linear Model (GLM) in

insurance pricing. Even under strict circumstance where there is no regulation

on risk-based pricing, our approach will still be helpful to policy makers and

1 i vior
insurance companies to refine the tariff-based premiums based on the beha

rms relatively better and

of location risk. We find that our model perfo

complements other competing models.

Conclusions

i chibiti I influence on
i rtant ﬁnancial indicator C}\hlblllng hlgh n
The most 1mpo

anies I i ital
i es in Ghana is the capl

f es of non-life insurance compant

financial performanc

1 i retention ratio
: isk, premium
insurance 115k,
ch as net

L .
adequacy ratio indicators §

. 1o closely followed by the profitability ratio
r. This 1S

: ve
and technical reserve co

153
Digitized by Sam Jonah Library



© University of Cape Coast https://ir.ucc.edu.gh/xmlui

could assist non-life i .
© Insurance companies in Ghang in underwriting and claims

anagement. [t 1 i
manag nt. It is believed that the present study will contribute in evaluating

the insurance companies in Ghana from economic perspective
Recommendations

It is recommended that the personal characteristics of drivers be

examined and incorporated into the model in future research.

The gradient boosting framework within which MMGB is situated is an
efficient framework for statistical predictive modeling due to its predictive

power and flexibility and as such actuaries could use it as part of their tool box

in research and analysis of insurance loss cost as well as in other related field.

In view of conclusions to the study, to ensure sustainability and fairness

in pricing, a mod el-based MMGB approach is recommended for risk premium

S i 1 i iS di eI'Se

1 1 f i ].
repitiaal. cations. This is because the model is flexible and fairly
across geog Y

nd accounts for location risk for

istributi ta structure a
captures the distribution of the da

any given policy.
o the findings that the non-life mnsurance
0

d
) 1ended base
It is also recom to ascertain the level

itional tool
an additiona
companies use the risk-based model as
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If the in I i
surance industry is o Spread risk across both good and bad sub

populations of applicants, there jg the need for uniformity and actuarial o
Nness

in decision-making. The Nationa] Insurance Authority should consider enacting

a law that will ensure that a] Insurance companies in Ghana move from tariff-

based to risk-based premium pricing for better loss contro] measure such as

renewal underwriting restrictions.

It is also recommended that National Insurance Commission passes a
policy that collates databases of all insurance companies that could track the
behavior of drivers during bonus-malus transactions. As per the existing regime,
insurers in Ghana are challenged in the implementation of bonus-malus. This is

because of the ease with which policyholders can change from one company 0

3 i ence.
another to avoid premium ncrement as a result of claim occurr

While we feel that the resulting model is structurally representative of

3 o id .life insurance sector
n the non-life 1
companies 1
e sample of

geographically divers |
p y plication. This will allow for

i industrial ap
before the model is deployed in an indu B i
i i ugh-the-door
idios tic differences associated with Spemﬁc throug |

yncratic dil -
Further research could be done on computing
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PENDICRg

APPENDIX .|
TREND IN ¢
AR CRASHES BY REGloN
Year
Region
Ashanti  Brong  Central E
Ahafo e grealer Northern Upper  Upper Volt
1991102043 s g AN Bast  Weg o eem Tl
148
1992 1277 232 631 1314 2097 N 129 65 66 1 g
13
1993 1102 247 490 1012 g1y 34 8 s oo
129
1994 1272 261 599 1078 210 - o 52 3w 772 6467
g 2192 688 6584
1993 1636 343 98 10 3645 03 130 & @ m @y
1996 1415 346 643
o N9 W6 75 43 s omass
VR 2hs 4 686 1052 a1 30 9% 50 266 67 oons
1998 2161 534 654 1261 4963 134 106 54 350 780 10997
1999 1222 591 760 1186 3414 171 154 78 363 821 816
2000 1818 630 918 1421 5234 188 169 103 509 24 1714
2001 1680 494 955 1397 5003 25 113 8 59 684 11291
2002 1774 588 831 1469 4230 193 209 66 546 809 10715
2003 1811 562 907 1383 4110 203 25 64 517 756 10538
2004 2037 691 1026 1703 4624 323 209 2 682 800 12167
2
2005 1680 655 916 1445 4983 24 181 8 567 595 “:;:
522 678 11
2006 1706 621 883 1351 5454 66 125 62 - 569 12038
73 A 2
2007 1975 541 709 1349 5936 255 136 79 503 655 11214
. 7155 k -
2008 1779 691 156 1295 5044 250 . " 554 836 12299
2
2003 b 3 'S . 257 g8 %0 599 699 11506
2
2010 1944 543 982 1182 5122 %0 10 18 48l 641 10887
2011 2094 726 1046 oo 4311 ;23 14 155 488 936 12083
5247 2
2012 1990 669 1041 1220 1712 A7 527 9200
o a5 10 9152
2013 1312 62a st 3745 w2 15 132 438 570 :
6 1 9796
2014 1358 560 866 107 0 169 105 478 61
838 913 4259 “ 0 1393 1708 28148
js08 2060 1192
Total 4360 1662 g0 0061 100
(2013- ooz 0014 oo 00 -
©2015) og0 005 04% -
% 0.155 0059 O
178
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TRE
ND IN FATALITIES BY REGIQ

Year
Ashanti Brong C Region
entral
Ahafo Eagtem Greater
1991 128 76 Accra
86 Upper v
150 90 East West oha  Westem o
1992 124 50 i 3 20 u
1993 143 18 40 3 * 6 a7
47 2
® 155 11 - 3 2 5 7
1994 131 14
34 9 139 fi3 5 12 53 8 704
17
1993 190 e 81 100 i 22 ! 3 8 m
18
1996 85 82 120 138 i . 10 62 84 -
1997 187 86 100 25 15 82 B e
150 160 1 "
1998 243 113 104 5 3 65 835
210 243 24 - "
1999 152 102 144 185 - & % 1z
- 2 19 50 9 om
2000 247 107 134
201 214 4
001 263 4 16 7 W e
2! 87 156
205 220 54 32 14 112 114 1257
2002 251 157
141 226 150 47 39 18 108 iita -
2003 306 109 148 196 207 7 47 2 114 120 1345
2004 377 151 176 240 253 9% 54 21 1 121 1600
2005 249 130 156 236 259 7 63 21 90 16 1391
2006 257 172 138 174 305 76 45 21 129 102 1419
2007 332 163 146 218 363 80 63 25 s 14 1622
2008 343 136 150 238 351 7 54 33 131 134 1647
2009 388 168 181 261 385 63 52 33 17 142 1790
122 139 1686
2010 362 142 167 199 385 84 44 42
51 a2 103 161 1738
2011 367 219 163 207 360 65 )
60 58 67 87 203 19
2012 355 168 172 219 524
61 123 103 1568
161 139 169 37 8 54
2013 342 37 100 122 1520
149 169 183 7 59
2014 273 155 . p ' " .
439
2018 310 e . g 110 363 4676
2725 152 138
37 519 1149 =
Total 925 458 .
078 ]
(2%)‘1153) 0.246 008 033 0030 008 o
% 0.198 0.098 0.093 0.1 i
179
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APPENDIX 3
ANNUAL DISTRIBUTION OF
TRAFFIC FATAL ypgg
BY REGION
/ear . Region

Ashanti i;l(;t;‘g Central Eastern Greater Northern G
991 183 96 9% 183 Acclmze 4 st e Ve T
1992 153 61 122 204 g 3:) zz no sl
1993 168 100 97 207 115 17 14 li 0 0o
1994 161 69 123 186 155 31 9 3 29 D
1995 234 86 118 152 190 28 2 3 8(7) 1:9 o
(038 95 108 151 196 186 T30 15 12 s: igjz
1997 220 100 131 181 174 O T R TTRTT
998 283 144 145 285 258 139 10 1 1420
1999 178 124 165 294 172 630 2 2 104 1237
2000 332 141 199 212 237 60 8 I8 8 145 1578
2001 379 152 206 279 240 66 34 17 152 135 1660
2002 359 190 215 346 169 71 4 20 130 121 1665

2003 377 140 188 263 232 138 53 35 12 138 1716
2004 577 202 234 325 299 131 68 24 167 158 2185
2005 315 192 183 299 313 97 79 30 122 154 1784
2006 388 244 184 216 335 112 4 21 169 143 1856
2007 463 207 190 280 407 105 69 27 145 150 2043
2008 416 155 150 294 385 95 59 36 179 169 1938
2009 469 259 246 343 42 3 54 40 140 144 2237

6
45 54 143 157 198
w0 ase 169 16T 20 8 p s4 50 139 203 2199

123
201 Mk el Bl - gl 71 9% 202 2240
2012 432 221 207 316 535 99 s7 72 42 120 18%8
013 406 201 200 197 38 140 o 42 125 137 1836
2014 351 198 198 209 419 " 46 40 105 l64 1802

85

197 458 372 421 5536
2015 352 170 18 ¢ 154 372
Total sqo 583 603 1240 322 ]
ota 1109
(2013- 0029 0028 0067 0076 100
2015) o 0224 0.058 O
% 0200 0.103 o0.05 0l
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Year

1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015

Tota]
(2013-
2015)

%

Ashanti

1389
1713
1376
1738
2000
1141

2341

2387
1783
2608
2386
2482
3548
3676
2913
2604
3243
2856
3663
3752
3614
3298
2372
2561
2616
7549

0.200

Brong
Ahafo
904

48]
514
530
588
916
814
1021
931
920
952
1168
1039
1451
1346
1261
1121]
1512
1538
1303
1514
1308
1139
1118
857
3114

0.083

Central

958
1165

850
1130

981
1323
1276
1350
1409
2101
1681
1991
2193
1943
1602
1170
1324
1438
1862
1595
1550
1397
1056
1195
1344
3595

0.095

Eastern

2133
2461
2088
1362
1588
2487
2181
2884
2608
2899
3013
3185
2882
3148
2995
2501
2662
2749
2897
2483
2331
2345
1813
2037
1664
5514

0.146

Greater
Accra

2002
1905
1703
1819
2453
2612
2764
3182
2278
3295
3420
2798
3136
3782
3566
3880
4857
4267
4971
4293
3794
4090
3169
3419
3417
10005

0.265

https://ir.ucc.edu.gh/xmlui

Region
Northern

306
205
86
143
199
269
277
293
321
335
439
473
623
806
448
594
615
745
524
812
689
464
786
578
475
1839

0.049

18%

Digitized by Sam Jonah Library

Upper
East
217

259
199
137
223
294
132
133
264
312
339
304
323
322
291
144
245
241
199
145
197
191
177
179
268
624

0.017

Upper
West
97

140
140

76
147
125

96
104
142
198
185
121
133
134
187

86
117
174
144
183
210
257
296
205
158
659

0.017

Volta

745
619
688
346
828
842
495
730
619
905
1325
1187
1226
1828
1445
1189
1056
1271
1155
1123
1168
671

Western

933
1082

934

707
1124

916
1072
1125
1083
1091
1093
1365
1211
1346
1045
1063
1176
1216
1543
1215
1152
1220

765

804

943
2512

0.067

Total

9684
10030

8578

8488
10131
10925
11448
13209
11438
14664
14833
15074
16314
18436
15838
14492
16416
16469
18496
16904
16219
15241
12509
12863
12367
37739

1.00
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Region  All Rank  Region
Crashes
Greater 424 1.0 Greater
Accra Accra
Ashanti 15.5 2.0 Ashanti
Eastern 10.5 3.0 Eastern
Central 89 4.0 Central
Western 6.1 5.0 Brong
Ahafo
Brong 59 6.0  Westemn
Ahafo
Volta 49 7.0 Volta
Northern 29 8.0 Northern
Upper 1.5 9.0 Upper
West East
Upper 14 10.0 Upper
East West

All

Fatal

Clashes
20.9

20.5

13.6

10.0

9.7

8.3

7.1
4.6

APPENDIX . 5

Rank ~ Region
1.0 Ashantj
2.0 Greater

Accra
3.0 Eastern
40 Central
50  Brong
Ahafo
6.0  Western
7.0 Volta
8.0  Northern
9.0 Upper
East
10.0 Upper
West

REGIONAL CRASH FATALITIES AND ca

Fatalitjes
214
18.5
142
10.3
10.2

3.0

72
54

30

1.9

https://ir.ucc.edu.gh/xmlui

SUALTIES BY RANK
Rank Region Casualties Rank
1.0 Greater 26.5 1.0

Accra
2.0 Ashantj 20.0 2.0
3.0 Eastern 14.6 3.0
4.0 Central 9.5 4.0
5.0 Brong 83 5.0
Ahafo
6.0 Volta 6.2 6.0
7.0 Northern 49 7.0
8.0 Upper 1.7 8.0
West
9.0 Upper 1.7 9.0
East
10.0  Western 6.7 10.0

Source: National Road Safety Commission (2017)
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APPENDIX B - |-
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OBTAINING OPTIMAL TREE NUMBER VIA CROSS VALIDATION

(SAMPLE 1)

Iter i Train Ziviance Valid Deviance Step Size Improve
1767 39.7637 0.0050 0.1246

2 41.0557 39.6497 0.0050 0.1243

3 40.9295 39.5344 0.0050 0.1156

4 40.8023 39.4215 0.0050 0.1102

5 40.6842 39.3148 0.0050 0.1103

6 40.5734 39.2139 0.0050 0.1111

7 40.4545 39.1057 0.0050 0.1102

8 40.3363 38.9988 0.0050 0.1083

9 40.2187 38.8898 0.0050 0.1093
10 40.1065 38.7867 0.0050  0.1057
100 33.3692 32.3567  0.0050  0.0510
200 30.0408 29.0340  0.0050  0.0276
300 28.3740 27.3240 0.0050  0.0079
400 27.5524 26.4893 0.0050  0.0056
25.9981 0.0050  0.0017

>0 AR »5.6805  0.0050  -0.0010
oo 2. T 25.4456 0.0050  0.0002
700 26.3215 3 0.0050  0.0009
800 26.0496 350925 0.0050  0.0017
900 25.7816 g 0.0050  -0.0003

1000 25.5398 )

3
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Ite )
r Train Devi dnce vaTid Devig
nce

- Step Size Impr
1767 39.7637 0.0050 s

2 41.0557 0.1246
. 39.

3 40.9295 33 §497 0.0050  0.1243
4 40.8023 oty 000050 0.1156
i A1 iz .4215 0.0050  0.1102

39.3148 0.0050
6 40.5734 0.1103

: 39.2139 0.0050
7 40.4545 0. 1111
: . 39.1057 0.0050  0.1102
; 40.3363 38.9988 0.0050 0.1083
40.2187 38.8898 0.0050  0.1093
10 40.1065 38.7867 0.0050  0.1057
100 33.3692 32.3567 0.0050  0.0510
200 30.0408 29.0340 0.0050  0.0276
300 28.3740 27.3240 0.0050  0.0079
400 27.5524 26.4893 0.0050  0.0056
500 27.0140 25,9981 0.0050 0.0017
600 26.6393 25.6805 0.0050 -0.0010
700 26.3215 25.4456 0.0050  0.0002
800 26.0496 25.2621 0.0050  0.0009
900 25.7816 25.0925 0.0050  0.0017
1000 25.5398 24.9102 0.0050 -0.0003

184
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Train Beviance

vaTly
W
20,8541 +3660 00050

0.12
40.4534 0.0050 o

N

3 40.7313 0.1266
. 40, '

: 40. 6166 3420 0.0050 0.1215

5 40.2405 0.005
40.5029 .0050 0.1198
2 g, 20.1375 0.0050 0.1190
. Pegies 0.0288 0.0050 0.1129
. ) 39.9197 0.0050 0.1176
; 48-3322 39.8108 0.0050  0.1135
o 39-910 39.7097 0.0050 0.1146
10 33-2070 39.5989 0.0050 0.1197
200 29-7732 33.5401 0.0050 0.0427
290 .7732 30.2904 0.0050 0.0199
28.0618 28.6481 0.0050 0.0146
400 27.1983 27.9430 0.0050 0.0013
500 26.6538 27.5120 0.0050 0.0024
600 26.2815 27.2230 0.0050 0.0013
700 25.9833 27.0320 0.0050 0.0030
800 25.7369 26.8394 0.0050 0.0003
900 25.4927 26.6826 0.0050 -0.0005
1000 25.2594 26.6468 0.0050 0.0007

5
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APPENDIX p 4

Tter Train Deviance

__—__—____—hT—&‘_“wﬁ—“—ﬁ_‘—5TTa“““—r—~—-______ﬁ_____________
0 9873 Devi ance StepSize Improve
40.5380 0.0050

N

40.8593 0-1176
40,
3 40.7401 40 :321 ponn e
4 40.6198 ‘0 0 0.0050 0.1095
5 40.4948 oy 00050 0.1148
: 40.0711  0.0050  0.1307
40.3680 39.950
5 40, 2497 -9>02 0.0050  0.1236
. : 39.8383  0.0050  0.1112
40.1330 39,7298
. T - 0.0050  0.1084
iy ol 39.6228  0.0050  0.1073
-9044 39.5139  0.0050  0.1115
100 33.2641 33.1160  0.0050  0.0381
200 29.8707 29.8726  0.0050  0.0137
300 28.1727 28.2860  0.0050  0.0098
400 27\ 2k 27.5100  0.0050  0.0023
500 26.7320 27.1195  0.0050  0.0032
600 26.3152 26.8910  0.0050  0.0038
700 25.9854 26.7276  0.0050  0.0014
800 25.7037 26.5996  0.0050  0.0005
900 25.4310 26.5252  0.0050  0.0010
1000 ZNe 123 26.4659  0.0050  -0.0000
186
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Iter Train DeWance

T 41,4017 72110 Deviance StepSize  Improve

. Popienss 38.9014 0.0050 0.1717

5 41-1421 38.7863 0.0050  0.1262

y 41-01 38.6701 0.0050  0.1249

.0151 38.5606 0.0050  0.1227

> 40.8829 38.4417 0.0050  0.1258

6 40.7609 38.3316 0.0050  0.1172

7 40.6409 38.2279 0.0050  0.1107

8 40.5218 38.1192 0.0050  0.1167

9 40.3826 37.9962 0.0050  0.1325

10 40.2587 37.8882 0.0050  0.1100

100 33.2764 31.8120 0.0050  0.0515

200 29.8321 29.0609 0.0050  0.0213

300 28.1416 27.8214 0.0050  0.0119

400 27.2470 27.2035 0.0050  0.0045

500 26.7150 26.9244 0.0050  0.0013

600 26.3224 26.7349 0.0050  0.0019

700 26.0061 26.5953 0.0050  0.0014

800 25.7409 26.4818 0.0050  0.0002

900 25.4865 26.3860 0.0050 -0.0001

1000 25.2415 26.2792 0.0050 -0.0001
187
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APPENDIX B¢

W
2 40.7745 nan 0.0050 0.1204
3 40.6556 nan 0.0050  0.1257
4 40.5340 nan 0.0050 0.1200
5 40. 408> nan 0.0050 0.1184
6 40. 2899 han  0.0050  0.1193
" B, 7% nan  0.0050  0.1157
3 40, GED han 0.0050 0.1175
9 39.9476 nan 0.0050 0.1137
nan 0.0050 0.1151
10 39.8340
100 g s nan 0.0050  0.1113
' nan 0.0050 0.0420
200 29.7316 nan 0.0050 0.0205
300 28.0736 nan 0.0050 0.0062
400 27.2193 nan 0.0050 0.0057
500 26.7207 nan 0.0050 -0.0008
600 26.3607 nan 0.0050 0.0028
700 26.0482 nan 0.0050 0.0007
800 25.7912 nan 0.0050  0.0007
900 25 19708 nan 0.0050 0.0000
1000 25.3474 nan 0.0050  0.0006
188
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APPENDIX (.1

SEARCHIN
| G FOR OPTIMAL ITERATION NUMBER (SAMPLE 1)
Iter Tra1n'BEVﬂﬁﬁi?__VETTHWiiﬁEEEE_f

1 40.8583 Step Size Improve
2 10,7820 40.9970  0.0050  0.I17T
: 40.8618 0
3 W .0050  0.1214
-6112 40.7467 0
5 N .0050  0.1140
5 40. - 40.6320 0.0050  0.1130
° .3837 40.5184 0.0050  0.1046
; 40.2696 40.4031  0.0050  0.1114
40.1552 40.2868 0.0050  0.1057
8 40.0379 40.1682 0.0050  0.1066
9 39.9272 40.0599  0.0050  0.1026
10 39,8147 39.9445 0.0050  0.1044
100 33.0013 33.2720 0.0050  0.0480
200 29,5573 30.0916 0.0050  0.0265
300 27.8710 28.6270 0.0050  0.0064
400 27.0280 27.8933 0.0050  0.0062
500 26.4897 27.5728 0.0050  0.0008
600 26.0971 27.3547 0.0050 0.0021
700 25.7683 27.1425 0.0050  -0.0000
800 25.4854 26,9842 0.0050  0.0001
1000 24.9770 26.7249 0.0 .
26.6370 0.0050  0.0002
1100 24.7644
24,5739 26.5964 0.0050  0.0010
1200 24,3709 26.6677  0.0050  -0.0000
1300 4 15E8 26.6768 0.0050  -0.0006
1400 40370 27.0130 0.0050  0.0008
o 8869 27.2785 0.0050  -0.0002
1600 23 jose ,7.5573  0.0050  -0.0006
L0 ! )7.9230  0.0050 -0.0008

1788 23.6200

189
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APPENDIX ¢
SEARCHING FOR OPTIMAL ITgg 4o -
W(SMLE *
1 40.3172 ) O;che Step Size Improve
2 40.2041 41'9673 0.0050 0.1158
3 —— e 0.0050  0.1110
4 39.9793 41.7223 Sy
5 39.8665 by 0-0050 0.1078
; P -6058  0.0050  0.1091
i AN 41.4836  0.0050  0.1089
: 41.3634  0.0050  0.1071
8 39.5415 41.2473  0.0050  0.0980
9 39.4324 41,1219  0.0050  0.1016
10 39.3217 41.0019  0.0050  0.1051
100 32.9259 33.9730  0.0050  0.0463
200 29.6225 30.4037  0.0050  0.0163
300 27.9614 28.7059  0.0050  0.0069
400 27.0411 27.8572  0.0050  0.0056
500 26.4699 27.4581  0.0050  0.0025
600 26.0481 27.1920  0.0050  0.0014
700 25.7039 27.0146  0.0050  0.0005
800 25.4061 26.8555  0.0050  0.0000
900 25.1395 26.7316  0.0050  0.0000
1000 24.8948 26.6595  0.0050  0.0003
0.0050  0.0004
1100 24.6771 26.6176
26.6020  0.0050  -0.0001
1299 24'467; 26.7675  0.0050  -0.0003
1399 ;i’ig:s 57.0265  0.0050  -0.0003
o 9520 ,7.3893  0.0050  0.0000
L50¢ 23 )8.4527  0.0050  0.0002
1600 23.7992 59,4877 0.0050  0.0028
1700 23.6487 30:4047 0.0050 -0.0028

1788 23.5231
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Tter  Trath beviamce—y NNUMBER (SAMPLE 3)

a11d Deviance

1 41.5043 39,6873 Step Size Improve
2 41.3767 39'57 0.0050 0.1297
3 41.7 + 2785 0.0050  0.1290
.2419 39.4668
4 . 0.0050  0.1190
41.1095 39.354
5 . »3546 0.0050  0.1347
40.9766 39.24
6 g .2447 0.0050  0.1246
, 40-7 39.1294 0.0050  0.1259
’ 7171 39.0210 0.0050  0.1233
40.5887 38.9081 0.0050  0.1237
9 40.4647 38.8042 0.0050 0.1181
10 40.3458 38.7035 0.0050  0.1116
100 33,3631 32.8472 0.0050  0.0407
200 29.8048 29.8511 0.0050  0.0225
300 28.1134 28.4743 0.0050  0.0091
400 27.2272 27.7879 0.0050  0.0035
500 26.6744 27.4545 0.0050 -0.0017
600 26.2638 27.1856 0.0050  0.0008
700 25.9125 26.9361 0.0050  0.0020
800 25.5994 26.7449 0.0050  0.0011
900 25.3259 26.5982 0.0050  -0.0003
1000 25.0987 26.4803 0.0050  0.0015
1100 24,8668 26.3620 0.0050 -0.0003
1200 24.6649 26.2815 0.0050  0.0002
¢ 050 0.0001
7 26.2022 0.0
1390 < 26.1297 0.0050 -0.0004
1400 24.2975 15 s 0.0050 0.0001
1500 24.1280 a5 00050 -0.0001
1600 TR B 26.0527 0.0050  0.0002
1700 23.8480 56.0436 0.0050  0.0002

1788 23.7338
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In this section, we de
> mo Teats
nstrate the application of classification and regression
trees within the R framework

The ‘tree’ and “IS] R” |
SLR” were used to illustrate the construct of classification and

regression trees. In this demonstration, Wwe use classification trees to analyze the
Carseats data set. The data set contains eleven variables.

>library(tree)

> library(ISLR)

> data("Carseats")

> names(Carseals)

[1] "Sales"  "CompPrice" "Tncome”  "Advertising” "Population”
[6] "Price”  "ShelveLoc" "Age" "Education” "Urban"
[ 11 ] "

T] . . l l 1 ] v

of illustration The function ifelse() is used to create a
ose :

variable for the purp

a value «Yes” if sales is more that 10 and

variable called High, which takes on

«No” otherwise.
takes on a value of “No” ot

> artach(Carsears)

' ' <:10, "]VOH, ”Y(:’S")
> High<-zfelse(SaleS o merge Hi gh with the rest of the data.
nctio e

We then use the daté frame () fu

s High)
>Carseals< data.frame(Carsear
arseats<-d
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Digitized by Sam Jonah Library



> nameﬂ@#?éggsﬂy of Cape Coast https://ir.ucc.edu.gh/xmlui

[]] "Sales ! ”COmpPrice "

" ' ,
[3] "Income" 'AdVertising g

[5] "Population” "pyicen
[7] "ShelveLOC” "Age”
[9] "Education” "Uppap

[11] "US" "High"

The tree() function is then used to fit a classification in order to predict High

using all variables but Sales.

> tree.carseats<-tree(High~.,-Sales, data=Carseats)

The summary() is used to view the variables used as internal nodes in the tree,
the number of terminal nodes and the error rate.

> summary(tree.carseats)

Classification tree:

tree (formula = High~. - Sales, data = Carseats)

Variables used in tree construction:

a7, "
nfpcome”  "CompPrice

[1] "High." nshelyeLoc" "Price”

: o MAge” "population
[6] "Advertising" "Education g

Number of terminal nodes: 17

= 106.5/ 383
Residual mean deviance: 0.2782 =1

; 75 =27/ 400
Misclassification error rate: 0.06

3
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mformatio
o .
above, the training eppop rate is 69
€15 6%. one aftractive prope

valuate i
evaluate 1ts performance on the test set. The predict() function can be used for

this purpose. In the case of classification tree, the argument type= “class” instr

uct R to return actual class prediction.

> set.seed(234)

> train<-sample(I:nrow(Carseats),200)

> Carseats.test=Carseats[-train, |

> High.test<-High[-train]

> tree.carseats=tree(High~.-Sales,Carseats,subset =train)

> test.pred<-predict(iree.carseals, Carseats.test,type="class")
> table(test.pred, High.test)

The result of the test is shown in Table D1.

Table D1: Testing predictive accuracy of decision trees

High.test (Actual)

Response
& N

“Test prediction

119 47
Yes ) y
.
> (1 19+34)/200
[1]0.765
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Ssiﬁcati()n d .
escribed gives correct predicti
about 76.5%. prediction rate of

The next is to illustra
t z
© Whether pruning the tree might lead to improved result
€d results.

The function cv.free() performs

-vali f :
o alidation in order to determine the optimal
evel of tree complexity: :

PIeKily; cost complexity pruning is used in order to select a

sequence P
q of trees for consideration. The appropriate argument i
is

FUN=prune.misclass to indicate that we want the classification error rate to
guide the cross-validation and pruning process rather than the default for the
cv.tree() , which is deviance. The cv.tree() function will report the number of
terminal nodes of each tree considered (size) as well as the corresponding error
rate and the value of the cost-complexity parameter used. The procedure the tree
that gives optimal results is described below (see $dev and $size ); the tree size

that gives the minimum deviance.

> set.seed(124)

> cv.carseals<-cv. tree(tree.carseats,F UN = prune.misclass)
> names(cv.carseats)

[1] "Size" lldevu uku

[4] "method"

cv.carseats

Psize

j128 6431

$dev
195
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$k

[1]-Inf 0.0 1.5 3.0 50 4

$method
[1] "misclass"

attr(,"class")

[1] nprunen "tree.sequencen

In the figure above “dev” corresponds to the cross-validation error rate in this i
nstance. The tree with 4 terminal nodes results in the lowest cross-validation e

rror rate with 27 cross-validation errors. We plot the error rate as a function of
both size and k.

We now apply the prun.misclass() function to prun the tee to obtain the four-n

ode tree.

& prune.carseats<-prune.misclass(tree.carseats,best = 4)

We now examine how well this pruned tree perform on the test data set.

A | 5 "
j ts, Carseats.test,fype= class")
> Iree. pred<-predlct(prune. carsed

> table(lree. pred, High. test)

curacy of pruned decision tree

: jctive ac
D2: Testing predlc
i High.test (Actual)

Response |
’ Yes No

rediction
Test p " 52

Yes . 46

No
196
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ssification rate or accuracy.
3.6.2 Fitting Regression Trees
In this demonstration we fit a regression tree to the Boston data set.

As required we create a training set and fit the tree to the training data with the

procedure below
>library(MASS)

> data("Boston")
> attach(Boston)

names(Boston)

[1] "erim" "zn"  "indus®

[4] "chas" "nox" "rm
[7] "age" "dis" "rad"
[10] "tax" "ptratio" "black"
[13] "Istat” "medv"

> set.seed(2)

/2
> trajin<-sample(l :mow(Boston),nrow(Boston) )

d'lta=Boston,subset=’[rain)
) [

> tree.boston<-tree(medv~.

Jowing outcome

i 1
The summary of gives the fo

> Summary(tree.boston)

I e: ’
Regression tre o

= Boston, su
tree(formu N
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Variables actual] iy P Hghmm
Y used in t
ree Construction:
[1] "Istat" "rm"  "dig" o en

[5] "crim"
Number of terminal nodes: 9

Residual mean deviance: 13.95 = 3404 / 244

Distribution of residuals:

Min. 1stQu. Median Mean 3rd Qu.  Max.

-16.66000 -2.16900 0.03077 0.00000 1.87700 14.64000

Notice that the output of summary () indicates that five out of the fourteen

variables have been used in constructing the tree. In the context of a regression

tree, the deviance is simply the sum of squared errors for the tree plot. We now

use the cv.tree() function to see whether pruning the tree will improve

performance.

> cv.boston<-cv.tree(tree.boston)
> cv.boston
$size
[1]987654321

$dev

(1] 7174.098 7755.065 8050.935

[4] 8108.430 8235.968 10810.645

2
[7] 11476.320 1 1484.222 20367.62
$k

(1] -Inf 383.6171 308.6721

987
[4] 408.3703 480.0938 1618.8
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$method
[1 ] "de\/ian(;e"
attr(,"class")

[1] "prune" "tree.sequence”

In keeping with the cross-validation results, we use the unpruned tree to make

predictions on the test set.

> yhat<—predict(tree.boston,newdata=Boston[—train,])
> boston.test<-Boston[-train,"medv"]

> plot(yhat,boston.test)

> mean((yhat-boston.test)’\Z)

[1]23.93114

> sqrt(mean((yhat-boston.test)"Z))

[1] 4.891947

Wi (+] io is .93.
I h th 1 ﬂ‘le test set MSE associated llh the regr ssion tree 23.93
]'S means a €

a I

e value for the suburb.
4892 of
n around $

the true median hom
that are witht

3.6.3 Bagging and Random Forests

' the
we demt . and random forest to
strate usefulness of bagging
- . ' forest
. tion W€ de e o
- W h t bagging is simply @ specia
tha!
e recall
Boston data.
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> bag.boston<—randomForest(medv

"data=Bost0n
sSubset=traj 5
rtance=TRUE) In,mtry=13,impo

> bag.boston

Call:

randomForest(formula = medy ~ ., data = Boston, mtry = 13 importance = TR

UE, subset = train)
Type of random forest: regression

Number of trees: 500

No. of variables tried at each split: 13

Mean of squared residuals: 17.93316

% Var explained: 77.37

The argument mtry=13 indicates that all 13 predictors should be considered for

i ell does this
each split of the tree. In otherwords bagging should be done. How w

bagged model perform on the test set

= -train,])
> yhat bag<-predict(bag.boston,newdata—Boston[

> meaﬂ((yhat.bag-boston.test)"2)

[1] 10.78826
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.,data=Boston,subset=train,mtry=1 3,ntree

S : .
yhat.bag< predlct(bag.boston,newdata=Boston[-train )]
> mean((yhat.bag—boston.test)’\Z)

[1] 12.29288

Growing a random forest proceeds in the same way, except that we use a smaller

value of the miry argument. By default, randomForest() uses % variables

when building a random forest of regression trees, and \/; variables when
building a random forest of classification trees. In this illustration we use
miry=6.

> rf.boston<-randorﬁForest(medv~.,data=Boston,subset=train,mtry=6, importa

nce=TRUE)

> rf.boston

Call:
= try = 6, importance = TR
— medv ~ ., data = Boston, m
randomForest(formula = me

UE, subset= train)

Type of random forest: regression

Number of trees: 500

: - it: 6
No. of variables tried at each spli
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Mean of squareq residuals; 15 70296

% Var explained: 80.18

> yhat.rf<-predict(rf boston, newgatae
.bosto
;Newdaty; Boston[-train,])

> plot(yhat.bag,boston.test)

> abline(0,1)

boston.test

‘orest
Figure D1: Predictive response versus actual random for

> mean((yhat.rf-boston.test)"Z)

[1] 11.28141
e is 11.28 which indicates that random forests

The test set MSE in this cas

bagging Using the importance() function, we can
er ba -

i \4
yielded an improvement 0

jable.
view the importance of each var
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Table p3. v, .
- Variable IMportance Tepresentation

with random forest

%IncMSE IncNodePurity
crim 11.821569 125074332
Zn 1.579428 39.09829
indus 11.782228 1277.75846
chas 3.210381 129.41726
nox 10.063418 1040.68952
rm 26.666688 4588.96899
age 10.515628  683.33947
dis 13.559475  1524.73820
rad 4093151  160.41895
tax 9.077987 501.12685

ptratio 10.048951 528.26802

black 6.839026  309.38997

In Table B3, two measures of variable important are shown. The first is

based upon the mean decrease of accuracy in predictions on the out of bag
i iable i from the model. The second is a
variable is excluded
samples when a given
ecrease in the node impurity that results from splits

measure of the total d

' In the case of regression trees,
i ed over all trees.

ariable, averag

over that v i
ity is measured by the training RSS, and for classification
the node impurity

ce. Plots of these impo

rom the results in the table among the trees

rtance measures can be produced
vian
trees by the de

ion. F
using varImpPlot() function
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©
consider
n the Tandom forest the
» the weg

lth leve] of the community (Istat)

and the hoyge
Size
(rm) are by the tWo most import
ant variables.

rf.boston
stat [T ———
11 T e S, T - - SO
S — S A . R S S
cr[m ________________ O _dIS ......... (e et s e v R B i
lndus ................ o ------------------------------ Indus --..‘...O..._ R L Lk PR
age v..-....._,._,o_“ o C”m R & s R
nox A IR o ................................. nOX '--'o--”-r o B o
tratlo ------------- L 6 e e age = S
ax | B | _wa IR
aC ........ O ....................................
tad - |-o P SEET R
Zn 0 ............................................ Zn (o]
[ | ] | I | | I I I
oy 20 30 0 2000 6000
%IncMSE IncNodePurity

Figure D2: Graph depicting variable importance for the two methods

Boosting

In this illustration we use the gbm library, and the function gbm() to fit boosted

regression trees to the Boston data set. We run the gbm function with the option

£ distribution="gaussian” if the response distribution 1s assumed to be
of dis ="gau

For classification problems we would use distribution=

normally distributed.
= . disates that we want to grow 5000
j t n.trees=3000 indica
“Bernoulli”. The argumen

The interaction depth=4 option limites the depth of each tree.
trees. The inler .

> set.seed(1) o -
d dam——-Boston[lram,],dlstnbutlon gaussian",n.

eav~—.
ston<-gbm(m

h=4)

> boost.bo
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The Summary() functi
On prodyceg arelati

- Ve inf] o
ce statistics, uence plot and relative influen

- summa:ry(boost.boston)

Tabl : I iable i
e D4 : Relative variable Importance with boosting method

variable i
o Relative influence
bt 5427
. 20.09
d1§ 1.76
erim 448
— 3.15
ptratio 2.78
e 1.89
black LA
indus it
- 1.47
o 0.46
chas 0.14
o 0.03

We notice that the variables /stat and rm are by far the most important variables.

Partial dependence plots can also be produced for the two variables. The partial

q dence plots illustrate the marginal effect of the selected variables on the
epen

I iables.
response after integrating out other variabl

> par(mfrow=c(1,2))

>plot(boost.boston,i=”rm' )
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> plot(boost.boston,i="lstat")

o |
N .
o o
N Q -
g ~—
u‘“lE’ g‘ :g l(:\l)_
o~
N o _
8_
| 0
4 | | P T T T T 1
> 6 7 8 2 156 25 35
i Istat

Figure D3: Variable dependence plots for “rm” and “Istat”.

As expected median house prices are increasing with rm and decreasing with

Istat.

we now use the boosted model to predict medv on the test set.

> yhat bOOSt<—predict(bOOSt.bOSton,newdata=BOSton[-train,],n.lrees=5000)

> mean((yhat.boost-boston.test)’\.’l)

[1] 13.24306
‘hed is 13.24 This is higher than that obtained from random
aine 29

The test MSE obt
d random forest. This is probably due to

i : ing an
forest. It is inferior to both bagging | |
normality. We can also investigate at various

i non-
the violation of assumption of
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be improVement 0.001, to see if there would

> boost.boston1<—gbm(medv

) i . i an .n
. a BOStOIll tIalll, ,dlStIibutl‘Ol’l "gaUSSi "’
2 g

=0.1, verboge = F)

> yhat.boost] <- ;
pred1ct(boost.boston1,newdata=Boston[-train ]:n.trees=5000)

> mean((yhat.boost] ~boston.test)"2)

[1] 13.37469

It could be noticed that the test MSE has gone with increase in the shrinkage
parameter=0.1 an indication of ng improvement. This means the best shrinkage
parameter 4 =0.01, yielded worse result than the result produced by bagging
and random forest. The response distribution may have been wrongfully
specified. This is an indication that, even though gradient boosting, versatile in
terms of model building and interpretability, wrongful specification of the
response distribution could bias the outcome. In most of the literature on lost
cost modeling, using gbm, the loss distribuition has been assumed to be normaly

distributed which is rare in practice (details found in chapter five).
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