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ABSTRACT

The study investigates the effects of response scales of items on results of item

response theory (IRT) models and multivariate statistical techniques. A total of

sixty-four datasets have been simulated under various conditions such as item

response format, number of dimensions underlying response scales, and sample

size using R package MIRT command: simdata (a, d, N, itemtype}. Two main

statistical techniques - IRT models and Factor Analysis - are employed in

analysing the simulated datasets using standard R 3.4.3 codes. We find that there

is a direct relationship between parameters of IRT and those of factor models,

particularly item discrimination and factor loadings. The results also show that

the overall fitness of the item response model increases with increasing scale

points for higher dimensionality and sample size 150 and higher. The fitness

unidimensional IRT model. Again, the number of influential indicators on

factors increases with increasing scale-points, which improves the fitness of the

model. The results indicate that unrealistic factor solution may be obtained if

we attempt to extract higher factor solution than the underlying dimensionality

on few scale-points with higher sample sizes. The study suggests that a five-

point response scale gives most reasonable results among various scales

examined. IRT analysis is recommended as a preliminary process to ascertain

the observed features of items. The study also finds a sample size of 150 as

adequate for a most plausible factor solution, under various conditions.
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deteriorates over increasing scale points for small sample sizes for
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CHAPTER ONE

INTRODUCTION

In this chapter, the background of the study will be explored. It will high­

light the main motivation of the study, and introduce various works on item

response theory and factor analysis which are further examined in Chapter Two.

The background study will guide the statement of the problem, which will in

turn guide the objectives of the study. A number of datasets have been used in

this study, which are mainly simulated. A brief description of these datasets will

be given in this chapter. The organisation of the rest of the thesis is outlined as

the last section of this chapter.

Background to the Study

Measurement can be defined in several different ways, depending on the

context and the particular field of study. Measurement entails the assignment of

numbers (or labels) to persons or objects in a systematic manner based on the de­

gree to which they possess some characteristic (Blerkom, 2009; de Ayala, 2009).

One approach to evaluating the quality of measurements is to use their reliability

and validity. That is, the measurements that should be used are the ones that are

most reliable and valid. Another approach to evaluating measurements involves

specific properties such as distinctiveness, ordering, equal intervals and absolute

zero (Allen & Yen, 1979). These properties relate to how well the measurements

represent the characteristic being measured. They are used in determining the

level of measurement — nominal, ordinal, interval, or ratio — and are contained

in a framework of scaling theory. Scaling theory focuses on techniques for deter­

mining what numbers should be used to represent the degree of the characteristic

1

being measured. A scale is an organised set of measurements, all of which mea­

sure one characteristic or ability. That is, scales yield numbers that represent the
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characteristics or abilities of the individuals they measure. The number assigned

to a particular individual is the scale value.

Scaling theory describes the properties of the scales in terms of their levels

of measurement. A scale’s level of measurement is determined by the type of

transformation that will maintain the scale’s representation of the ability being

measured. For instance, scales that reach ordinal level of measurement have

large numbers assigned to objects with more of the characteristic being measured

than to objects with less of that characteristic. Once the scale has been assigned,

it can be transformed in any way as long as the correct ordering of the scale

values is preserved. Such transformations under ordinal scale is monotonic as

it does not affect the relative order of the scale values — for example, adding a

constant or multiplying by a positive number. The transformation that maintains

the correct representation of the ability defined by the scale is identified using

a scaling model, which is a symbolic representation of the relationship between

the ability being scaled and a set of observations, such as response scores. For

a scaling model to be useful, it must fit a set of observations. When a model

fits a set of observations, it will determine which scale value should be assigned

to each observation. Most scaling models have been developed for obtaining

interval and ratio scales (Allen & Yen, 1979).

Item response theory (IRT) provides mathematical techniques for perform­

ing measurement in which the ability being measured is considered to be contin­

uous in nature (de Ayala, 2009). IRT models assume that the ability being scaled

has a normal distribution and that the observed scores (e.g., item responses) are

monotonically related to the ability being measured. IRT models express the

association between an individual’s response to an item and the underlying la­

tent variable (ability) being measured by the instrument (questionnaire) (Reeve,

2002). IRT uses latent characterisations of individuals and items as predictors

of observed responses. Thus, a person’s response to an item is influenced by the

2
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characteristics of the individual and by the characteristics of the item. The IRT

describes, in probabilistic terms, how a person with higher ability level is likely

to provide a response in a different response category in relation to a person with

a low ability level (Ostini & Nering, 2006; de Ayala, 2009). Each item is charac­

terised by one or more model parameters: discrimination (a), location (8), and

guess (c) parameters.

The discrimination parameter expresses an item’s capacity to differentiate

between persons who have high ability levels from persons who have low abil­

ity levels. This capacity to differentiate among people with different locations

may be held constant or allowed to vary across items. The a value indicates

the relevance of the item to the ability being measured by the questionnaire. An

item with a positive cc value is, at least somewhat, consistent with the underlying

ability (trait) being measured, and a relatively large oc value indicates a relatively

strong consistency between the item and the underlying ability. In contrast, an

item with a discriminating value of zero is unrelated to the underlying ability be­

ing measured, and an item with a negative a value is inversely related to the un­

derlying ability. Thus, it is generally desirable for items to have a large positive

discrimination value. Determining the item’s discrimination value is particularly

essential in identifying the group of individuals that are most typical to respond

to items in a given study.

The item location parameter, 8 commonly referred to as the item difficulty

parameter, shows the position of an item on the ability scale. Item difficulty is

an indication of the level of the underlying ability that is needed to respond in a

certain way to the item (Osteen, 2010). An item with low (or negative) 8 value

is considered to be “easy”, and persons with low ability levels have a tendency

to respond positively (e.g., responding Yes on a dichotomous item) to it. Con­

versely, an item with a positive (and large) 8 value is considered to be “difficult”

and persons with high ability levels tend to respond favourably to it. Respond-

3
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ing positively, favourably, or endorsing an item literally means that a person’s

response to the item is consistent with the direction of the item’s expected re­

sponse. In IRT, persons and items are located on the same continuum. That is,

the item location and the person’s ability level (0) are indexed on the same met­

ric. In this case, when a person’s ability level is higher than the item location

on the continuum, that person is more likely to provide a positive (favourable)

response (Ostini & Nering, 2006).

The guess parameter represents the chance of persons with low ability

responding favourably to an item. It is incorporated into an IRT model to account

for responses at the lower end of the ability continuum. This applies to situations

where guess is a factor in responses on selected (e.g., multiple choice) items

(Hambleton, Swaminathan, & Rogers, 1991).

The measurement and analysis of dependence between variables, between

sets of variables, and between variables and sets of variables are fundamental

to multivariate statistical techniques (Anderson, 2003). Multivariate statistical

techniques often involve modelling relationships among variables, and for ex­

ploring patterns that may exist in one or more dimensions of datasets (Timm,

2002). Factor analysis is a widely used multivariate statistical technique for

measurement of unobservable constructs. It has been applied in this study as

the main multivariate statistical technique due to its relevance. The technique

is designed to determine the number of distinct constructs (abilities) needed to

account for the pattern of correlations among a set of measures (indicator vari­

ables), for example, Likert-type responses. These unobservable abilities (com­

mon factors) are assumed to account for the structure of correlations among the

indicator variables. The factor structure provides information about the num­

ber of common factors underlying a set of indicators. They also make available

information to facilitate in interpreting the nature of these factors by providing

estimates of the influence (factor loadings) each factor exerts on each of the in-

4
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dicators being assessed (Fabrigar & Wegener, 2012). The goal of factor analysis

is to obtain a relatively parsimonious representation of the structure of corre­

lations. In this case, the number of common factors needed to account for the

correlations among the indicators is considerably less than the number of indica­

tors. The factor model also assumes that each indicator variable is influenced by

a unique factor, which represents that portion of the score on an indicator vari­

able that is not accounted for by the common factors. These unique factors are

restricted to only a single indicator in the model and cannot be used to explain

the correlations among indicator variables.

In many instances, several challenges are faced in the application of factor

analysis. Firstly, it is important to determine if the factor model is appropriate

for the data. In this case, it is necessary to decide if the objectives of the study

are adequately addressed by the model, and if the data satisfies the assumptions

of the model. Secondly, it must be determined if the data is adequately repre­

sented by a single-factor, two-factor, or multiple-factor model. Other challenges

include the procedure to use in estimating the parameters of the specified factor

model, and interpretation of the results of the analysis.

Scales of measurement are quite useful in determining the appropriateness

of use of certain statistical analyses. Scale of measurement can have implica­

tions for the meaningfulness of the analysis. That is, some standard statistical

procedures should be used only with measurements that are interval or ratio, but

not with nominal or ordinal (Furr & Bacharach, 2013). Parametric statistics are

often valid only when interval or ratio data are used (Cohen, 2001).

Statement of the Problem

Modelling the relationship between item responses and the characteristics

of persons falls under the realm of item response theory (IRT) models. The

5
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IRT models are quite useful in the construction of scales (e.g., Likert scale) for

measuring latent constructs of persons. The soundness of IRT results is often

affected by several issues. An important issue to consider when designing Likert

scale items is the optimal number of response categories. Considering reliability

and validity, Jacoby and Matell (1971) attempted to determine the number of

response alternatives to use in the construction of Likert-type scales. They in­

dicated that both reliability and validity are independent of the number of scale

points used for Likert-type items. They suggested that two or three-point Lik­

ert scales are good enough. Martin (1973) studied the effects of varying the

number of scale points on the correlation coefficient using the bivariate normal

distribution. Martin argued that the correlation coefficient generally decreases

as the number of response categories becomes smaller, and suggested the use of

ten to twenty points on a scale. Performances of IRT models have been studied

only for specific scales. Results have rarely been compared on different scales.

This study will examine the optimal number of scale points to consider when

conducting IRT and factor analysis.

IRT results has been found to be highly influenced by sample size. No­

tably, the problem of estimation of item parameters has a link with sample size.

In other words, how large a sample to be used in IRT analysis will depend on how

many item parameters to be estimated. For complex IRT models that requires es­

timation of more parameters, sample size should increase accordingly. The task

of determining minimum sample size has been attempted by some researchers

through simulation studies. Reise and Yu (1990) estimated the parameters of the

graded response (GR) model, and recommended that a sample size of at least

500 is required to achieve adequate estimation under GR model. For Rasch item

response model, useful information can be obtained from samples as small as

100 and sample sizes of 500 are more than adequate in estimating item parame­

ters (de Ayala, 2009). Other varying opinions and findings have been observed

6
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(e.g., Stone, 1992; Osteen, 2010) regarding the suitability of the sample size for

reasonable results in IRT models.

Factor analysis, undoubtedly, an important multivariate statistical tech­

nique, is also widely applied in analysing questionnaire items. Within the con­

text of factor analysis, individual items typically represent indicator variables,

and the latent abilities that the questionnaire seeks to measure represent the fac­

tors. The factor analysis model is based on three basic assumptions about the

indicator variables — normality, constant variance and linearity. The indicator

variables are also considered to be measured on at least the interval scale. When

these assumptions are satisfied, the usual Pearson product-moment correlation

coefficient provides a reliable measure of the extent of correlation between each

pair of indicator variables, and the linear factor model reasonably fits the data.

However, a major concern in the literature (e.g., van der Eijk & Rose,

2015) has to do with the factor analysis of item responses from questionnaires.

Item responses give categorical data, which suggest a violation of the continuous

nature of the indicator variables. The implication is that the Pearson correlations

between pairs of indicator variables in this case are less reliable and is a potential

source of distortions in the factor structure. The severity of the distortions tend

to increase as the number of response categories on the items decreases (Comrey

& Lee, 1992). The unreliability of items may also contribute to difficulties with

rotation of factors to obtain independent clusters, an incidence which is mostly

due to the overlap in the content of items. As a remedy, Ferrando and Lorenzo-

Seva (2013) recommended the use of tetrachoric correlations for factor analysis

of dichotomous response data. For factor analysis of ordered polytomous data,

it is recommended to use polychoric correlations.

Problems are also found to be connected to non-linear relations between

items, which violates the assumption of linearity and normality underlying fac­

tor analysis. The non-linear relation leads to the problem of significant univari-

7
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ate skewness, univariate and multivariate kurtosis, and “difficult factors”, where

items with similar distributions tend to form factors irrespective of their content.

This research attempts at examining the influence of the number of points

on the response scales of items on the results of IRT and how it translates into

suitable factor structure. Motivated by the literature in the area, the study is car­

ried out using tetrachoric and polychoric correlations. Since results on optimal

sample size for IRT has been inconsistent, the study will also investigate the

effect of sample size on the factor structure.

Objectives of the Study

The main objective of the study is to examine the effect of measurement

scales on the results of item response theory models and multivariate statistical

techniques.

Specifically, the study seeks to:

examine the relationship between IRT and Factor Analysis models.1.

assess the effect of scale points on IRT results.2.

examine the effect of sample size on the results of IRT models.3.

investigate the effect of scale points on Factor Analysis results.4.

examine the effect of sample size on the results of Factor Analysis models.5.

Description of Datasets Used in the Study

Several datasets have been used in the thesis to study the effects of mea­

surement scales on results of item response theory and factor analysis models.

The first dataset, which is empirical and contains ten brooding items, is used in

Chapter Three to study the graphical properties of IRT models. Other datasets

8
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have been simulated under various conditions and used in Chapter Four to ad­

dress the objectives of the study. In this section, we provide a description of

these datasets.

Brooding scale dataset

The dataset contains ten dichotomous items on brooding scale. It em­

anated from the responses of 2,569 females in a clinical group. Table 1 displays

the estimated parameters for the ten items in the brooding scale.

Table 1: Estimated Parameters for Brooding Scale

Parameters

8&DescriptionItem

-0.02Periods when I couldn’t “get going” 1.951

-0.152.46I wish I could be as happy as others2

2.20 1.33I don’t seem to care what happens to me3

-0.261.03Criticism or scolding hurts me terribly4

-0.03I certainly feel useless at times 2.425

-0.231.11I cry easily6

0.751.71I am afraid of losing my mind7

0.931.84I brood a great deal8

1.24I usually feel that life is worthwhile 1.849

0.25I am happy most of the time 2.8310

Source: Reeve, 2002

9
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Simulated datasets

These datasets consist of responses to twenty items of different response

scales, namely two-point, three-point, five-point, and seven-point scales. They

are generated using specified item parameter values of a given IRT model. Also,

the datasets are simulated under various sample sizes such as 30, 100, 150, 200,

500, 800, and 1000. In addition, different dimensions of underlying person­

ability are considered, particularly unidimensional, two-dimensional and three-

dimensional. Further details of the description of simulated datasets are done in

Chapter Four.

Organisation of the Thesis

This thesis is divided into five chapters under the headings: Introduc­

tion, Literature Review, Research Methods, Analysis and Results, and Summary,

Conclusions and Recommendations.

The first chapter is the introduction of the thesis. It presents the back­

ground to the study, statement of the problem, objectives, and description of

datasets used in the study. In the background, measurement scales, and the tech­

niques of IRT and factor analysis are introduced. Next is the statement of the

problem, where a number of problems associated with both techniques are high­

lighted. It is followed by the objectives of the study.

The literature review is presented in Chapter Two. It describes some stud­

ies already made in the application of IRT and factor analysis of items.

Chapter Three entails a review of key concepts and methods used in IRT

and factor analysis. The chapter also presents two measures of correlation coef­

ficients — tetrachoric and polychoric. The presentation of simulation, analysis of

data, and results of the study are done in Chapter Four. The chapter describes in

detail the simulation and analyses of datasets employed in the study. The chapter

10
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presents summaries of results in this study in the form of tables and figures. The

major findings in this study are then discussed in relation to results from similar

and related research. Chapter Five is the last chapter of this thesis. It encom­

passes the summary of all the major findings and presents them with reference

to the objectives of the study. Conclusions emanating from the findings are out­

lined. Recommendations are also made based on the findings and on issues that

require further study.

Chapter Summary

The chapter presents the background to the study, statement of the prob­

lem, objectives, outline of the thesis. The background of the study revealed that

measurement scales determine what numbers should be used to represent the

degree of the characteristic or ability being measured. Typically, responses to

items on questionnaires can be classified under various measurement scales. For

instance, Likert-type data constitute ordinal scale of measurement which are as­

sumed to represent continuous unobservable characteristic or ability. It is noted

that item response theory and factor analysis models are widely used statistical

technique for measurement of continuous unobservable abilities. The statement

of the problem indicated that results of these techniques are affected by various

issues such as number of scale-points, sample size, dimensionality, number of

items/indicators, and type of correlation matrix input. This study will examine

the influence of the number of points on the response scales of items on the

results of IRT and how it translates into suitable factor structure. It will also

investigate the effect of sample size on the factor structure.

11

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



CHAPTER TWO

LITERATURE REVIEW

Introduction

The study investigates the effects of measurement scales on results of item

response theory models and correlation-based multivariate techniques. This

chapter presents a review of studies already made in the application of IRT

and factor analysis of item responses. The chapter is structured into three main

themes: (1) studies pertaining to IRT analysis of items, (2) studies relating to

factor analysis of items, and (3) studies that compare the results of IRT and

factor analyses of items. In what follows, we present a review of studies con­

cerning IRT analysis of item responses. The next concentrates on factor analysis

of items.

IRT Analysis of Items

Masters (1974) investigated the relationship between number of response

categories employed and internal-consistency reliability of Likert-type question­

naires. The results indicated that in situations where low total score variability is

achieved with a small number of categories, reliability can be increased through

increasing the number of categories employed. In situations where opinion is

widely divided toward the content being measured, reliability appeared to be

independent of the number of response categories. Dodeen (2004) investigated

the effect of item parameters on the item-fitness statistics using simulated data.

Nine datasets were simulated using a sample size of 1000, 50 items, three levels

of item discrimination, three levels of item difficulty and three levels of guess pa­

rameter. Results showed that item discrimination and guess parameters affected

item-fitness. That is, as the level of item discrimination or guess parameter in-

12
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creased, item-fitness values increased, resulting in many items not fitting the

model. The level of item difficulty did not affect the item-fitness statistic.

Koch (1983) applied two-parameter graded response latent trait model

to data collected from a conventionally constructed Likert-type attitude scale.

Comparisons were made of both the person latent trait estimates and the item pa­

rameter estimates with their counterparts from the conventional scaling method.

Also studied were the goodness-of-fit of the graded response model and the in­

formation function feature of the model indicating the precision of measurement

at each level of the attitude trait continuum. The results demonstrated that the

ment for Likert scales. Maydeu-Olivares, Drasgow, and Mead (1994) compared

two models with the same number of parameters, graded response model (a dif­

ference model) and partial credit model (a divide-by-total model), with the aim

of investigating whether difference models or divide-by-total models should be

preferred for fitting Likert-type data. The models were found to be very simi­

lar under the conditions investigated, which included scale lengths from 5 to 25

items (five-option items were used) and samples of 250 to 3,000. The results

suggested that both models fit approximately equally well in most practical ap­

plications. Under two-parameter logistic (2PL) model, Stone (1992) found that

with sample size of 500 or more and 20 or more items, both item difficulty and

discrimination parameters are generally stable and precise. Smith, Schumacker,

and Bush (as cited in Osteen, 2010) examined the fitness of items using the

mean square (MSQ) statistic and provided the following guidelines for sample

size: misfit is evident when MSQ values are larger than 1.3 for samples less than

500, 1.2 for samples between 500 and 1,000, and 1.1 for samples larger than

1,000 respondents.

Fitzpatrick et al. (1996) compared the performances of one-parameter and

two- parameter partial credit (1PPC and 2PPC) models using four real and four

13
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simulated datasets. The study included two sets of items: constructed-response

(CR) items (i.e., open-ended questions), and multiple-choice (MC) items. In the

study, where MC items were present, the partial credit models were combined

with the one-parameter and three-parameter logistic (1PL and 3PL) models, re­

spectively. Analyses of the real datasets showed that the 2PPC model alone or

in combination with the 3PL model provided uniformly better fitness than did

the 1PPC model used alone or in combination with the 1PL model. Also, IRT

statistics for the real dataset indicated that the discriminations of MC and CR

items differed substantially from one another, and that within item type they

differed also. The authors noted that the poorer fit performance by the 1PPC

model alone or in combination with the 1PL model is likely produced by the

considerable variability in item discrimination, as well as the guess on the MC

items. In the simulation study, the percentages of items with good fitness tended

to be larger when the 3PL-2PPC model combination was used. Also, this model

combination tended to produce better item fitness across datasets with dissimilar

properties.

Following the work of Fitzpatrick et al. (1996), Sykes and Yen (2000) con­

ducted IRT scaling for six tests with mixed item formats. These tests differed in

their proportions of constructed response (CR) and multiple choice (MC) items

and in overall difficulty. One-parameter (1PPC) or two-parameter (2PPC) partial

credit model was used for the CR items and the one-parameter logistic (1PL) or

three-parameter logistic (3PL) model for the MC items. The study indicated that

substantial number of items were not fitted by the 1PL/1PPC model as compared

to the 3PL/2PPC model when item response data from six mixed-item-format

tests, varying in difficulty, were analysed. The smallest percentage of items that

of the items that misfit the generalised model. The results also showed that the

magnitude of 3PL/2PPC discrimination parameter estimates clearly decrease as
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the number of levels of the CR items increase. A 1PL/1PPC model constrains

item discriminations to be equal. Sykes and Yen (2000) argued that by not al­

lowing item discriminations to decrease with increasing numbers of score levels,

the Rasch model can spuriously inflate its representation of the information con­

tributed by CR items, with the magnitude of the inflation likely to increase with

an increase in the number of item score levels. Again, items fitness was substan­

tially worse with the combination IPLI/PPC model than the 3PL/2PPC model

due to the former’s restrictive assumptions that there would be no guess on the

MC items, equal discrimination across items, and item types. Information for

some items with summed ratings were usually over-estimated by 300% or more

for the 1PL/1PPC model.

DeMars (2012) assessed how violations of the normality assumption im­

pact the item parameter (i.e., discrimination and difficulty) estimates and factor

correlations. For skewed and platykurtic latent variable distributions, three meth­

ods were compared in structural equation modelling package, Mplus — limited­

information (LI), full-information (FI) integrating over a normal distribution,

and FI integrating over the known underlying distribution. Dichotomous item

responses were simulated to follow a two-parameter normal ogive MIRT model.

Two factors were simulated with correlations of 0.5 or 0.8, and having the same

distribution, either skewed negative or platykurtic. Responses to 44 items were

simulated, each item measuring only one factor (22 items measured only Fac­

tor 1, and the other 22 items measured only Factor 2), and sample size of 300

or 3000 examinees. The results showed that for the platykurtic distribution,

estimation method made little difference for item parameter estimates. When

the latent variable was negatively skewed, for the most discriminating easy or

difficult items, LI estimates of both parameters were considerably biased. Full­

information estimates obtained by marginalising over a normal distribution were

somewhat biased. Full-information estimates obtained by integrating over the
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true latent distribution were essentially unbiased. For the oc parameters, standard

errors were larger for the LI estimates when the bias was positive but smaller

when the bias was negative. For the 5 parameters, standard errors were larger

for the LI estimates of the easiest, most discriminating items. Otherwise, they

were generally similar for the LI and FI estimates. Sample size did not substan­

tially impact the differences between the estimation methods.

Mount and Schumacker (1998) used simulated dichotomous data to de­

termine the effects of guess on Rasch item fitness statistics (weighted total, un­

weighted total, and unweighted between fitness statistics) and the Logit Residual

Index (LRI). The data were simulated using 100 items, 100 persons, three levels

of guess (0%, 25%, and 50%), and two item difficulty distributions (normal and

uniform). The results of the study indicated that no significant differences were

found between the mean Rasch item fitness statistics for each distribution type as

differed significantly with uniformly distributed item difficulties, but not nor­

mally distributed item difficulties. The LRI was more sensitive to large positive

item misfit values associated with the unweighted total fitness statistic than to

similar values associated with the weighted total fitness or unweighted between

fitness statistics. The greatest magnitude of change in LRI values (negative) was

observed when the unweighted total fit statistic had large positive values greater

than 2.4. The LRI statistic was most useful in identifying the linear trend in

the residuals for each item, thereby indicating differences in ability groups (i.e.,

differential item functioning).

Rogers and Hattie (1987) investigated the behaviour of several person

and item fitness statistics commonly used to test and obtain fitness to the one-

parameter item response model. The sensitivity of the total-r, mean-square resid­

ual, and between-r fitness statistics to guess, heterogeneity in discrimination pa­

rameters, and multidimensionality was examined using simulated data for 500
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observations. Neither the total-? nor the mean-square residual were able to detect

deviation from any of the models fitted. The use of these statistics appeared to be

unwarranted. The between-? was a useful indicator of guess and heterogeneity in

discrimination parameters, but was unable to detect multidimensionality. These

results show that the use of person and item fitness statistics to test and obtain

overall fitness to the one-parameter model can lead to acceptance of the model

this strategy are inadequate.

Smith (1988) investigated the distributional properties of the standardised

residuals used in estimating Rasch model’s parameters when the data fit the

model. The author also investigated the power of the standardised residual to

detect measurement disturbances. The study was based on simulated data to con­

trol for the presence of confounding factors, such as multidimensionality, differ­

ences in the slopes of item characteristic curves, and guess. The results indicated

that when the data fit the model, the distributional properties of the standardised

residuals were close to hypothesised mean and standard deviation and that it is

possible to construct reasonable Type I error rates that can be used as a frame of

reference when investigating the fitness of actual data to the Rasch model. The

analysis of the simulated measurement disturbance data indicated that although

the shape of the standardised residual distribution reacts to the presence of the

disturbance, the magnitude of the response is small and the residuals lack the

power of the item or person fit statistics to detect measurement disturbances.

McKinley and Mills (1985) conducted a study to evaluate four goodness-

of-fit procedures in item response theory using data simulation techniques. The

procedures were evaluated using data generated according to three different item

response theory models and a factor analytic model. Three different distributions
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persons and 15 items. Additionally, 25 misfit persons and a misfit item were gen­

erated to test the power of the three fit statistics to detect deviations in a subset of

even when it is grossly inappropriate. Assessments of model fitness based on
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of ability were used, as were three different sample sizes. It was concluded that

the likelihood ratio Chi-square procedure yielded the fewest erroneous rejections

of the hypothesis of fitness, whereas Bock’s Chi- square procedure yielded the

fewest erroneous acceptances of fitness. It was found that sample sizes between

500 and 1,000 were best. Shifts in the mean of the ability distribution were found

to cause minor fluctuations, but they did not appear to be a major issue.

Factor Analysis of Items

An issue to consider when conducting factor analysis is the characteristics

of the sample from which the measurements of the indicator variables are taken.

Obviously, an aspect of the sample that is worth considering is how large the

sample should be in order to perform factor analysis. Correlations are less reli­

able when estimated from small samples (Tabachnick & Fidell, 2013). Gorsuch

(1974) puts it bluntly that “ no one seems to know exactly where a large n begins

and a small n leaves off”. Comrey and Lee (1992) noted that as the sample size

increases, the reliability of the obtained correlations increases. They found that

samples of size 50 give very inadequate reliability of correlation coefficients,

while samples of size 1000 are more than adequate for factor analysis. With

regards to evaluating the adequacy of the sample size, Comrey and Lee (1992)

provided some guidelines: 50 is very poor, 100 is poor, 200 is fair, 300 is good,

500 is very good, and 1000 or greater is excellent. Other researchers are of the

view that under optimal conditions (communalities of 0.70 or greater and 3 to

5 indicator variables loading on each factor), a sample of size 100 can be ade­

quate; under moderately good conditions (communalities of 0.40 to 0.70 and at

least 3 indicators loading on each factor), a sample of at least 200 should suffice;

and under poor conditions (communalities lower than 0.40 and some factors with

only two indicator variables on them), samples of at least 400 might be necessary

18

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



(Fabrigar & Wegener, 2012; Tabachnick & Fidell, 2013; MacCallum, Browne,

& Sugawara, 1996).

Muthen and Kaplan (1985) considered the problem of applying factor

analysis to non-normal categorical variables. A Monte Carlo study is conducted

where five prototypical cases of non-normal variables are generated. Two nor­

mal theory estimators, maximum likelihood (ML) and generalised least squares

(GLS), were compared to the asymptotically distribution-free (ADF) estimator.

A categorical variable methodology (CVM) estimator was also considered for

the most severely skewed case. Results showed that ML and GLS Chi-square

tests were quite robust but obtain too large values for variables that were severely

skewed and kurtotic. ADF, however, performed well. Parameter estimate bias

appeared non-existent for all estimators. Results also showed that ML and GLS

estimated standard errors were biased downward. For ADF, no such standard

error bias was found. The CVM estimator appeared to work well when applied

to severely skewed variables that had been dichotomised. ML and GLS results

for kurtosis-only showed no distortion of Chi-square or parameter estimates and

only a slight downward bias in estimated standard errors.

Babakus, Ferguson, and Jbreskog (1987) used a simulation design to study

the sensitivity of maximum likelihood (ML) factor analysis to violations of

measurement scale and distributional assumptions in the input data. Product­

moment, polychoric, Spearman’s rho, and Kendall’s tau correlations computed

from ordinal data were used to estimate a single-factor model. The resulting ML

estimates were compared on the bases of convergence rates and improper solu­

tions, accuracy of the loading estimates, fitness statistics, and estimated standard

verged and the solutions were proper with both continuous and discrete data. In

small samples (n = 100) with the larger loading vector (0.8,0.8,0.8,0.8), all con­

tinuous cases converged and the solutions were proper. Though all small sample
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errors. Results showed that, for large samples (n = 500), all replications con-
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with large loading cases converged, there were three improper solutions. All

0.6, 0.6, 0.8) for both continuous and discrete cases. For continuous replica­

tions, there were four non-convergent cases and a total of 124 improper solu­

tions (2%). When the same data were categorised, 43 non-convergent cases and

239 improper solutions were obtained (4%). Most of the non-convergent (44%)

and improper solutions (60%) occurred when polychoric correlations were used

as input. Generally, on the basis of convergence rates and improper solutions,

Kendall’s tau out-performed the other three measures, followed by the product-

moment and Spearman’s rho which produced similar results. The study revealed

that, the polychoric correlation out-performed other measures on both the cate­

gorisation bias and squared error criteria. The product-moment correlation pro­

duced the second best overall results, followed by Spearman’s rho and Kendall’s

tau. On the basis of estimated pairwise correlations, factor loadings and stan­

dard errors, the polychoric correlation gave consistently better estimates, but

tation in factor analysis, Varimax and Promax, to correctly link items to factors

and to identify the presence of simple structure. Results suggested that the two

approaches are equally able to recover the underlying factor structure, regardless

of the correlations among the factors, though the Promax method is better able

to identify the presence of a simple structure. The results further suggested that

for identifying which items are associated with which factors, either approach is

effective, but that for identifying simple structure when it is present, the Promax

method is preferable.

Tate (2003) compared a number of common methods for assessing dimen­

sionality in item response data, including the unweighted least squares (ULS),

20

three occurred with the polychoric correlation. Non-convergence and improper 

solutions occurred with small samples (n = 100) and smaller loading vector (0.4,

performed worst on all goodness-of-fit criteria.

Finch (2006) compared, the ability of two commonly used methods of ro-
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robust weighted least squares (RWLS), and a full information method using the

TESTFACT software. Tate simulated all items with guess parameter values

ploratory factor analysis (EFA) with the oblique PROMAX rotation, using both

TESTFACT and NOHARM, was able to recover item parameters under a variety

of multidimensional structures. On the other hand, confirmatory factor analysis

(CFA) using RWLS in Mplus demonstrated less than optimal item parameter

recovery in all cases where guess was present in the data.

Dolan (1994) studied two estimators in the factor analysis of categorical

items, the weighted least squares function implemented in LISREL 7 and a gen­

eralised least squares function implemented in LIS COMP. Dolan’s main interest

was the performance of these estimators in relatively small samples (200 to 400)

and the comparison of their performance with the normal theory maximum like­

lihood estimator given an increasing number of response categories. The author

evaluated the performance of these estimators based on the variability of the

that in the ideal circumstances, 200 is too small a sample size to justify the use

of large sample statistics associated with these estimators.

Potthast (1993) examined the utility of a categorical variable methodology

(CVM) for confirmatory factor analysis of ordinal variables. Multivariate nor­

mal data were generated according to four different factor models (4, 9, 15 and

22 parameters) for samples of 500 and 1000. Indicators were classified into five

categories so that manifest variables displayed negative, zero, positive or highly

positive kurtosis. Each of the 32 design cells was replicated 100 times. Param­

eter estimates exhibited little or no bias under any condition. Standard errors

were under-estimated with respect to the standard deviation of the parameter

estimates. This negative bias worsened as model size grew or as positive kurto-
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parameter estimates, the bias of the parameter estimates, the distribution of the 

parameter estimates and the %2 goodness-of-fit statistics. The results indicated

of 0.2, samples of 2,000 examinees, and 60 items. The author found that ex-
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sis increased; it was more severe for factor correlations than indicator loadings.

Chi-square fitness statistics rejected the true model more often than expected for

nine-parameter and larger models. Although variables with high positive kurto-

sis led to the greatest misfit in large models, fitness was poor even with variables

of zero kurtosis. As expected, larger samples always yielded more accurate re­

sults.

Yang-Wallentin, Joreskog, and Luo (2010) studied the behaviour of max­

imum likelihood methods such as unweighted least squares (ULS), maximum

likelihood (ML), weighted least squares (WLS), or diagonally weighted least

squares (DWLS) in combination with polychoric correlations when the mod­

els are misspecified. Yang-Wallentin et al. also studied the effect of model size

and number of categories on the parameter estimates, their standard errors, and

the common Chi-square measures of fit when the models are both correct and

sistent parameter estimates, but ULS, ML, and DWLS give incorrect standard

errors. The authors noted that correct standard errors can be obtained for these

methods by robustification using an estimate of the asymptotic covariance matrix

(W) of the polychoric correlations.

Parry and McArdle (1991) provided a comparison of four selected least­

squares methods of factor analysis of binary data: (1) calculation of a matrix

of phi coefficients, followed by fitting of a factor model using a minimum un­

weighted least-squares (ULS) procedure (ULS-PHI); (2) calculation of a matrix

of tetrachoric correlations, followed by fitting of a factor model using a mini­

mum ULS procedure (ULS-TC); (3) calculation of a matrix of tetrachoric corre­

lations, followed by fitting of a factor model based on a weighted least-squares

(WLS) factor extraction (LISCOMP); and (4) calculation of a product-moment

correlation matrix using phi coefficients means, followed by fitting of a factor

model using an approximation to a ULS (NORHAM). The study was done us-
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misspecified. Results showed that when used routinely, these methods give con-
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one method over another depends on the sample size, as well as on the combina-

tion of magnitude of the loading and the skewness of the data (threshold). Parry

and McArdle noted that LIS COMP does not appear to work well for datasets

of small sample size, and differences among the three remaining methods ap­

pear to be smallest when the data is not highly skewed and when loadings are of

moderate size (0.7). The study further revealed that the estimates of population

loadings using NOHARM and LISCOMP procedures were not markedly supe­

rior to those obtained from ULS-PHI, except when population loadings were

high (0.9). Again, NOHARM did not perform better than ULS-TC, even when

the data was more highly skewed. Parry and McArdle concluded that NOHARM

and LISCOMP did not out-perform factor analysis using the tetrachoric and Phi

correlation coefficients estimated from bivariate tables of the observed variables

as input to the analysis.

Muthen (1984) proposed a structural equation model with a generalised

measurement part, allowing for dichotomous, ordered categorical, and contin-

proposed for any combination of observed variable types. The author noted

that, the proposed model is a three-stage, limited information, generalized least­

squares (GLS) estimator, which gives large-sample Chi-square tests of model fit

and large-sample standard errors of estimates. Muthen outlined that, the tech­

niques makes it possible for GLS factor analysis with (mixtures of continuous

and) ordered polytomous indicators, testing hypotheses of both correlation and

level structures in multiple-group structural equation models, and multivariate

structural regression with ordered categorical response variables.

Flora and Curran (2004) used Monte Carlo simulation methodology to

empirically study the effects of varying latent response variable (y*) distribu-
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ing simulated data, generated under varying sample sizes, threshold values, and 

population loadings of a factor model. The results showed that, the advantage of

uous indicator variables. A computationally feasible three-stage estimator is
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tion, sample size (n), and model size on the computation of Chi-square model

test statistics, parameter estimates, and associated standard errors pertaining to

CFAs fitted to ordinal data. The y* distributions considered include a multivari­

ate normal distribution and four non-normal distributions with varying skewness

and kurtosis. Each dataset generated conformed to four model specifications

that hold fo y*: Model 1 consisted of a single factor measured by five ordi­

nal indicators; Model 2 consisted of a single factor measured by ten indicators;

Model 3 consisted of two correlated factors each measured by five indicators;

and Model 4 consisted of two correlated factors each measured by ten indica­

tors. After sampling continuous multivariate data from various distributions, the

samples were transformed into two-category and five-category ordinal data. For

each combination of y* distribution and model specification, Flora and Curran

generated random samples of four different sizes: 100, 200, 500, and 1,000. For

each simulated sample of ordinal data, the authors calculated the correspond­

ing polychoric correlation matrix and fit the relevant population model using

both full and robust WLS estimation. The study showed that the polychoric

correlation estimates tended to become positively biased as a function of in­

creasing non-normality in the y* distributions; however, mean relative bias (RB)

remained under 10% in almost all cases. Although the correlation estimates

were frequently positively biased, the centre of these distributions did not depart

substantially from the population correlation value, even with y* non-normality.

Also, sample size did not have any apparent effect on the accuracy of the poly­

choric correlations, although there was a tendency for correlations calculated

from two-category data to be slightly more biased than those calculated from

five-category data. With sample size of 100, full WLS did not produce any so­

lutions for Model 4 (due to non-invertible weight matrices). In general, the rates

of improper solutions were greater in the two-category versus five-category con­

dition. For Models 2 and 3, two-category data produced high rates of improper
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solutions with sample size of 100, whereas the rates were near zero in the five-

category condition. Also, nearly 100% of replications of Model 4 were improper

in the two-category condition where n = 200, whereas the corresponding rates

in the five-category condition were only around 30%. Although the rates of

distributions, this variation did not appear to be systematically associated with

degree of non-normality in y*. At the two largest sample sizes (n = 500 and n =

1,000), full WLS estimation converged to proper solutions of all four models

dard deviations tend to be positively biased across all cases of the study, partic­

ularly with full WLS estimation. This bias increases as a function of increasing

number of indicators for a model and by model complexity. The effect of sam-

sample size increases, but this effect is more pronounced for larger models. In

addition, there appears to be some indication that the Chi-square statistics are

affected by non-normality in y*.

Forero, Maydeu-Olivares, and Gallardo-Pujol (2009) conducted a simu­

lated study to compare DWLS and ULS in estimating a factor analysis model

with categorical ordered indicators under different settings of dimensionality,

factor loading, sample size, number of items per factor, number of response

alternatives per item, and item skewness. A total of 324 conditions per estima­

tion method were investigated, using 1,000 replications for each setting. A full

factorial design was used by crossing three sample sizes (200, 500, and 2,000

respondents); two levels of factor dimensionality (one and three factors); three

test lengths (9, 21, and 42 items); three levels of factor loadings X: low (X = 0.4),

medium (X = 0.6), and high (X = 0.8); and six item types (three types consist

of items with two categories, and another three of items with five categories)
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pie size on the inflation in Chi-square test values varies substantially with model 
/

specification. Within each of the four models, the Chi-square RB decreases as

across 100% of replications. Both the Chi-square test statistics and their stan-

improper solution obtained with full WLS varied somewhat across different y*
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that varied in skewness, kurtosis, or both. Results indicated that, on average,

fered depending on the number of indicators per dimension, item skewness, and

sample size. Both estimators showed smaller convergence rates for models with

only three indicators per dimension. In this setting, convergence rates were bet­

ter for DWLS: Average convergence was 90.6% for DWLS versus 85.4% for

ULS. When the number of indicators per dimension was seven or more, average

convergence rates were similar (roughly 99%). Increasing skewness worsened

convergence: When item skewness was greater than or equal to 1.5, average

convergence was 96.4% for DWLS and 94.7% for ULS. When item skewness

methods (98%). Finally, sample size improved convergence rates.

Morata-Ramirez and Holgado-Tello (2013) compared four estimation meth­

ods: maximum likelihood (ML), robust maximum likelihood (RML), unweighted

least squares (ULS), and robust unweighted least squares (RULS) according to

two of the assumptions CFA is supposed to fulfil - multivariate normality, and

the continuous measurement nature of both latent and observed variables. In the

study, three conditions were manipulated: hypothesized model dimensions (3, 5

and 7 uncorrelated factors), sample size (250, 450, 650, 850), and items skew­

ness (all items symmetric, all items asymmetric). Each sample of continuous and

normally was generated with 9, 15 or 21 items (3, 5 and 7 dimensions, respec­

tively) were categorised to a five-point scale. Results showed that when ULS

or RULS methods were applied to symmetrical item distributions, Chi-square

statistics for three-factor models were high for samples of 250 subjects, but not

for the remaining sample sizes. In respect of ML and RML estimators, Chi-

square statistics showed high values which were greater than the ones reported

for RULS method. Chi-square value for three-factor models were high along
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convergence rates (i.e. rates of plausible solutions) across the 324 conditions 

were 97.4% for DWLS and 96.4% for ULS. However, convergence rates dif-

was below 1.5, convergence performance was, on average, similar across the
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the different sample sizes, while they are pretty high for five-factor models with

450 or 650 subjects and high for 850 subjects. For asymmetrical item distribu­

tions, when ULS and RULS estimators were considered, five and seven-factor

models had highest Chi-square values for samples of 850 subjects. Concerning

ML and RML estimation methods, Chi-square values were higher for five-factor

models compared to three and seven-factor models regardless of the sample size.

Morata-Ramirez and Holgado-Tello suggested that ULS and RULS are prefer­

able as polychoric correlations help to overcome grouping and transformation

errors produced when using Pearson correlations for ordinal observed variables.

Li (2016) carried out a Monte Carlo simulation study to compare the ef­

fects of different configurations of latent response distributions, numbers of cat­

egories, and sample sizes on model parameter estimates, standard errors, and

Chi-square test statistics in a correlated two-factor model. Two estimation proce­

dures, robust maximum likelihood (RML) and diagonally weighted least squares

(DWLS), were used in the study. Factor loading was held constant at 0.7, with its

corresponding uniqueness automatically set to 0.51, inter-factor correlation was

set to 0.3 , and factor variances were all set equal to 1. Two latent distributions

that varied in skewness and kurtosis were employed: (1) a slightly non-normal

latent distribution with skewness = 0.5 and kurtosis = 1.5, and (2) a moderately

non-normal latent distribution with skewness =1.5 and kurtosis = 3.0. Four, six,

eight, and ten categories were generated for each ordinal indicator within both

the slightly and moderately non-normal latent distributions. Three different em­

pirical sample sizes, 200, 500, and 1,000 were employed in this study. The study

found that, the problems of improper solutions or non-convergence did not oc­

cur for both RML and DWLS, irrespective of the number of categories, level of

latent distribution violations (slightly and moderately non-normal), and sample

sizes. Factor loadings were, on average, underestimated by RML when ordinal

data had only four response categories. Conversely, the factor loadings were
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slightly overestimated, on average by DWLS, and considered essentially unbi­

ased, especially when the latent distribution is only slightly non-normal. Re­

gardless of the number of categories, DWLS was consistently superior to RML

for factor loading estimates. Generally, the discrepancy in overall performance

between DWLS and RML became larger as the sample size increased. DWLS

to ten categories across different sample sizes, even when ordinal observed data

were generated from a moderately non-normal latent distribution.

Rhemtulla, Brosseau-Liard, and Savalei (2012) compared the performances

of robust normal theory maximum likelihood (ML) and robust categorical least

squares (cat-LS) methodology for estimating confirmatory factor analysis mod­

els with ordinal variables. Data were generated from two models with two to

of category thresholds. Results revealed that factor loadings and robust stan­

dard errors were generally most accurately estimated using cat-LS, especially

with fewer than five categories; however, factor correlations and model fitness

to sample size and to violations of the assumption of normality of the under­

lying continuous variables. Normal theory ML was found to be more sensitive

to asymmetric category thresholds and was especially biased when estimating

taining variables with fewer than five categories and ML when there are five or

more categories, sample size is small, and category thresholds are approximately

symmetric. With six to seven categories, results were similar across methods for

many conditions; in these cases, either method is acceptable.

Beauducel and Herzberg (2006) through simulation study compared max­

imum likelihood (ML) estimation with weighted least squares means and vari­

ance adjusted (WLSMV) estimation based on confirmatory factor analyses. The
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was better than RML in the overall quality of factor loading estimates from four

were assessed equally well with ML. Cat-LS was found to be more sensitive

large factor loadings. Rhemtulla et al. recommended cat-LS for datasets con-

seven categories, four sample sizes, two latent distributions, and five patterns
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and 8 latent factors, respectively) and five numbers of categories in the variables

(2, 3, 4, 5, and 6). The distributions of the variables were generated on the basis

of a binomial distribution. It was found that WLSMV estimation performed as

well as ML estimation across all sample sizes. For all sample sizes and for all

for the oblique case) than the mean size of the ML loadings. Generally, a clear

when based on WLSMV and two and three categories. When based on five and

six categories, there was no difference in ML and WLSMV, which means that

the factor loadings with ML estimation when the variables had only two or three

categories. This tendency diminished with increasing number of categories, but

even with six categories, there was a slight tendency to underestimate the mag­

nitude of the loadings with ML estimation. The standard errors of the loadings

categories. With four and five categories, the performance of WLSMV estima­

tion was slightly superior to the performance of ML estimation, especially with

respect to the bias of the loadings.

DiStefano (2002) investigated the impact of categorization on confirma­

tory factor analysis (CFA) parameter estimates, standard errors, and five ad hoc

fitness indexes. Simulated datasets were generated under various conditions such

squares (WLS; with polychoric correlation input) and maximum likelihood (ML;
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simulation study was performed for four different samples sizes (250, 500, 750, 

1000), with four different numbers of variables (5, 10, 20, and 40 with 1, 2, 4,

number of categories, the mean size of the WLSMV factor loadings was closer to 

the continuous variables population loading (0.50 for the orthogonal case; 0.55

superiority of WLSMV over ML estimation was found for categorical variables 

with two and three categories. Fitness indexes indicated superior model fitness

the performance of the ML-based fitness assessment increased with five and six 

categories. There was, however, a clear tendency to underestimate the size of

as model size, sample sizes, and loading values. Two estimators, weighted least

were a bit smaller for WLSMV than for ML estimation across all number of
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with Pearson product-moment input) were employed in the study. CFA results

obtained from analysis of normally distributed, continuous data were compared

to results obtained from five-category Likert-type data with normal distributions.

Results indicated that, ML parameter estimates reported moderate levels of neg­

ative bias for all conditions, WLS standard errors showed high amounts of bias,

especially with a small sample size and moderate loading values. With non-

normally distributed, ordered categorical data, ML parameter estimates, standard

errors, and factor inter-correlation showed high levels of bias.

van der Eijk and Rose (2015) undertook a systematic assessment of the

extent to which factor analysis produces the correct number of latent dimen­

sions (factors) when applied to ordered-categorical survey items (so-called Lik­

ert items). The authors simulated 2400 datasets of unidimensional Likert items

that vary systematically over a range of conditions such as the underlying pop­

ulation distribution, the number of items, the level of random error, and charac­

teristics of items and item-sets. Each of these datasets was factor analysed on

the basis of Pearson and polychoric correlations. They found that, irrespective

of the particular mode of analysis, factor analysis applied to ordered-categorical

survey data very often leads to over-dimensionalisation. The magnitude of this

risk depends on the specific way in which factor analysis is conducted, the num­

ber of items, the properties of the set of items, and the underlying population

distribution.

Comparison of FA and IRT on Item Analysis

Forero and Maydeu-Olivares (2009) examined the performance of param­

eter estimates and standard errors in estimating graded response (GR) model

across various conditions. The authors compared Full information maximum

likelihood (FIML) with a 3-stage estimator for categorical item factor analy-
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sis (CIFA) when the unweighted least squares method was used in CIFA’s third

stage. They found that CIFA is much faster in estimating multidimensional mod­

els, particularly with correlated dimensions. Results further showed that, gener­

ally, CIFA yields slightly more accurate parameter estimates, and FIML yields

slightly more accurate standard errors. FIML was found to be the best estimator

in small sample sizes (200 observations). Again, CIFA was the best estimator in

larger samples (on computational grounds). Forero and Maydeu-Olivares noted

that both methods failed in a number of conditions, most of which involved 200

observations, few indicators per dimension, highly skewed items, or low factor

loadings and these conditions are to be avoided in applications.

Maydeu-Olivares, Cai, and Hernandez (2011) compared the fitness of an

FA model and of an IRT model to the same dataset using test statistics based

on residual covariances. The authors suggested that IRT and FA models yield

similar fitnesses when applied to a binary dataset. On the contrary, for ordinal

polytomous dataset, IRT models yielded a better fit because they involve a higher

number of parameters. Maydeu-Olivares et al., however, noted that when fitness

is assessed using the root mean square error of approximation (RMSEA), similar

results are obtained again. They explained that these test statistics have little

power to distinguish between FA and IRT models; they are unable to detect that

linear FA is misspecified when applied to ordinal data generated under an IRT

model.

Finch (2010) examined the ability of two confirmatory factor analysis

models, specifically for dichotomous data, to properly estimate item parame­

ters using common formulae for converting factor loadings and thresholds to

discrimination and difficulty indices. The author considered unweighted least

squares (ULS) and robust weighted least squares (RWLS) (MIRT estimation

methods), and the unidimensional estimation approach which are implemented

in software packages NOHARM , Mplus, and BTLOGM G, respectively. Finch

31

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



assessed these techniques in terms of the overall accuracy, bias, and standard

inter-trait correlations, pseudo-guess, and latent trait distribution conditions. The

results indicated that performance of MPlus estimation was compromised, when

guess (c) was present in the data, for both item discrimination and difficulty

parameters, but such effect on bias was not seen with NORHAM. The author

explained that, NOHARM provides c parameter estimates as it estimates item

difficulty and discrimination, whereas such is not the case for MPlus. Again,

the study found that estimates provided by both methods were influenced by the

distribution of the latent traits, with larger standard errors in the skewed case for

NOHARM and MPlus estimates of item difficulty and discrimination. For the

unidimensional results produced by BILOGMG,, item difficulty bias is near 0

for the 60-item case, but has the largest such bias of the three approaches stud­

ied for 15 and 30 items. It was revealed that, there was greater precision in the

discrimination estimates for larger sample sizes for both ULS and RWLS.

Knol and Berger (1991) used a simulation study to compare the ability

of NOHARM, TESTFACT, standard principal factor analysis (based on tetra-

choric correlations), and an MIRT parameter estimation approach to recover

item parameter values. A total of 10 replications of each set of studied condi­

tions were conducted, where the manipulated factors included sample size (250,

500, 1,000), number of items (15, 30) and number of dimensions (1, 2, 3). They

reported that NOHARM and the standard factor-analytic approaches using the

tetrachoric correlation performed as well as TESTFACT , and actually better

than the MIRT estimation. De Bruin (2004) examined problems encountered

in the factor analysis of items and demonstrated two methods that may be used

to address these problems, namely the Rasch rating scale model, and the factor

analysis of item parcels. The results showed that the Rasch rating scale model

and the factoring of parcels produce superior results to the factor analysis of
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items.

Gosz and Walker (2002) conducted a Monte Carlo simulation in which

they compared the ability of TESTFACT and NOHARM to estimate the prob­

abilities of correct responses to a set of items for a group of simulated exami­

nees. The authors assessed the performance of the methods by calculating root

rect responses for 2,500 examinees. Six different 40-item exams were simulated

and replicated 100 times each. The exams differed in terms of the number of

two-dimensional and unidimensional items that were generated. The correlation

between the two latent traits was varied at 0.5, 0.75, and 0.9. Gosz and Walker

found that when a test contained a large number of items associated with two fac­

tors, full information estimation using TESTFACT was better able to re-create

examinees’ response probabilities that matched those in the population than was

the partial information approach carried out in NOHARM. In contrast, when

fewer items exhibited this non-simple structure, NOHARM more accurately re­

created item response probabilities across the examinees.

Asun, Rdz-Navarro, and Alvarado (2016) compared the performance of

two approaches in analysing four-point Likert rating scales with a factorial model:

the classical factor analysis (FA) and the item factor analysis (IFA). For FA,

maximum likelihood (ML) and weighted least squares (WLS) estimations us­

ing Pearson correlation matrices among items were considered. For IFA, di­

agonally weighted least squares (DWLS) and unweighted least squares (ULS)

estimations using items polychoric correlation matrices were considered. Data

were generated for one, two, and three dimensional structures. For multidimen­

sional conditions, three degrees of correlation among factors were considered,

namely, zero (p = 0), low (p =0.3), and high (p =0.6). Six items were cre­

ated for each dimension; thus, 6, 12, and 18 items were created for unidimen­

sional, two-dimensional, and three-dimensional conditions, respectively. Factor

33

mean square deviation between the estimated and actual probabilities of cor-

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



loadings were adjusted to represent low (X =0.3) and medium (A, =0.6) quality

items. Continuous items were recoded into four categories forming three distri­

butions with different degrees of asymmetry: Type I items represented symmet­

ric distributions, Type II items represented mild asymmetry, and Type III items

represented high asymmetry of responses. Finally, sample sizes were adjusted

to represent variation from small to large sample sizes namely, 100, 200, 500,

1,000, and 2,000 subjects. Results indicated that although all estimation pro­

cedures showed similar capacity for producing valid solutions and stable X and

correlation parameter estimates, ULS and DWLS yielded remarkably lower bias

in both parameter estimates and were robust in extreme conditions: asymmetric

item distributions, low item quality (X =0.3), and small sample sizes. The study

confirmed that classical estimation procedures in ordinal data with four-point

scales is inappropriate. Asun et al. maintained that if one expects the quality

of the items in the scale to be low (X =0.3), a sample of 500 subjects might be

selected in order to ensure a large probability of achieving admissible results

(i.e., a convergent solution) and relatively unbiased and stable estimation of key

parameters in the model. And, if the items are suspected to reflect the latent

construct in a better fashion (X =0.6), accurate estimations can be reached for

small samples (200 or even 100 subjects) if item distributions are symmetric or

mildly asymmetric.

Chapter Summary

The review of related literature shows that overwhelming number of stud­

ies on IRT and factor analyses of item responses are based on simulation studies

using one or combinations of various conditions. An issue that has engaged the

attention of researchers has to do with investigating the relationship between

number of response categories employed and internal-consistency reliability of
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Likert-type questionnaires. It was found that in situations where low total score

variability is achieved with a small number of categories, reliability can be in­

creased through increasing the number of categories employed. In situations

where opinion is widely divided toward the content being measured, reliability

appeared to be independent of the number of response categories.

A great concern in the literature is about the effect of item parameters on

item-fitness statistics. Results showed that item discrimination and guess but

not difficulty level parameters affected item-fitness. That is, as the level of item

discrimination or guess parameter increased, item-fitness values increased.

One of the problems in IRT that has been studied has to do with the com­

parison of the performances of one-parameter and two- parameter partial credit

(1PPC and 2PPC) models. Results showed that the 2PPC model alone or in

combination with the 3PL model provided uniformly better fitness than did the

1PPC model used alone or in combination with the 1PL model. It was noted that

the poorer fit performance by the 1PPC model alone or in combination with the

1PL model is likely produced by the considerable variability in item discrimina­

tion, as well as guessing on the multiple-choice items. Further, the percentages

of items with good fitness tended to be larger when the 3PL-2PPC model com­

bination was used. Also, this model combination tended to produce better item

fitness across datasets with dissimilar properties.

The literature also assessed how violations of the normality assumption

impact the item discrimination and difficulty parameter estimates. It was re­

vealed that when the latent variable was negatively skewed, for the most discrim­

inating easy or difficult items, estimates of both parameters were considerably

biased coupled with large standard errors.

The review of literature indicated that an issue to consider when conduct­

ing factor analysis is the characteristics of the sample from which the measure­

ments of the indicator variables are taken. Obviously, an aspect of the sample
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that is worth considering is how large the sample should be in order to perform

factor analysis. It has been found that correlations — which are used as input

data in factor analysis — are less reliable when estimated from small samples.

Studies showed that samples of size 50 give very inadequate reliability of corre­

lation coefficients, while samples of size 1000 are more than adequate for factor

analysis. With regards to evaluating the adequacy of the sample size, the litera­

ture provided some guidelines: 50 is very poor, 100 is poor, 200 is fair, 300 is

good, 500 is very good, and 1000 or greater is excellent.

The comparison of the performance of two approaches in analysing four-

point Likert rating scales — the classical factor analysis (FA) and the item factor

analysis (IFA) — has been advanced in the literature. The FA employs Pearson

correlation matrices among items, whereas IFA considers polychoric correlation

matrices. The literature confirms that classical estimation procedures in ordi­

nal data with four-point scales is inappropriate. For factor analysis of ordered

polytomous data, it is recommended to use polychoric correlations.
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CHAPTER THREE

RESEARCH METHODS

Introduction

This chapter focuses on key concepts and methods used in item response

theory (IRT) and factor analyses. It presents various IRT models and their graph­

ical representations. The chapter also presents theoretical connection between

the parameters of factor analysis and item response models under item response

format and dimensionality of the underlying ability. Two measures of correla­

tion coefficients — tetrachoric and polychoric — are presented. In what follows,

we present the assumptions and class of IRT models.

Item Response Theory

Item response theory provides a framework for modelling and analysing

item response data. IRT is based on statistical assumptions, and only when these

assumptions are met that the IRT model can reasonably be implemented. In what

follows, we present the assumptions of IRT models.

Assumptions of IRT models

The assumptions underlying IRT models are:

1. Unidimensionality: The set of items are measuring a single continuous

latent ability, 0. A requirement for this assumption to be met adequately by

a set of response data is the presence of a “dominant” factor that influences

responses to items (Hambleton et al., 1991). This dominant factor is the

ability measured by the instrument.

2. Local (Conditional) independence: The response to an item is indepen­

dent of the responses to other items conditional on the ability level. For
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this assumption to hold, a person’s response to one item must not affect

his or her responses to any other items in the questionnaire. For instance,

the content of an item must not provide clues to the responses of other

items. When local independence exists, the probability of any pattern of

item scores occurring for an individual is simply the product of the prob­

ability of occurrence of the scores on each item (Hambleton & Swami-

nathan, 1985). This assumption is needed to guarantee the uniqueness of

the maximum likelihood estimation of parameters in a given IRT model.

When the assumption of unidimensionality holds, local independence is

achieved. However, local independence can be achieved even when the

dataset is not unidimensional.

3. Monotonicity: The probability of a positive response is a non-decreasing

function of an individual’s ability. This assumption can be interpreted to

mean that respondents with high ability levels are more likely to endorse

items than those with low ability level (M. S. Johnson, Sinharay, & Brad-

low, 2007).

Classification of IRT Models

The item response theory models may be classified broadly in three es­

sential ways. Firstly, in terms of the item characteristics or parameters that are

included in the models. In this regard, some models are designed to account for

one parameter, whiles other more complex models account for two or more pa­

rameters. Secondly, IRT models can also differ in terms of the response option

format. Along these lines, some models are designed to be used for dichoto­

mous items, whereas others are designed for items with more than two response

options (i.e., polytomous items), such as Likert scale items. Thirdly, IRT models

are classified in terms of the number of dimensions that define the person ability
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parameter. In this case, an IRT model is either unidimensional or multidimen­

sional. In what follows, a discussion of unidimensional item response theory

(UIRT) models, in terms of response option format, is presented.

Dichotomous IRT models

Dichotomous items have only two response categories, namely, true-false,

yes-no, agree-disagree, or right-wrong.

The Rasch model

According to this model, a person’s response to a dichotomous item is

determined by the individual’s ability level and only a single item parameter -

the item difficulty (8). One way of stating the model is in terms of the probability

that a person with a given ability level will endorse an item that has a particular

difficulty (Embretson & Reise, 2000). The model is given by

p(x,7 = W) (3.1)

where Xjj is the response of the jth person to the zth item. This model assumes

that all items have the same discrimination power. In other words, all items

when the ability level of an individual matches the difficulty of an item, there

is 50% chance that the person will respond positively to the item. This gives

the meaning of item difficulty under the Rasch model. That is, the item diffi­

culty is the point on the ability scale at which an individual has a 0.5 probability

of item endorsement. When 0 > 8/, pz(0) > 0.5, which shows that when the
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are assumed to be equally good measures of the ability. For purposes of sim­

plicity in notation, pi (0) is used to represent p (Xjj = 110,8), the probability of 

responding positively to the item. At 0 = 8/, pi (0) = 0.5, which means that

________ 1_______
1+ exp [-(6- 5,)]’

ability of the person exceeds the item location (difficulty), there will be more
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than 0.5 probability of endorsing the item. At this point, the item is consid-

person’s ability, there will be less than 50% chance of responding favourably to

the item. At this instance, the item is said to be “difficult” for the individual.

The one-parameter logistic model

In the one-parameter logistic (1PL) model, the probability of a respondent

providing a positive response to item i is given by

(3.2)

The 1PL model requires that all items related to the ability being measured have

common discrimination, but not fixed at one. The item difficulty parameter has

the same interpretation as in the Equation (3.1). When the ability scores (0) for

a group are transformed to a mean of zero and standard deviation of one, 8/ vary

from about —2.0 to 2.0. Values of 8 near —2.0 correspond to items that are very

easy. Values of 8/ near 2.0 correspond to items that are very difficult for the

group of examinees (Hambleton & Swaminathan, 1985).

The two-parameter logistic model

In the two-parameter logistic (2PL) model, the probability of a positive

response to an item incorporates how well the item differentiates between low­

ability and high-ability respondents. The model is defined as

(3.3)

Under this model, items have different discrimination powers, a,. The a, are

defined, theoretically, on the scale (-oo,+©o). However, negatively discriminat­

ing items are discarded from ability tests. It is unusual to obtain a, values larger
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ered to be “easy” for that particular individual. On the other hand, when 0 < 8/, 

Pi (0) < 0.5, which suggests that when the item location (difficulty) exceeds the

p{Xij l|e,a,8) 1+eXp[_! 7O2a.(0 _§.)]•

p{^ij 1+exp[_a(0_5.)]-
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than two. Hence, a; € (0,2) (Hambleton & Swaminathan, 1985). High values

of a,- result in steeper item characteristic curves. In Equation (3.3), 1.702 is a

linking IRT parameters with factor analysis results (Reise & Revicki, 2015).

The three-parameter logistic model

The three-parameter logistic model is an extension of the 2PL model. Un­

der three-parameter logistic (3PL) model, a provision is made to account for

low-ability persons that will respond positively to the item. The probability of a

positive response to an item is given by

(3.4)

where c/ denotes the guess parameter value for the zth item. The values of

lies between zero and one, both inclusive (i.e., 0 < Q < 1). Typically, q assume

values that are smaller than the value that would result if examinees of low ability

were to guess randomly to the item (Hambleton & Swaminathan, 1985). The

interpretation of the item difficulty parameter in the 3PL model differs from the

1PL and 2PL models. From Equation 3.4, when (0 — 8/) approaches +°o, pz- (0)

approaches one, indicating that when the ability level of a person far exceeds

the difficulty of the item, it is almost certain that such an individual will respond

is expected to be high. This means that guess is expected to be high among

41

positively (without guess) to the item. Also, when (0 — 8,) approaches —<», 

Pi (0) approaches c/, showing that when the difficulty of an item far exceeds

scaling factor that ensures the value of the item discriminating parameter in lo­

gistic models comparable to a normal-ogive model. This scaling is important for

the ability of an individual, he or she will only respond favourably by guessing 

at the item. In other words, if (0 - 8/) is negative or low, the guess parameter

P (X, = = Cl+(1
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individuals with low ability levels. At 0 = 8,,

p(X,-7 = l|0

(3.5)

slope of the item characteristic curve is a maximum. The slope of the 3PL model

is obtained by finding the first partial derivative of the probability function with

respect to 0. That is,

2

(3.6)2
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Thus, ci = f (0 — 8/), a function of the difference, (0 — 8J. Equation (3.5) gives 

the probability of an individual responding favourably to the item at the value 

of 8,-. When c/ = 0, p/(0) = 0-5, as in the 1PL and 2PL models. Also when 

Cj > 0, pi (0) > 0.5. This means that when a respondent whose ability matches 

the item’s difficulty guesses at the item, he or she would have more than 50%

chance of responding positively.

For the 3PL model, 8/ is located at a point on the ability scale where the

(1 -cz)
{1+exp[—1.702a,(0 — 5,)]} 

1.702a,(l-c,)
{l + exp[—1.702a,(0 — 5,)]}

x {exp[—1.702a,(0 - 5,)]}.

x {exp[—1.702a,(0 — 5,)]} x

= = 11©,«, 5, c)

L.|fl c.) 1
( ' k z'1+exp[—1.702a,-(0 — 6,)]
f (1-c,) 1

1
1 +exp[0]

= 2 '

2-[—1.702a,(0-5,)] 
Ov

x {exp[-1.702a,(0-5,)]} x 1.702a,-

{l+exp[-1.7O2a,-(0 - 5,)]}2 
(1-Q)

{1+exp[-l.702a, (0 — 5,-)]}2

3
30
3

“30

3
“ 30 11 + exp[-1,702a,(0 - 5,)] /
= (l-C/)^{l+exp[-1.702a,(0-5,■)]}-’

uv

C,'> x ^{!+exp[-1.702a,(0-5,)]}

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Equation (3.6) measures the rate of change in item endorsement with respect

to different ability levels. When (G — 8/) approaches p- (G) approaches

zero. This means that an individual whose ability is far above the item’s dif­

ficulty level, would almost surely endorse (without guess) the item. Since the

probability of endorsing the item is almost certain, the rate of change in re-

the item’s difficulty level, would endorse the item by guessing. The amount of

guess, among low ability persons, is constant, and therefore, the rate of change

in endorsing the item would be zero. It is noteworthy from Equation (3.6) that,

when G = 8/,

Pity = X {exp[0]}

= 0.4255a,-(l-c;). (3.7)

At Ci = 1, p- (G) = 0. This means that, if q is at its maximum, the rate of endorse­

ment for respondents whose ability matches exactly with the item’s difficulty

would be zero. Thus, guess work is not helpful (or undesirable) for respondents

persons whose ability level matches with the item’s difficulty, the tendency to

endorse the item would be very high.

Polytomous IRT models

Polytomous items are categorical items with more than two possible re­

sponse categories. Categorical data can be described effectively in terms of the

number of categories into which data can be placed. For ordered polytomous
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sponding positively is expected to be zero. Also, when (G — 8/) approaches —<*>, 

Pi (G) approaches zero. That is, an individual whose ability is far lower than

whose ability matches with the difficulty level of items. Suppose that q = 0, 

p- (G) is a maximum. This indicates that when there is no guess work, among

1.702a; (1—q)
{l + exp[0]}2

1.702a,-(1 -c,-)
" 4
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items, the response categories have an explicit rank ordering with respect to

the ability. Ordered categories are defined by boundaries that separate the cate­

gories. Intuitively, there is always one less boundary than there are categories.

For instance, a five-point Likert-type item requires four boundaries to separate

the five possible response categories (Ostini & Nering, 2006). In general, each

by h = {1,2, ...,g, ...,k}. Polytomous models results in a general expression for

the probability of a person responding in a given item category. Mathematically,

the various polytomous models for ordered response categories differ in terms

of the expressions that are used to represent the location parameter (5) of the

category boundaries.

The partial credit model

To construct the partial credit (PC) model for ordered polytomous data,

one may decompose the responses into a series of ordered pairs of adjacent cat­

egories, and then successively apply a dichotomous model to each pair. The PC

model assumes that there is a point, 8^ on the latent ability continuum below

which an individual provides a particular response and above which the person

provides the next higher response. This point indicates the transition from one

category to the next category. In the PC model, there is a separate location pa­

rameter for each category boundary fo each item (Ostini & Nering, 2006; Reeve,

2002). The relationship between response categories and category boundaries

(8/^), for a four-category item, may be represented diagrammatically as shown

in Figure 1.
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response variable X/j, i = 1,2,...,/?; j = 1,2, ...,n, has r,:+ 1 response categories 

represented by category scores k = {0,1,2, ...,g,..., r,} and r/ boundaries denoted
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4

2 A=3
4 * e

Figure 1: Diagrammatic representation of the relationship between the PC

model’s response categories and the category boundaries for two items

In Figure 1, 8i shows the location of Item 1, whereas 82 indicates the lo­

cation of Item 2. The values 811, 812, and 813 represent the locations of the cat­

egory boundaries for Item 1. For Item 2, 821, 822, and 823 indicate the category

boundary locations. Thus, each of the two items has four response categories.

For a given pair of adjacent response categories, the probability of observ-

P(X,7 = g|0,8,71) (3.8)

k=0

For notational convenience,

So that

ability of an individual scoring in category g relative to category g — 1 for item

i. In Equation (3.8), g is the count of the boundary locations up to the category

under consideration. The numerator contains only the locations of the bound­

aries prior to the specific category, g, being modelled. The denominator is the
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k k
£(0-8,/!)=£(0-8i71).
h=0 h=l

The value 8^ is the category boundary location parameter, and governs the prob-

k=

H

0 
£(0-8,ft) = O. 
ft=0

5.8. 8.

8i

8.

ing a response in category g over category g — 1 for item j is given by
* s 

exp £ (0 - 8//,) 
h=Q

E exp E (0 - 8z/2.)
L^=o J

2 k=3

H—
k = Q k=\

----h-
k=0 k=\ k

-4—H
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sum of all rf + 1 possible numerators (Ostini & Nering, 2006). The expression

L(9 — 8,*) indicates the sum of the differences between a given ability level and

the location of each category boundary up to the category (g) being modelled.

Equation (3.8) utilises only one parameter, category boundary (8&) to charac­

terise the item, and referred to as the Rasch partial credit model.

For a higher probability, the difference (9 — 8^) should be large. The

difference (9 — 8^) measures the extent of ease with which an individual can

other hand, if (9 — 8/*) approaches zero, it indicates that a respondent could

barely respond favourably. In this case, probability of endorsing the item is ex­

pected to be low.

Consider a four-category item, the probability of an individual responding

in Category 3 (i.e. g = 2) is computed as

(3.9)

where,

V = exp [0] + exp [0 + (9 - 8/1)] + exp [0 + (9 - 8,i) + (9 - 8/2) ]

+ exp [0 + (9 — 8/i) + (9 — 8/2) + (9 - 8/3)].

In Equation (3.9), the numerator shows the odds of a person at a given ability

level responding in the higher category of each dichotomisation up to the cate­

gory in question. The denominator is the sum of the numerator values for every

category in the item. In other words, it is the sum of the odds at every category

in the item. The denominator y ensures that the probability of responding in

any given category does not exceed one, and that the cumulative probabilities of

responding in a category, across all the categories for an item sum to one.

The PC model can be written to include two item parameters — difficulty

46

respond favourably to the particular item. For a higher probability in Equa­

tion (3.8), we expect the difference (9 — 8/*) to be positive and large. On the

P (x„ = 21 e, s(i) = e*pl°+(e-y + (e-W
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sponse in category g over category g — 1 for item i is given by (Muraki, 1992)

P(Xij = g\9,ah5ih') (3.10)

k=Q

where oc^ denotes the discrimination associated with response category h on item

i. Equation (3.10) is the generalised partial credit (GPC) model or the two-

parameter partial credit (2PPC) model, since it uses two parameters to describe

the item.

The rating scale model

Although the rating scale (RS) model was proposed before the PC model,

the former can be derived from the latter. The RS model is distinctively ap­

propriate for a Likert scale where respondents are asked to respond to an item

using a pre-defined set of responses and where the same set of response cate­

gories is applied to all the items in the questionnaire. The RS model assumes

that all items in the questionnaire have the same kind of response categories (i.e.

the same number of categories ri = r,i = 1,2, ...,p, having the same meaning)

(Bartolucci, Bacci, & Gnaldi, 2016). However, if items in a questionnaire use

two or more rating scales with different number of response categories, or if the

categories have different labels, then by definition, they are different scales, and

the RS model would apply to each scale separately (Ostini & Nering, 2006). For

the RS model, the distance between category boundaries is assumed to be equal

across all items. This is what distinguishes the RS model from the PC model. In

the RS model, the PC model’s category boundary parameter (8^) is partitioned

into two components: (a) the item location parameter (8/) and (b) the threshold

parameter (x/j) which defines the boundary between the categories of the rating

scale, relative to each item’s location. The X/z indicates how far each category

47

s
exp Ea/z(9-8//z)

h=o_______r£ exp taA(e-8;7,)
A=0

and discrimination parameters. In this case, the probability of observing a re-
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boundary is from the location parameter. In other words, the threshold values

may be viewed as offsets from an item’s location. Hence, it is the combination

ematically,

§ih = 5/ + T/j.

Figure 2 schematically represents the locations of two items, 81 and §2, and how

the thresholds for a four-point Likert scale relate to these two items.

s2

* <4

12 13

Figure 2: Representation of a set of RS model threshold parameters for two

items

In Figure 2, 8i and 82 show the locations of Item 1 and Item 2, respec­

tively. The values 811, 812, and 813 indicate the category boundaries for Item 1.

Similarly, 821, 822, and 823 represent the category boundary locations for Item

2. For Item 1, Ti shows how far category boundary 1 (811) is from the item’s

location (81). Thus, the sum of (81) and (tJ determines the location of category

boundary 1 (i.e., 8n = 8j 4-Xi). The probability of an individual with ability 0

48

of the item’s location (8/) and the threshold (offset) value, (t/z) that determines 

the category boundary’s location, 8,/z on the continuum (de Ayala, 2009). Math-

r,
!

4- 
<52l

◄—

”4

<-------
^3

◄-----------

+~~*
0

◄----- 4-
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responding in category g on item j with thresholds, T/j is given by

P^iJ = g\^ = ~ (3.11)

A-=0

From Equation (3.11),

So that

P(Xl7=g|0) = - (3.12)

A=0

Equation (3.12) supposes that all the categories of an item are discriminating

equally among the responses. However, that RS model can be re-stated to reflect

unequal discrimination values (a/,) among the item’s category boundaries. To

this end, the probability of a person responding in category g on item i is obtained

as

P(Xij = g\Q) = - (3.13)

k=0

where a/, measures the extent to which categorical responses vary among items

as 0 changes (Muraki, 1992). From Equation (3.13),
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s
£^ + #(0-8,:). 
A=0

8 
exp E {e-(5/ + T/I)}

.h=0__________ JL
k

Eexp £{0-(5/ + Ta)} 
La=o

8
exp E oca{0-(8/ + t/z)}

Ji=0_____________________
r

E exp E oc* {0 — (S/H-T*)} 
La=o

8
exp - E ^ + ^(0-8/) 

h=o_____ _
k

E exp - E ^+£(0-8,) 
/i=0

s
£a/l{0-(8/ + T/l)} = ^ 
h=Q

8
£{e-(8,+O}

8 8
Let Pg = E ah and cg = — E Wh' This implies that

/?=0 h=Q

‘g4-Pg(0 8/).

8 8 8 8
£ a,, {6 - (8,-+Tft)} = £ Qah - £ ccA8h - £ cw 
h=0 h=0 h=0 h=Q

8 8
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Equation (3.13) becomes

(3.14)

The graded response model

In the graded response (GR) model, the approach to modelling the prob­

ability of response categories is such that the ordered polytomous scores are

turned into a series of cumulative comparisons (i.e., below a given category as

opposed to at and above this category). The GR model specifies the probability

of an individual responding in category g or higher versus responding in cate­

gory lower than k. According to the GR model, the probability of responding in

category g or higher is

p^Xij > g I e) = (3.15)

discrimination parameter which is constant across an item’s response categories.

In essence, Equation (3.15) is a 2PL model applied to the categories of item i.

This model measures the cumulative probability of a person obtaining category

g or higher on item i. To calculate the probability of a person responding in a

given category g, the difference between the cumulative probabilities for adja­

cent categories must be determined. That is,

p(Xij = g | 6) = P(X,j > g | 0)-P(XU > g + 1 | 0),

where P(Xjj > g + 1 | 0) is the probability of responding in category g + 1 or

higher. Generally,

P(xij = 8 I 6) = (3.16)
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1
l+exp[-a((9-5,g)]’

where 8,;? is the category boundary location for category score g and a,- is the

1
1 + exp [-a, (9 - 8/s)]

_________1_________
l+exp[-a,(9-8,>s+i)]’

P(y,.=8|e)= yph+fe(»-5.)l
E exp [q 4- pjt (0 - 5/)] 

k=0

where cg, a function of CQ? and t*, is a category coefficient. By definition, cs = 

= 0 when g — 0.
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