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ABSTRACT
The study investigates the effects of response scales of items on results of item
response theory (IRT) models and multivariate statistical techniques. A total of
sixty-four datasets have been simulated under various conditions such as item
response format, number of dimensions underlying response scales, and sample
size using R package MIRT command: simdata (a, d, N, itemtype). Two main
statistical techniques — IRT models and Factor Analysis — are employed in
analysing the simulated datasets using standard R 3.4.3 codes. We find that there
is a direct relationship between parameters of IRT and those of factor models,
particularly item discrimination and factor loadings. The results also show that
the overall fitness of the item response model increases with increasing scale
points for higher dimensionality and sample size 150 and higher. The fitness
deteriorates over increasing scale points for small sample sizes for
unidimensional IRT model. Again, the number of influential indicators on
factors increases with increasing scale-points, which improves the fitness of the
model. The results indicate that unrealistic factor solution may be obtained if
we attempt to extract higher factor solution than the underlying dimensionality
on few scale-points with higher sample sizes. The study suggests that a five-
point response scale gives most reasonable results among various scales
examined. IRT analysis is recommended as a preliminary process to ascertain
the observed features of items. The study also finds a sample size of 150 as

adequate for a most plausible factor solution, under various conditions.
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CHAPTER ONE

INTRODUCTION

In this chapter, the background of the study will be explored. It will high-
light the main motivation of the study, and introduce various works on item
response theory and factor analysis which are further examined in Chapter Two.
The background study will guide the statement of the problem, which will in
turn guide the objectives of the study. A number of datasets have been used in
this study, which are mainly simulated. A brief description of these datasets will
be given in this chapter. The organisation of the rest of the thesis is outlined as

the last section of this chapter.

Background to the Study

Measurement can be defined in several different ways, depending on the
context and the particular field of study. Measurement entails the assignment of
numbers (or labels) to persons or objects in a systematic manner based on the de-
gree to which they possess some characteristic (Blerkom, 2009; de Ayala, 2009).
One approach to evaluating the quality of measurements is to use their reliability
and validity. That is, the measurements that should be used are the ones that are
most reliable and valid. Another approach to evaluating measurements involves
specific properties such as distinctiveness, ordering, equal intervals and absolute
zero (Allen & Yen, 1979). These properties relate to how well the measurements
represent the characteristic being measured. They are used in determining the
level of measurement — nominal, ordinal, interval, or ratio — and are contained
in a framework of scaling theory. Scaling theory focuses on techniques for deter-
mining what numbers should be used to represent the degree of the characteristic
being measured. A scale is an organised set of measurements, all of which mea-

sure one characteristic or ability. That is, scales yield numbers that represent the



characteristics or abilities of the individuals they measure. The number assigned
to a particular individual is the scale value.

Scaling theory describes the properties of the scales in terms of their levels
of measurement. A scale’s level of measurement is determined by the type of
transformation that will maintain the scale’s representation of the ability being
measured. For instance, scales that reach ordinal level of measurement have
large numbers assigned to objects with more of the characteristic being measured
than to objects with less of that characteristic. Once the scale has been assigned,
it can be transformed in any way as long as the correct ordering of the scale
values is preserved. Such transformations under ordinal scale is monotonic as
it does not affect the relative order of the scale values — for example, adding a
constant or multiplying by a positive number. The transformation that maintains
the correct representation of the ability defined by the scale is identified using
a scaling model, which is a symbolic representation of the relationship between
the ability being scaled and a set of observations, such as response scores. For
a scaling model to be useful, it must fit a set of observations. When a model
fits a set of observations, it will determine which scale value should be assigned
to each observation. Most scaling models have been developed for obtaining
interval and ratio scales (Allen & Yen, 1979).

Item response theory (IRT) provides mathematical techniques for perform-
ing measurement in which the ability being measured is considered to be contin-
uous in nature (de Ayala, 2009). IRT models assume that the ability being scaled
has a normal distribution and that the observed scores (e.g., item responses) are
monotonically related to the ability being measured. IRT models express the
association between an individual’s response to an item and the underlying la-
tent variable (ability) being measured by the instrument (questionnaire) (Reeve,
2002). IRT uses latent characterisations of individuals and items as predictors

of observed responses. Thus, a person’s response to an item is influenced by the



characteristics of the individual and by the characteristics of the item. The IRT
describes, in probabilistic terms, how a person with higher ability level is likely
to provide a response in a different response category in relation to a person with
a low ability level (Ostini & Nering, 2006; de Ayala, 2009). Each item is charac-
terised by one or more model parameters: discrimination (o), location (), and
guess (c) parameters.

The discrimination parameter expresses an item’s capacity to differentiate
between persons who have high ability levels from persons who have low abil-
ity levels. This capacity to differentiate among people with different locations
may be held constant or allowed to vary across items. The o value indicates
the relevance of the item to the ability being measured by the questionnaire. An
item with a positive o value is, at least somewhat, consistent with the underlying
ability (trait) being measured, and a relatively large o value indicates a relatively
strong consistency between the item and the underlying ability. In contrast, an
item with a discriminating value of zero is unrelated to the underlying ability be-
ing measured, and an item with a negative o value is inversely related to the un-
derlying ability. Thus, it is generally desirable for items to have a large positive
discrimination value. Determining the item’s discrimination value is particularly
essential in identifying the group of individuals that are most typical to respond
to items in a given study.

The item location parameter, 8 commonly referred to as the item difficulty
parameter, shows the position of an item on the ability scale. Item difficulty is
an indication of the level of the underlying ability that is needed to respond in a
certain way to the item (Osteen, 2010). An item with low (or negative) & value
is considered to be “easy”, and persons with low ability levels have a tendency
to respond positively (e.g., responding Yes on a dichotomous item) to it. Con-
versely, an item with a positive (and large) 0 value is considered to be “difficult”

and persons with high ability levels tend to respond favourably to it. Respond-



ing positively, favourably, or endorsing an item literally means that a person’s
response to the item is consistent with the direction of the item’s expected re-
sponse. In IRT, persons and items are located on the same continuum. That is,
the item location and the person’s ability level (0) are indexed on the same met-
ric. In this case, when a person’s ability level is higher than the item location
on the continuum, that person is more likely to provide a positive (favourable)
response (Ostini & Nering, 2006).

The guess parameter represents the chance of persons with low ability
responding favourably to an item. It is incorporated into an IRT model to account
for responses at the lower end of the ability continuum. This applies to situations
where guess is a factor in responses on selected (e.g., multiple choice) items
(Hambleton, Swaminathan, & Rogers, 1991).

The measurement and analysis of dependence between variables, between
sets of variables, and between variables and sets of variables are fundamental
to multivariate statistical techniques (Anderson, 2003). Multivariate statistical
techniques often involve modelling relationships among variables, and for ex-
ploring patterns that may exist in one or more dimensions of datasets (Timm,
2002). Factor analysis is a widely used multivariate statistical technique for
measurement of unobservable constructs. It has been applied in this study as
the main multivariate statistical technique due to its relevance. The technique
is designed to determine the number of distinct constructs (abilities) needed to
account for the pattern of correlations among a set of measures (indicator vari-
ables), for example, Likert-type responses. These unobservable abilities (com-
mon factors) are assumed to account for the structure of correlations among the
indicator variables. The factor structure provides information about the num-
ber of common factors underlying a set of indicators. They also make available
information to facilitate in interpreting the nature of these factors by providing

estimates of the influence (factor loadings) each factor exerts on each of the in-



dicators being assessed (Fabrigar & Wegener, 2012). The goal of factor analysis
is to obtain a relatively parsimonious representation of the structure of corre-
lations. In this case, the number of common factors needed to account for the
correlations among the indicators is considerably less than the number of indica-
tors. The factor model also assumes that each indicator variable is influenced by
a unique factor, which represents that portion of the score on an indicator vari-
able that is not accounted for by the common factors. These unique factors are
restricted to only a single indicator in the model and cannot be used to explain
the correlations among indicator variables.

In many instances, several challenges are faced in the application of factor
analysis. Firstly, it is important to determine if the factor model is appropriate
for the data. In this case, it is necessary to decide if the objectives of the study
are adequately addressed by the model, and if the data satisfies the assumptions
of the model. Secondly, it must be determined if the data is adequately repre-
sented by a single-factor, two-factor, or multiple-factor model. Other challenges
include the procedure to use in estimating the parameters of the specified factor
model, and interpretation of the results of the analysis.

Scales of measurement are quite useful in determining the appropriateness
of use of certain statistical analyses. Scale of measurement can have implica-
tions for the meaningfulness of the analysis. That is, some standard statistical
procedures should be used only with measurements that are interval or ratio, but
not with nominal or ordinal (Furr & Bacharach, 2013). Parametric statistics are

often valid only when interval or ratio data are used (Cohen, 2001).

Statement of the Problem

Modelling the relationship between item responses and the characteristics

of persons falls under the realm of item response theory (IRT) models. The



IRT models are quite useful in the construction of scales (e.g., Likert scale) for
measuring latent constructs of persons. The soundness of IRT results is often
affected by several issues. An important issue to consider when designing Likert
scale items is the optimal number of response categories. Considering reliability
and validity, Jacoby and Matell (1971) attempted to determine the number of
response alternatives to use in the construction of Likert-type scales. They in-
dicated that both reliability and validity are independent of the number of scale
points used for Likert-type items. They suggested that two or three-point Lik-
ert scales are good enough. Martin (1973) studied the effects of varying the
number of scale points on the correlation coefficient using the bivariate normal
distribution. Martin argued that the correlation coefficient generally decreases
as the number of response categories becomes smaller, and suggested the use of
ten to twenty points on a scale. Performances of IRT models have been studied
only for specific scales. Results have rarely been compared on different scales.
This study will examine the optimal number of scale points to consider when
conducting IRT and factor analysis.

IRT results has been found to be highly influenced by sample size. No-
tably, the problem of estimation of item parameters has a link with sample size.
In other words, how large a sample to be used in IRT analysis will depend on how
many item parameters to be estimated. For complex IRT models that requires es-
timation of more parameters, sample size should increase accordingly. The task
of determining minimum sample size has been attempted by some researchers
through simulation studies. Reise and Yu (1990) estimated the parameters of the
graded response (GR) model, and recommended that a sample size of at least
500 is required to achieve adequate estimation under GR model. For Rasch item
response model, useful information can be obtained from samples as small as
100 and sample sizes of 500 are more than adequate in estimating item parame-

ters (de Ayala, 2009). Other varying opinions and findings have been observed



(e.g., Stone, 1992; Osteen, 2010) regarding the suitability of the sample size for
reasonable results in IRT models.

Factor analysis, undoubtedly, an important multivariate statistical tech-
nique, is also widely applied in analysing questionnaire items. Within the con-
text of factor analysis, individual items typically represent indicator variables,
and the latent abilities that the questionnaire seeks to measure represent the fac-
tors. The factor analysis model is based on three basic assumptions about the
indicator variables — normality, constant variance and linearity. The indicator
variables are also considered to be measured on at least the interval scale. When
these assumptions are satisfied, the usual Pearson product-moment correlation
coefficient provides a reliable measure of the extent of correlation between each
pair of indicator variables, and the linear factor model reasonably fits the data.

However, a major concern in the literature (e.g., van der Eijk & Rose,
2015) has to do with the factor analysis of item responses from questionnaires.
Itemn responses give categorical data, which suggest a violation of the continuous
nature of the indicator variables. The implication is that the Pearson correlations
between pairs of indicator variables in this case are less reliable and is a potential
source of distortions in the factor structure. The severity of the distortions tend
to increase as the number of response categories on the items decreases (Comrey
& Lee, 1992). The unreliability of items may also contribute to difficulties with
rotation of factors to obtain independent clusters, an incidence which is mostly
due to the overlap in the content of items. As a remedy, Ferrando and Lorenzo-
Seva (2013) recommended the use of tetrachoric correlations for factor analysis
of dichotomous response data. For factor analysis of ordered polytomous data,
it is recommended to use polychoric correlations.

Problems are also found to be connected to non-linear relations between
items, which violates the assumption of linearity and normality underlying fac-

tor analysis. The non-linear relation leads to the problem of significant univari-



ate skewness, univariate and multivariate kurtosis, and “difficult factors”, where
items with similar distributions tend to form factors irrespective of their content.

This research attempts at examining the influence of the number of points
on the response scales of items on the results of IRT and how it translates into
suitable factor structure. Motivated by the literature in the area, the study is car-
ried out using tetrachoric and polychoric correlations. Since results on optimal
sample size for IRT has been inconsistent, the study will also investigate the

effect of sample size on the factor structure.

Objectives of the Study

The main objective of the study is to examine the effect of measurement
scales on the results of item response theory models and multivariate statistical
techniques.

Specifically, the study seeks to:
1. examine the relationship between IRT and Factor Analysis models.
2. assess the effect of scale points on IRT results.
3. examine the effect of sample size on the results of IRT models.
4. investigate the effect of scale points on Factor Analysis results.

5. examine the effect of sample size on the results of Factor Analysis models.

Description of Datasets Used in the Study

Several datasets have been used in the thesis to study the effects of mea-
surement scales on results of item response theory and factor analysis models.
The first dataset, which is empirical and contains ten brooding items, is used in

Chapter Three to study the graphical properties of IRT models. Other datasets

8



have been simulated under various conditions and used in Chapter Four to ad-
dress the objectives of the study. In this section, we provide a description of

these datasets.

Brooding scale dataset

The dataset contains ten dichotomous items on brooding scale. It em-
anated from the responses of 2,569 females in a clinical group. Table 1 displays

the estimated parameters for the ten items in the brooding scale.

Table 1: Estimated Parameters for Brooding Scale

Parameters
Item Description (o4 &
1 Periods when I couldn’t “get going” 1.95 -0.02
2 I wish I could be as happy as others 246 -0.15
3 I don’t seem to care what happens tome 2.20 1.33
4 Criticism or scolding hurts me terribly 1.03 -0.26
5 I certainly feel useless at times 242 -0.03
6 I cry easily 1.11 -0.23
7 I am afraid of losing my mind 1.71  0.75
8 I brood a great deal 1.84 0.93
9 I usually feel that life is worthwhile 1.84 1.24
10 I am happy most of the time 2.83 0.25

Source: Reeve, 2002



Simulated datasets

These datasets consist of responses to twenty items of different response
scales, namely two-point, three-point, five-point, and seven-point scales. They
are generated using specified item parameter values of a given IRT model. Also,
the datasets are simulated under various sample sizes such as 30, 100, 150, 200,
500, 800, and 1000. In addition, different dimensions of underlying person-
ability are considered, particularly unidimensional, two-dimensional and three-
dimensional. Further details of the description of simulated datasets are done in

Chapter Four.

Organisation of the Thesis

This thesis is divided into five chapters under the headings: Introduc-
tion, Literature Review, Research Methods, Analysis and Results, and Summary,
Conclusions and Recommendations.

The first chapter is the introduction of the thesis. It presents the back-
ground to the study, statement of the problem, objectives, and description of
datasets used in the study. In the background, measurement scales, and the tech-
niques of IRT and factor analysis are introduced. Next is the statement of the
problem, where a number of problems associated with both techniques are high-
lighted. It is followed by the objectives of the study.

The literature review is presented in Chapter Two. It describes some stud-
ies already made in the application of IRT and factor analysis of items.

Chapter Three entails a review of key concepts and methods used in IRT
and factor analysis. The chapter also presents two measures of correlation coef-
ficients — tetrachoric and polychoric. The presentation of simulation, analysis of
data, and results of the study are done in Chapter Four. The chapter describes in

detail the simulation and analyses of datasets employed in the study. The chapter

10



presents summaries of results in this study in the form of tables and figures. The
major findings in this study are then discussed in relation to results from similar
and related research. Chapter Five is the last chapter of this thesis. It encom-
passes the summary of all the major findings and presents them with reference
to the objectives of the study. Conclusions emanating from the findings are out-
lined. Recommendations are also made based on the findings and on issues that

require further study.

Chapter Summary

The chapter presents the background to the study, statement of the prob-
lem, objectives, outline of the thesis. The background of the study revealed that
measurement scales determine what numbers should be used to represent the
degree of the characteristic or ability being measured. Typically, responses to
items on questionnaires can be classified under various measurement scales. For
instance, Likert-type data constitute ordinal scale of measurement which are as-
sumed to represent continuous unobservable characteristic or ability. It is noted
that item response theory and factor analysis models are widely used statistical
technique for measurement of continuous unobservable abilities. The statement
of the problem indicated that results of these techniques are affected by various
issues such as number of scale-points, sample size, dimensionality, number of
items/indicators, and type of correlation matrix input. This study will examine
the influence of the number of points on the response scales of items on the
results of IRT and how it translates into suitable factor structure. It will also

investigate the effect of sample size on the factor structure.

11



CHAPTER TWO

LITERATURE REVIEW

Introduction

The study investigates the effects of measurement scales on results of item
response theory models and correlation-based multivariate techniques. This
chapter presents a review of studies already made in the application of IRT
and factor analysis of item responses. The chapter is structured into three main
themes: (1) studies pertaining to IRT analysis of items, (2) studies relating to
factor analysis of items, and (3) studies that compare the results of IRT and
factor analyses of items. In what follows, we present a review of studies con-
cerning IRT analysis of item responses. The next concentrates on factor analysis

of items.

IRT Analysis of Items

Masters (1974) investigated the relationship between number of response
categories employed and internal-consistency reliability of Likert-type question-
naires. The results indicated that in situations where low total score variability is
achieved with a small number of categories, reliability can be increased through
increasing the number of categories employed. In situations where opinion is
widely divided toward the content being measured, reliability appeared to be
independent of the number of response categories. Dodeen (2004) investigated
the effect of item parameters on the item-fitness statistics using simulated data.
Nine datasets were simulated using a sample size of 1000, 50 items, three levels
of item discrimination, three levels of item difficulty and three levels of guess pa-
rameter. Results showed that item discrimination and guess parameters affected

item-fitness. That is, as the level of item discrimination or guess parameter in-

12



creased, item-fitness values increased, resulting in many items not fitting the
model. The level of item difficulty did not affect the item-fitness statistic.

Koch (1983) applied two-parameter graded response latent trait model
to data collected from a conventionally constructed Likert-type attitude scale.
Comparisons were made of both the person latent trait estimates and the item pa-
rameter estimates with their counterparts from the conventional scaling method.
Also studied were the goodness-of-fit of the graded response model and the in-
formation function feature of the model indicating the precision of measurement
at each level of the attitude trait continuum. The results demonstrated that the
graded response model could be successfully used to perform attitude measure-
ment for Likert scales. Maydeu-Olivares, Drasgow, and Mead (1994) compared
two models with the same number of parameters, graded response model (a dif-
ference model) and partial credit model (a divide-by-total model), with the aim
of investigating whether difference models or divide-by-total models should be
preferred for fitting Likert-type data. The models were found to be very simi-
lar under the conditions investigated, which included scale lengths from 5 to 25
items (five-option items were used) and samples of 250 to 3,000. The results
suggested that both models fit approximately equally well in most practical ap-
plications. Under two-parameter logistic (2PL) model, Stone (1992) found that
with sample size of 500 or more and 20 or more items, both item difficulty and
discrimination parameters are generally stable and precise. Smith, Schumacker,
and Bush (as cited in Osteen, 2010) examined the fitness of items using the
mean square (MSQ) statistic and provided the following guidelines for sample
size: misfit is evident when MSQ values are larger than 1.3 for samples less than
500, 1.2 for samples between 500 and 1,000, and 1.1 for samples larger than
1,000 respondents.

Fitzpatrick et al. (1996) compared the performances of one-parameter and

two- parameter partial credit (1PPC and 2PPC) models using four real and four
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simulated datasets. The study included two sets of items: constructed-response
(CR) items (i.e., open-ended questions), and multiple-choice (MC) items. In the
study, where MC items were present, the partial credit models were combined
with the one-parameter and three-parameter logistic (1PL and 3PL) models, re-
spectively. Analyses of the real datasets showed that the 2PPC model alone or
in combination with the 3PL model provided uniformly better fitness than did
the 1PPC model used alone or in combination with the 1PL model. Also, IRT
statistics for the real dataset indicated that the discriminations of MC and CR
items differed substantially from one another, and that within item type they
differed also. The authors noted that the poorer fit performance by the IPPC
model alone or in combination with the 1PL model is likely produced by the
considerable variability in item discrimination, as well as the guess on the MC
items. In the simulation study, the percentages of items with good fitness tended
to be larger when the 3PL-2PPC model combination was used. Also, this model
combination tended to produce better item fitness across datasets with dissimilar
properties.

Following the work of Fitzpatrick et al. (1996), Sykes and Yen (2000) con-
ducted IRT scaling for six tests with mixed item formats. These tests differed in
their proportions of constructed response (CR) and multiple choice (MC) items
and in overall difficulty. One-parameter (1PPC) or two-parameter (2PPC) partial
credit model was used for the CR items and the one-parameter logistic (1PL) or
three-parameter logistic (3PL) model for the MC items. The study indicated that
substantial number of items were not fitted by the 1PL/1PPC model as compared
to the 3PL/2PPC model when item response data from six mixed-item-format
tests, varying in difficulty, were analysed. The smallest percentage of items that
were not fitted by the Rasch model was 33% compared to a maximum of 5%
of the items that misfit the generalised model. The results also showed that the

magnitude of 3PL/2PPC discrimination parameter estimates clearly decrease as
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the number of levels of the CR items increase. A 1PL/1PPC model constrains
item discriminations to be equal. Sykes and Yen (2000) argued that by not al-
lowing item discriminations to decrease with increasing numbers of score levels,
the Rasch model can spuriously inflate its representation of the information con-
tributed by CR items, with the magnitude of the inflation likely to increase with
an increase in the number of item score levels. Again, items fitness was substan-
tially worse with the combination IPLI/PPC model than the 3PL/2PPC model
due to the former’s restrictive assumptions that there would be no guess on the
MC items, equal discrimination across items, and item types. Information for
some items with summed ratings were usually over-estimated by 300% or more
for the 1PL/1PPC model.

DeMars (2012) assessed how violations of the normality assumption im-
pact the item parameter (i.e., discrimination and difficulty) estimates and factor
correlations. For skewed and platykurtic latent variable distributions, three meth-
ods were compared in structural equation modelling package, Mplus — limited-
information (LI), full-information (FI) integrating over a normal distribution,
and FI integrating over the known underlying distribution. Dichotomous item
responses were simulated to follow a two-parameter normal ogive MIRT model.
Two factors were simulated with correlations of 0.5 or 0.8, and having the same
distribution, either skewed negative or platykurtic. Responses to 44 items were
simulated, each item measuring only one factor (22 items measured only Fac-
tor 1, and the other 22 items measured only Factor 2), and sample size of 300
or 3000 examinees. The results showed that for the platykurtic distribution,
estimation method made little difference for item parameter estimates. When
the latent variable was negatively skewed, for the most discriminating easy or
difficult items, LI estimates of both parameters were considerably biased. Full-
information estimates obtained by marginalising over a normal distribution were

somewhat biased. Full-information estimates obtained by integrating over the
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true latent distribution were essentially unbiased. For the o parameters, standard
errors were larger for the LI estimates when the bias was positive but smaller
when the bias was negative. For the & parameters, standard errors were larger
for the LI estimates of the easiest, most discriminating items. Otherwise, they
were generally similar for the LI and FI estimates. Sample size did not substan-
tially impact the differences between the estimation methods.

Mount and Schumacker (1998) used simulated dichotomous data to de-
termine the effects of guess on Rasch item fitness statistics (weighted total, un-
weighted total, and unweighted between fitness statistics) and the Logit Residual
Index (LRI). The data were simulated using 100 items, 100 persons, three levels
of guess (0%, 25%, and 50%), and two item difficulty distributions (normal and
uniform). The results of the study indicated that no significant differences were
found between the mean Rasch item fitness statistics for each distribution type as
the probability of guessing the correct answer increased. The mean item scores
differed significantly with uniformly distributed item difficulties, but not nor-
mally distributed item difficulties. The LRI was more sensitive to large positive
itern misfit values associated with the unweighted total fitness statistic than to
similar values associated with the weighted total fitness or unweighted between
fitness statistics. The greatest magnitude of change in LRI values (negative) was
observed when the unweighted total fit statistic had large positive values greater
than 2.4. The LRI statistic was most useful in identifying the linear trend in
the residuals for each item, thereby indicating differences in ability groups (i.e.,
differential item functioning).

Rogers and Hattie (1987) investigated the behaviour of several person
and item fitness statistics commonly used to test and obtain fitness to the one-
parameter item response model. The sensitivity of the total-¢, mean-square resid-
ual, and between-¢ fitness statistics to guess, heterogeneity in discrimination pa-

rameters, and multidimensionality was examined using simulated data for 500
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persons and 15 items. Additionally, 25 misfit persons and a misfit item were gen-
erated to test the power of the three fit statistics to detect deviations in a subset of
observations. Neither the total- nor the mean-square residual were able to detect
deviation from any of the models fitted. The use of these statistics appeared to be
unwarranted. The between-¢ was a useful indicator of guess and heterogeneity in
discrimination parameters, but was unable to detect multidimensionality. These
results show that the use of person and item fitness statistics to test and obtain
overall fitness to the one-parameter model can lead to acceptance of the model
even when it is grossly inappropriate. Assessments of model fitness based on
this strategy are inadequate.

Smith (1988) investigated the distributional properties of the standardised
residuals used in estimating Rasch model’s parameters when the data fit the
model. The author also investigated the power of the standardised residual to
detect measurement disturbances. The study was based on simulated data to con-
trol for the presence of confounding factors, such as multidimensionality, differ-
ences in the slopes of item characteristic curves, and guess. The results indicated
that when the data fit the model, the distributional properties of the standardised
residuals were close to hypothesised mean and standard deviation and that it is
possible to construct reasonable Type I error rates that can be used as a frame of
reference when investigating the fitness of actual data to the Rasch model. The
analysis of the simulated measurement disturbance data indicated that although
the shape of the standardised residual distribution reacts to the presence of the
disturbance, the magnitude of the response is small and the residuals lack the
power of the item or person fit statistics to detect measurement disturbances.

McKinley and Mills (1985) conducted a study to evaluate four goodness-
of-fit procedures in item response theory using data simulation techniques. The
procedures were evaluated using data generated according to three different item

response theory models and a factor analytic model. Three different distributions
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of ability were used, as were three different sample sizes. It was concluded that
the likelihood ratio Chi-square procedure yielded the fewest erroneous rejections
of the hypothesis of fitness, whereas Bock’s Chi- square procedure yielded the
fewest erroneous acceptances of fitness. It was found that sample sizes between
500 and 1,000 were best. Shifts in the mean of the ability distribution were found

to cause minor fluctuations, but they did not appear to be a major issue.

Factor Analysis of Items

An issue to consider when conducting factor analysis is the characteristics
of the sample from which the measurements of the indicator variables are taken.
Obviously, an aspect of the sample that is worth considering is how large the
sample should be in order to perform factor analysis. Correlations are less reli-
able when estimated from small samples (Tabachnick & Fidell, 2013). Gorsuch
(1974) puts it bluntly that ““ no one seems to know exactly where a large n begins
and a small 7 leaves off”. Comrey and Lee (1992) noted that as the sample size
increases, the reliability of the obtained correlations increases. They found that
samples of size 50 give very inadequate reliability of correlation coefficients,
while samples of size 1000 are more than adequate for factor analysis. With
regards to evaluating the adequacy of the sample size, Comrey and Lee (1992)
provided some guidelines: 50 is very poor, 100 is poor, 200 is fair, 300 is good,
500 is very good, and 1000 or greater is excellent. Other researchers are of the
view that under optimal conditions (communalities of 0.70 or greater and 3 to
5 indicator variables loading on each factor), a sample of size 100 can be ade-
quate; under moderately good conditions (communalities of 0.40 to 0.70 and at
least 3 indicators loading on each factor), a sample of at least 200 should suffice;
and under poor conditions (communalities lower than 0.40 and some factors with

only two indicator variables on them), samples of at least 400 might be necessary
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(Fabrigar & Wegener, 2012; Tabachnick & Fidell, 2013; MacCallum, Browne,
& Sugawara, 1996).

Muthén and Kaplan (1985) considered the problem of applying factor
analysis to non-normal categorical variables. A Monte Carlo study is conducted
where five prototypical cases of non-normal variables are generated. Two nor-
mal theory estimators, maximum likelihood (ML) and generalised least squares
(GLS), were compared to the asymptotically distribution-free (ADF) estimator.
A categorical variable methodology (CVM) estimator was also considered for
the most severely skewed case. Results showed that ML and GLS Chi-square
tests were quite robust but obtain too large values for variables that were severely
skewed and kurtotic. ADF, however, performed well. Parameter estimate bias
appeared non-existent for all estimators. Results also showed that ML and GLS
estimated standard errors were biased downward. For ADF, no such standard
error bias was found. The CVM estimator appeared to work well when applied
to severely skewed variables that had been dichotomised. ML and GLS results
for kurtosis-only showed no distortion of Chi-square or parameter estimates and
only a slight downward bias in estimated standard errors.

Babakus, Ferguson, and Joreskog (1987) used a simulation design to study
the sensitivity of maximum likelihood (ML) factor analysis to violations of
measurement scale and distributional assumptions in the input data. Product-
moment, polychoric, Spearman’s rho, and Kendall’s tau correlations computed
from ordinal data were used to estimate a single-factor model. The resulting ML
estimates were compared on the bases of convergence rates and improper solu-
tions, accuracy of the loading estimates, fitness statistics, and estimated standard
errors. Results showed that, for large samples (n = 500), all replications con-
verged and the solutions were proper with both continuous and discrete data. In
small samples (n = 100) with the larger loading vector (0.8, 0.8, 0.8, 0.8), all con-

tinuous cases converged and the solutions were proper. Though all small sample
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with large loading cases converged, there were three improper solutions. All
three occurred with the polychoric correlation. Non-convergence and improper
solutions occurred with small samples (n = 100) and smaller loading vector (0.4,
0.6, 0.6, 0.8) for both continuous and discrete cases. For continuous replica-
tions, there were four non-convergent cases and a total of 124 improper solu-
tions (2%). When the same data were categorised, 43 non-convergent cases and
239 improper solutions were obtained (4%). Most of the non-convergent (44%)
and improper solutions (60%) occurred when polychoric correlations were used
as input. Generally, on the basis of convergence rates and improper solutions,
Kendall’s tau out-performed the other three measures, followed by the product-
moment and Spearman’s rho which produced similar results. The study revealed
that, the polychoric correlation out-performed other measures on both the cate-
gorisation bias and squared error criteria. The product-moment correlation pro-
duced the second best overall results, followed by Spearman’s rho and Kendall’s
tau. On the basis of estimated pairwise correlations, factor loadings and stan-
dard errors, the polychoric correlation gave consistently better estimates, but
performed worst on all goodness-of-fit criteria.

Finch (2006) compared the ability of two commonly used methods of ro-
tation in factor analysis, Varimax and Promax, to correctly link items to factors
and to identify the presence of simple structure. Results suggested that the two
approaches are equally able to recover the underlying factor structure, regardless
of the correlations among the factors, though the Promax method is better able
to identify the presence of a simple structure. The results further suggested that
for identifying which items are associated with which factors, either approach is
effective, but that for identifying simple structure when it is present, the Promax
method is preferable.

Tate (2003) compared a number of common methods for assessing dimen-

sionality in item response data, including the unweighted least squares (ULS),
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robust weighted least squares (RWLS), and a full information method using the
TESTFACT software. Tate simulated all items with guess parameter values
of 0.2, samples of 2,000 examinees, and 60 items. The author found that ex-
ploratory factor analysis (EFA) with the oblique PROMAX rotation, using both
TESTFACT and NOHARM, was able to recover item parameters under a variety
of multidimensional structures. On the other hand, confirmatory factor analysis
(CFA) using RWLS in Mplus demonstrated less than optimal item parameter
recovery in all cases where guess was present in the data.

Dolan (1994) studied two estimators in the factor analysis of categorical
items, the weighted least squares function implemented in LISREL 7 and a gen-
eralised least squares function implemented in LISCOMP. Dolan’s main interest
was the performance of these estimators in relatively small samples (200 to 400)
and the comparison of their performance with the normal theory maximum like-
lihood estimator given an increasing number of response categories. The author
evaluated the performance of these estimators based on the variability of the
parameter estimates, the bias of the parameter estimates, the distribution of the
parameter estimates and the x? goodness-of-fit statistics. The results indicated
that in the ideal circumstances, 200 is too small a sample size to justify the use
of large sample statistics associated with these estimators.

Potthast (1993) examined the utility of a categorical variable methodology
(CVM) for confirmatory factor analysis of ordinal variables. Multivariate nor-
mal data were generated according to four different factor models (4, 9, 15 and
22 parameters) for samples of 500 and 1000. Indicators were classified into five
categories so that manifest variables displayed negative, zero, positive or highly
positive kurtosis. Each of the 32 design cells was replicated 100 times. Param-
eter estimates exhibited little or no bias under any condition. Standard errors
were under-estimated with respect to the standard deviation of the parameter

estimates. This negative bias worsened as model size grew or as positive kurto-
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sis increased; it was more severe for factor correlations than indicator loadings.
Chi-square fitness statistics rejected the true model more often than expected for
nine-parameter and larger models. Although variables with high positive kurto-
sis led to the greatest misfit in large models, fitness was poor even with variables
of zero kurtosis. As expected, larger samples always yielded more accurate re-
sults.

Yang-Wallentin, Joreskog, and Luo (2010) studied the behaviour of max-
imum likelihood methods such as unweighted least squares (ULS), maximum
likelihood (ML), weighted least squares (WLS), or diagonally weighted least
squares (DWLS) in combination with polychoric correlations when the mod-
els are misspecified. Yang-Wallentin et al. also studied the effect of model size
and number of categories on the parameter estimates, their standard errors, and
the common Chi-square measures of fit when the models are both correct and
misspecified. Results showed that when used routinely, these methods give con-
sistent parameter estimates, but ULS, ML, and DWLS give incorrect standard
errors. The authors noted that correct standard errors can be obtained for these
methods by robustification using an estimate of the asymptotic covariance matrix
(W) of the polychoric correlations.

Parry and McArdle (1991) provided a comparison of four selected least-
squares methods of factor analysis of binary data: (1) calculation of a matrix
of phi coefficients, followed by fitting of a factor model using a minimum un-
weighted least-squares (ULS) procedure (ULS-PHI); (2) calculation of a matrix
of tetrachoric correlations, followed by fitting of a factor model using a mini-
mum ULS procedure (ULS-TC); (3) calculation of a matrix of tetrachoric corre-
lations, followed by fitting of a factor model based on a weighted least-squares
(WLS) factor extraction (LISCOMP); and (4) calculation of a product-moment
correlation matrix using phi coefficients means, followed by fitting of a factor

model using an approximation to a ULS (NORHAM). The study was done us-
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ing simulated data, generated under varying sample sizes, threshold values, and
population loadings of a factor model. The results showed that, the advantage of
one method over another depends on the sample size, as well as on the combina-
tion of magnitude of the loading and the skewness of the data (threshold). Parry
and McArdle noted that LISCOMP does not appear to work well for datasets
of small sample size, and differences among the three remaining methods ap-
pear to be smallest when the data is not highly skewed and when loadings are of
moderate size (0.7). The study further revealed that the estimates of population
loadings using NOHARM and LISCOMP procedures were not markedly supe-
rior to those obtained from ULS-PHI, except when population loadings were
high (0.9). Again, NOHARM did not perform better than ULS-TC, even when
the data was more highly skewed. Parry and McArdle concluded that NOHARM
and LISCOMP did not out-perform factor analysis using the tetrachoric and Phi
correlation coefficients estimated from bivariate tables of the observed variables
as input to the analysis.

Muthén (1984) proposed a structural equation model with a generalised
measurement part, allowing for dichotomous, ordered categorical, and contin-
wous indicator variables. A computationally feasible three-stage estimator is
proposed for any combination of observed variable types. The author noted
that, the proposed model is a three-stage, limited information, generalized least-
squares (GLS) estimator, which gives large-sample Chi-square tests of model fit
and large-sample standard errors of estimates. Muthén outlined that, the tech-
niques makes it possible for GLS factor analysis with (mixtures of continuous
and) ordered polytomous indicators, testing hypotheses of both correlation and
level structures in multiple-group structural equation models, and multivariate
structural regression with ordered categorical response variables.

Flora and Curran (2004) used Monte Carlo simulation methodology to

empirically study the effects of varying latent response variable (y*) distribu-
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tion, sample size (n), and model size on the computation of Chi-square model
test statistics, parameter estimates, and associated standard errors pertaining to
CFAs fitted to ordinal data. The y* distributions considered include a multivari-
ate normal distribution and four non-normal distributions with varying skewness
and kurtosis. Each dataset generated conformed to four model specifications
that hold fo y*: Model 1 consisted of a single factor measured by five ordi-
nal indicators; Model 2 consisted of a single factor measured by ten indicators;
Model 3 consisted of two correlated factors each measured by five indicators;
and Model 4 consisted of two correlated factors each measured by ten indica-
tors. After sampling continuous multivariate data from various distributions, the
samples were transformed into two-category and five-category ordinal data. For
each combination of y* distribution and model specification, Flora and Curran
generated random samples of four different sizes: 100, 200, 500, and 1,000. For
each simulated sample of ordinal data, the authors calculated the correspond-
ing polychoric correlation matrix and fit the relevant population model using
both full and robust WLS estimation. The study showed that the polychoric
correlation estimates tended to become positively biased as a function of in-
creasing non-normality in the y* distributions; however, mean relative bias (RB)
remained under 10% in almost all cases. Although the correlation estimates
were frequently positively biased, the centre of these distributions did not depart
substantially from the population correlation value, even with y* non-normality.
Also, sample size did not have any apparent effect on the accuracy of the poly-
choric correlations, although there was a tendency for correlations calculated
from two-category data to be slightly more biased than those calculated from
five-category data. With sample size of 100, full WLS did not produce any so-
lutions for Model 4 (due to non-invertible weight matrices). In general, the rates
of improper solutions were greater in the two-category versus five-category con-

dition. For Models 2 and 3, two-category data produced high rates of improper
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solutions with sample size of 100, whereas the rates were near zero in the five-
category condition. Also, nearly 100% of replications of Model 4 were improper
in the two-category condition where n = 200, whereas the corresponding rates
in the five-category condition were only around 30%. Although the rates of
improper solution obtained with full WLS varied somewhat across different y*
distributions, this variation did not appear to be systematically associated with
degree of non-normality in y*. At the two largest sample sizes (n = 500 and n =
1,000), full WLS estimation converged to proper solutions of all four models
across 100% of replications. Both the Chi-square test statistics and their stan-
dard deviations tend to be positively biased across all cases of the study, partic-
ularly with full WLS estimation. This bias increases as a function of increasing
number of indicators for a model and by model complexity. The effect of sam-
ple size on the inflation in Chi-square test values varies sublstantially with model
specification. Within each of the four models, the Chi-square RB decreases as
sample size increases, but this effect is more pronounced for larger models. In
addition, there appears to be some indication that the Chi-square statistics are
affected by non-normality in y*.

Forero, Maydeu-Olivares, and Gallardo-Pujol (2009) conducted a simu-
lated study to compare DWLS and ULS in estimating a factor analysis model
with categorical ordered indicators under different settings of dimensionality,
factor loading, sample size, number of items per factor, number of response
alternatives per item, and item skewness. A total of 324 conditions per estima-
tion method were investigated, using 1,000 replications for each setting. A full
factorial design was used by crossing three sample sizes (200, 500, and 2,000
respondents); two levels of factor dimensionality (one and three factors); three
test lengths (9, 21, and 42 items); three levels of factor loadings A: low (A =0.4),
medium (A = 0.6), and high (A = 0.8); and six item types (three types consist

of items with two categories, and another three of items with five categories)
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that varied in skewness, kurtosis, or both. Results indicated that, on average,
convergence rates (i.e. rates of plausible solutions) across the 324 conditions
were 97.4% for DWLS and 96.4% for ULS. However, convergence rates dif-
fered depending on the number of indicators per dimension, item skewness, and
sample size. Both estimators showed smaller convergence rates for models with
only three indicators per dimension. In this setting, convergence rates were bet-
ter for DWLS: Average convergence was 90.6% for DWLS versus 85.4% for
ULS. When the number of indicators per dimension was seven or more, average
convergence rates were similar (roughly 99%). Increasing skewness worsened
convergence: When item skewness was greater than or equal to 1.5, average
convergence was 96.4% for DWLS and 94.7% for ULS. When item skewness
was below 1.5, convergence performance was, on average, similar across the
methods (98%). Finally, sample size improved convergence rates.
Morata-Ramirez and Holgado-Tello (2013) compared four estimation meth-
ods: maximum likelihood (ML), robust maximum likelihood (RML), unweighted
least squares (ULS), and robust unweighted least squares (RULS) according to
two of the assumptions CFA is supposed to fulfil — multivariate normality, and
the continuous measurement nature of both latent and observed variables. In the
study, three conditions were manipulated: hypothesized model dimensions (3, 5
and 7 uncorrelated factors), sample size (250, 450, 650, 850), and items skew-
ness (all items symmetric, all items asymmetric). Each sample of continuous and
normally was generated with 9, 15 or 21 items (3, 5 and 7 dimensions, respec-
tively) were categorised to a five-point scale. Results showed that when ULS
or RULS methods were applied to symmetrical item distributions, Chi-square
statistics for three-factor models were high for samples of 250 subjects, but not
for the remaining sample sizes. In respect of ML and RML estimators, Chi-
square statistics showed high values which were greater than the ones reported

for RULS method. Chi-square value for three-factor models were high along
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the different sample sizes, while they are pretty high for five-factor models with
450 or 650 subjects and high for 850 subjects. For asymmetrical item distribu-
tions, when ULS and RULS estimators were considered, five and seven-factor
models had highest Chi-square values for samples of 850 subjects. Concerning
ML and RML estimation methods, Chi-square values were higher for five-factor
models compared to three and seven-factor models regardless of the sample size.
Morata-Ramirez and Holgado-Tello suggested that ULS and RULS are prefer-
able as polychoric correlations help to overcome grouping and transformation
errors produced when using Pearson correlations for ordinal observed variables.

Li (2016) carried out a Monte Carlo simulation study to compare the ef-
fects of different configurations of latent response distributions, numbers of cat-
egories, and sample sizes on model parameter estimates, standard errors, and
Chi-square test statistics in a correlated two-factor model. Two estimation proce-
dures, robust maximum likelihood (RML) and diagonally weighted least squares
(DWLS), were used in the study. Factor loading was held constant at 0.7, with its
corresponding uniqueness automatically set to 0.51, inter-factor correlation was
set to 0.3, and factor variances were all set equal to 1. Two latent distributions
that varied in skewness and kurtosis were employed: (1) a slightly non-normal
latent distribution with skewness = 0.5 and kurtosis = 1.5, and (2) a moderately
non-normal latent distribution with skewness = 1.5 and kurtosis = 3.0. Four, six,
eight, and ten categories were generated for each ordinal indicator within both
the slightly and moderately non-normal latent distributions. Three different em-
pirical sample sizes, 200, 500, and 1,000 were employed in this study. The study
found that, the problems of improper solutions or non-convergence did not oc-
cur for both RML and DWLS, irrespective of the number of categories, level of
latent distribution violations (slightly and moderately non-normal), and sample
sizes. Factor loadings were, on average, underestimated by RML when ordinal

data had only four response categories. Conversely, the factor loadings were
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slightly overestimated, on average by DWLS, and considered essentially unbi-
ased, especially when the latent distribution is only slightly non-normal. Re-
gardless of the number of categories, DWLS was consistently superior to RML
for factor loading estimates. Generally, the discrepancy in overall performance
between DWLS and RML became larger as the sample size increased. DWLS
was better than RML in the overall quality of factor loading estimates from four
to ten categories across different sample sizes, even when ordinal observed data
were generated from a moderately non-normal latent distribution.

Rhemtulla, Brosseau-Liard, and Savalei (2012) compared the performances
of robust normal theory maximum likelihood (ML) and robust categorical least
squares (cat-LS) methodology for estimating confirmatory factor analysis mod-
els with ordinal variables. Data were generated from two models with two to
seven categories, four sample sizes, two latent distributions, and five patterns
of category thresholds. Results revealed that factor loadings and robust stan-
dard errors were generally most accurately estimated using cat-LS, especially
with fewer than five categories; however, factor correlations and model fitness
were assessed equally well with ML. Cat-LS was found to be more sensitive
to sample size and to violations of the assumption of normality of the under-
lying continuous variables. Normal theory ML was found to be more sensitive
to asymmetric category thresholds and was especially biased when estimating
large factor loadings. Rhemtulla et al. recommended cat-LS for datasets con-
taining variables with fewer than five categories and ML when there are five or
more categories, sample size is small, and category thresholds are approximately
symmetric. With six to seven categories, results were similar across methods for
many conditions; in these cases, either method is acceptable.

Beauducel and Herzberg (2006) through simulation study compared max-
imum likelihood (ML) estimation with weighted least squares means and vari-

ance adjusted (WLSMYV) estimation based on confirmatory factor analyses. The
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simulation study was performed for four different samples sizes (250, 500, 750,
1000), with four different numbers of variables (5, 10, 20, and 40 with 1, 2, 4,
and 8 latent factors, respectively) and five numbers of categories in the variables
(2,3, 4, 5, and 6). The distributions of the variables were generated on the basis
of a binomial distribution. It was found that WLSMYV estimation performed as
well as ML estimation across all sample sizes. For all sample sizes and for all
number of categories, the mean size of the WLSMYV factor loadings was closer to
the continuous variables population loading (0.50 for the orthogonal case; 0.55
for the oblique case) than the mean size of the ML loadings. Generally, a clear
superiority of WLSMYV over ML estimation was found for categorical variables
with two and three categories. Fitness indexes indicated superior model fitness
when based on WLSMV and two and three categories. When based on five and
six categories, there was no difference in ML and WLSMYV, which means that
the performance of the ML-based fitness assessment increased with five and six
categories. There was, however, a clear tendency to underestimate the size of
the factor loadings with ML estimation when the variables had only two or three
categories. This tendency diminished with increasing number of categories, but
even with six categories, there was a slight tendency to underestimate the mag-
nitude of the loadings with ML estimation. The standard errors of the loadings
were a bit smaller for WLSMYV than for ML estimation across all number of
categories. With four and five categories, the performance of WLSMV estima-
tion was slightly superior to the performance of ML estimation, especially with
respect to the bias of the loadings.

DiStefano (2002) investigated the impact of categorization on confirma-
tory factor analysis (CFA) parameter estimates, standard errors, and five ad hoc
fitness indexes. Simulated datasets were generated under various conditions such
as model size, sample sizes, and loading values. Two estimators, weighted least

squares (WLS; with polychoric correlation input) and maximum likelihood (ML;
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with Pearson product-moment input) were employed in the study. CFA results
obtained from analysis of normally distributed, continuous data were compared
to results obtained from five-category Likert-type data with normal distributions.
Results indicated that, ML parameter estimates reported moderate levels of neg-
ative bias for all conditions, WLS standard errors showed high amounts of bias,
especially with a small sample size and moderate loading values. With non-
normally distributed, ordered categorical data, ML parameter estimates, standard
errors, and factor inter-correlation showed high levels of bias.

van der Eijk and Rose (2015) undertook a systematic assessment of the
extent to which factor analysis produces the correct number of latent dimen-
sions (factors) when applied to ordered-categorical survey items (so-called Lik-
ert items). The authors simulated 2400 datasets of unidimensional Likert items
that vary systematically over a range of conditions such as the underlying pop-
ulation distribution, the number of items, the level of random error, and charac-
teristics of items and item-sets. Each of these datasets was factor analysed on
the basis of Pearson and polychoric correlations. They found that, irrespective
of the particular mode of analysis, factor analysis applied to ordered-categorical
survey data very often leads to over-dimensionalisation. The magnitude of this
risk depends on the specific way in which factor analysis is conducted, the num-
ber of items, the properties of the set of items, and the underlying population

distribution.

Comparison of FA and IRT on Item Analysis

Forero and Maydeu-Olivares (2009) examined the performance of param-
eter estimates and standard errors in estimating graded response (GR) model
across various conditions. The authors compared Full information maximum

likelihood (FIML) with a 3-stage estimator for categorical item factor analy-
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sis (CIFA) when the unweighted least squares method was used in CIFA’s third
stage. They found that CIFA is much faster in estimating multidimensional mod-
els, particularly with correlated dimensions. Results further showed that, gener-
ally, CIFA yields slightly more accurate parameter estimates, and FIML yields
slightly more accurate standard errors. FIML was found to be the best estimator
in small sample sizes (200 observations). Again, CIFA was the best estimator in
larger samples (on computational grounds). Forero and Maydeu-Olivares noted
that both methods failed in a number of conditions, most of which involved 200
observations, few indicators per dimension, highly skewed items, or low factor
loadings and these conditions are to be avoided in applications.

Maydeu-Olivares, Cai, and Herndndez (2011) compared the fitness of an
FA model and of an IRT model to the same dataset using test statistics based
on residual covariances. The authors suggested that IRT and FA models yield
similar fitnesses when applied to a binary dataset. On the contrary, for ordinal
polytomous dataset, IRT models yielded a better fit because they involve a higher
number of parameters. Maydeu-Olivares et al., however, noted that when fitness
is assessed using the root mean square error of approximation (RMSEA), similar
results are obtained again. They explained that these test statistics have little
power to distinguish between FA and IRT models; they are unable to detect that
linear FA is misspecified when applied to ordinal data generated under an IRT
model.

Finch (2010) examined the ability of two confirmatory factor analysis
models, specifically for dichotomous data, to properly estimate item parame-
ters using common formulae for converting factor loadings and thresholds to
discrimination and difficulty indices. The author considered unweighted least
squares (ULS) and robust weighted least squares (RWLS) (MIRT estimation
methods), and the unidimensional estimation approach which are implemented

in software packages NOHARM , Mplus, and BILOGM G, respectively. Finch
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assessed these techniques in terms of the overall accuracy, bias, and standard
error of item parameter estimates under a variety of sample sizes, test lengths,
inter-trait correlations, pseudo-guess, and latent trait distribution conditions. The
results indicated that performance of MPlus estimation was compromised, when
guess (c) was present in the data, for both item discrimination and difficulty
parameters, but such effect on bias was not seen with NORHAM. The author
explained that, NOHARM provides ¢ parameter estimates as it estimates item
difficulty and discrimination, whereas such is not the case for MPlus. Again,
the study found that estimates provided by both methods were influenced by the
distribution of the latent traits, with larger standard errors in the skewed case for
NOHARM and MPlus estimates of item difficulty and discrimination. For the
unidimensional results produced by BILOGMG,, item difficulty bias is near 0
for the 60-item case, but has the largest such bias of the three approaches stud-
ied for 15 and 30 items. It was revealed that, there was greater precision in the
discrimination estimates for larger sample sizes for both ULS and RWLS.

Knol and Berger (1991) used a simulation study to compare the ability
of NOHARM, TESTFACT, standard principal factor analysis (based on tetra-
choric correlations), and an MIRT parameter estimation approach to recover
item parameter values. A total of 10 replications of each set of studied condi-
tions were conducted, where the manipulated factors included sample size (250,
500, 1,000), number of items (15, 30) and number of dimensions (1, 2, 3). They
reported that NOHARM and the standard factor-analytic approaches using the
tetrachoric correlation performed as well as TESTFACT , and actually better
than the MIRT estimation. De Bruin (2004) examined problems encountered
in the factor analysis of items and demonstrated two methods that may be used
to address these problems, namely the Rasch rating scale model, and the factor
analysis of item parcels. The results showed that the Rasch rating scale model

and the factoring of parcels produce superior results to the factor analysis of
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items.

Gosz and Walker (2002) conducted a Monte Carlo simulation in which
they compared the ability of TESTFACT and NOHARM to estimate the prob-
abilities of correct responses to a set of items for a group of simulated exami-
nees. The authors assessed the performance of the methods by calculating root
mean square deviation between the estimated and actual probabilities of cor-
rect responses for 2,500 examinees. Six different 40-item exams were simulated
and replicated 100 times each. The exams differed in terms of the number of
two-dimensional and unidimensional items that were generated. The correlation
between the two latent traits was varied at 0.5, 0.75, and 0.9. Gosz and Walker
found that when a test contained a large number of items associated with two fac-
tors, full information estimation using TESTFACT was better able to re-create
examinees’ response probabilities that matched those in the population than was
the partial information approach carried out in NOHARM. In contrast, when
fewer items exhibited this non-simple structure, NOHARM more accurately re-
created item response probabilities across the examinees.

Astn, Rdz-Navarro, and Alvarado (2016) compared the performance of
two approaches in analysing four-point Likert rating scales with a factorial model:
the classical factor analysis (FA) and the item factor analysis (IFA). For FA,
maximum likelihood (ML) and weighted least squares (WLS) estimations us-
ing Pearson correlation matrices among items were considered. For IFA, di-
agonally weighted least squares (DWLS) and unweighted least squares (ULS)
estimations using items polychoric correlation matrices were considered. Data
were generated for one, two, and three dimensional structures. For multidimen-
sional conditions, three degrees of correlation among factors were considered,
namely, zero (p = 0), low (p =0.3), and high (p =0.6). Six items were cre-
ated for each dimension; thus, 6, 12, and 18 items were created for unidimen-

sional, two-dimensional, and three-dimensional conditions, respectively. Factor
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loadings were adjusted to represent low (A =0.3) and medium (A =0.6) quality
items. Continuous items were recoded into four categories forming three distri-
butions with different degrees of asymmetry: Type I items represented symmet-
ric distributions, Type II items represented mild asymmetry, and Type III items
represented high asymmetry of responses. Finally, sample sizes were adjusted
to represent variation from small to large sample sizes namely, 100, 200, 500,
1,000, and 2,000 subjects. Results indicated that although all estimation pro-
cedures showed similar capacity for producing valid solutions and stable A and
correlation parameter estimates, ULS and DWLS yielded remarkably lower bias
in both parameter estimates and were robust in extreme conditions: asymmetric
item distributions, low item quality (A =0.3), and small sample sizes. The study
confirmed that classical estimation procedures in ordinal data with four-point
scales is inappropriate. Astin et al. maintained that if one expects the quality
of the items in the scale to be low (A =0.3), a sample of 500 subjects might be
selected in order to ensure a large probability of achieving admissible results
(i.e., a convergent solution) and relatively unbiased and stable estimation of key
parameters in the model. And, if the items are suspected to reflect the latent
construct in a better fashion (A =0.6), accurate estimations can be reached for
small samples (200 or even 100 subjects) if item distributions are symmetric or

mildly asymmetric.

Chapter Summary

The review of related literature shows that overwhelming number of stud-
ies on IRT and factor analyses of item responses are based on simulation studies
using one or combinations of various conditions. An issue that has engaged the
attention of researchers has to do with investigating the relationship between

number of response categories employed and internal-consistency reliability of
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Likert-type questionnaires. It was found that in situations where low total score
variability is achieved with a small number of categories, reliability can be in-
creased through increasing the number of categories employed. In situations
where opinion is widely divided toward the content being measured, reliability
appeared to be independent of the number of response categories.

A great concern in the literature is about the effect of item parameters on
item-fitness statistics. Results showed that item discrimination and guess but
not difficulty level parameters affected item-fitness. That is, as the level of item
discrimination or guess parameter increased, item-fitness values increased.

One of the problems in IRT that has been studied has to do with the com-
parison of the performances of one-parameter and two- parameter partial credit
(1PPC and 2PPC) models. Results showed that the 2PPC model alone or in
combination with the 3PL model provided uniformly better fitness than did the
1PPC model used alone or in combination with the 1PL model. It was noted that
the poorer fit performance by the IPPC model alone or in combination with the
1PL model is likely produced by the considerable variability in item discrimina-
tion, as well as guessing on the multiple-choice items. Further, the percentages
of items with good fitness tended to be larger when the 3PL-2PPC model com-
bination was used. Also, this model combination tended to produce better item
fitness across datasets with dissimilar properties.

The literature also assessed how violations of the normality assumption
impact the item discrimination and difficulty parameter estimates. It was re-
vealed that when the latent variable was negatively skewed, for the most discrim-
inating easy or difficult items, estimates of both parameters were considerably
biased coupled with large standard errors.

The review of literature indicated that an issue to consider when conduct-
ing factor analysis is the characteristics of the sample from which the measure-

ments of the indicator variables are taken. Obviously, an aspect of the sample
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that is worth considering is how large the sample should be in order to perform
factor analysis. It has been found that correlations — which are used as input
data in factor analysis — are less reliable when estimated from small samples.
Studies showed that samples of size 50 give very inadequate reliability of corre-
lation coefficients, while samples of size 1000 are more than adequate for factor
analysis. With regards to evaluating the adequacy of the sample size, the litera-
ture provided some guidelines: 50 is very poor, 100 is poor, 200 is fair, 300 is
good, 500 is very good, and 1000 or greater is excellent.

The comparison of the performance of two approaches in analysing four-
point Likert rating scales — the classical factor analysis (FA) and the item factor
analysis (IFA) — has been advanced in the literature. The FA employs Pearson
correlation matrices among items, whereas IFA considers polychoric correlation
matrices. The literature confirms that classical estimation procedures in ordi-
nal data with four-point scales is inappropriate. For factor analysis of ordered

polytomous data, it is recommended to use polychoric correlations.
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CHAPTER THREE

RESEARCH METHODS

Introduction

This chapter focuses on key concepts and methods used in item response
theory (IRT) and factor analyses. It presents various IRT models and their graph-
ical representations. The chapter also presents theoretical connection between
the parameters of factor analysis and item response models under item response
format and dimensionality of the underlying ability. Two measures of correla-
tion coefficients — tetrachoric and polychoric — are presented. In what follows,

we present the assumptions and class of IRT models.

Item Response Theory

Item response theory provides a framework for modelling and analysing
item response data. IRT is based on statistical assumptions, and only when these
assumptions are met that the IRT model can reasonably be implemented. In what

follows, we present the assumptions of IRT models.

Assumptions of IRT models

The assumptions underlying IRT models are:

1. Unidimensionality: The set of items are measuring a single continuous
latent ability, 6. A requirement for this assumption to be met adequately by
a set of response data is the presence of a “dominant” factor that influences
responses to items (Hambleton et al., 1991). This dominant factor is the

ability measured by the instrument.

2. Local (Conditional) independence: The response to an item is indepen-

dent of the responses to other items conditional on the ability level. For
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this assumption to hold, a person’s response to one item must not affect
his or her responses to any other items in the questionnaire. For instance,
the content of an item must not provide clues to the responses of other
items. When local independence exists, the probability of any pattern of
item scores occurring for an individual is simply the product of the prob-
ability of occurrence of the scores on each item (Hambleton & Swami-
nathan, 1985). This assumption is needed to guarantee the uniqueness of
the maximum likelihood estimation of parameters in a given IRT model.
When the assumption of unidimensionality holds, local independence is
achieved. However, local independence can be achieved even when the

dataset is not unidimensional.

. Monotonicity: The probability of a positive response is a non-decreasing
function of an individual’s ability. This assumption can be interpreted to
mean that respondents with high ability levels are more likely to endorse
items than those with low ability level (M. S. Johnson, Sinharay, & Brad-

low, 2007).

Classification of IRT Models

The item response theory models may be classified broadly in three es-

sential ways. Firstly, in terms of the item characteristics or parameters that are

included in the models. In this regard, some models are designed to account for

one parameter, whiles other more complex models account for two or more pa-

rameters. Secondly, IRT models can also differ in terms of the response option

format. Along these lines, some models are designed to be used for dichoto-

mous items, whereas others are designed for items with more than two response

options (i.e., polytomous items), such as Likert scale items. Thirdly, IRT models

are classified in terms of the number of dimensions that define the person ability
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parameter. In this case, an IRT model is either unidimensional or multidimen-
sional. In what follows, a discussion of unidimensional item response theory

(UIRT) models, in terms of response option format, is presented.
Dichotomous IRT models

Dichotomous items have only two response categories, namely, true-false,

yes-no, agree-disagree, or right-wrong.
The Rasch model

According to this model, a person’s response to a dichotomous item is
determined by the individual’s ability level and only a single item parameter -
the item difficulty (5). One way of stating the model is in terms of the probability
that a person with a given ability level will endorse an item that has a particular

difficulty (Embretson & Reise, 2000). The model is given by

1
p(Xij=1]6,8) = T (05 3.1

where X;; is the response of the jth person to the ith item. This model assumes
that all items have the same discrimination power. In other words, all items
are assumed to be equally good measures of the ability. For purposes of sim-
plicity in notation, p; () is used to represent p (X;; = 1|6,8), the probability of
responding positively to the item. At 6 = §;, p;(0) = 0.5, which means that
when the ability level of an individual matches the difficulty of an item, there
is 50% chance that the person will respond positively to the item. This gives
the meaning of item difficulty under the Rasch model. That is, the item diffi-
culty is the point on the ability scale at which an individual has a 0.5 probability
of item endorsement. When 6 > &;, p;(8) > 0.5, which shows that when the

ability of the person exceeds the item location (difficulty), there will be more
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than 0.5 probability of endorsing the item. At this point, the item is consid-

ered to be “easy” for that particular individual. On the other hand, when 6 < §;,
pi (8) < 0.5, which suggests that when the item location (difficulty) exceeds the
person’s ability, there will be less than 50% chance of responding favourably to

the item. At this instance, the item is said to be “difficult” for the individual.

The one-parameter logistic model

In the one-parameter logistic (1PL) model, the probability of a respondent

providing a positive response to item i is given by

1

1 +exp[—a(0—39;)] 2

p(Xij=16,8) =

The 1PL model requires that all items related to the ability being measured have
common discrimination, but not fixed at one. The item difficulty parameter has
the same interpretation as in the Equation (3.1). When the ability scores (8) for
a group are transformed to a mean of zero and standard deviation of one, §; vary
from about —2.0 to 2.0. Values of 8 near —2.0 correspond to items that are very
easy. Values of &; near 2.0 correspond to items that are very difficult for the

group of examinees (Hambleton & Swaminathan, 1985).
The two-parameter logistic model

In the two-parameter logistic (2PL) model, the probability of a positive
response to an item incorporates how well the item differentiates between low-

ability and high-ability respondents. The model is defined as

1
14exp[—1.7020; (6 — §;)]

p(Xi;=1]6,0,8) = (3.3)

Under this model, items have different discrimination powers, o;. The o are
defined, theoretically, on the scale (—oo, +-00). However, negatively discriminat-

ing items are discarded from ability tests. It is unusual to obtain o; values larger
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than two. Hence, a; € (0,2) (Hambleton & Swaminathan, 1985). High values

of o; result in steeper item characteristic curves. In Equation (3.3), 1.702 is a
scaling factor that ensures the value of the item discriminating parameter in lo-
gistic models comparable to a normal-ogive model. This scaling is important for

linking IRT parameters with factor analysis results (Reise & Revicki, 2015).
The three-parameter logistic model

The three-parameter logistic model is an extension of the 2PL model. Un-
der three-parameter logistic (3PL) model, a provision is made to account for
low-ability persons that will respond positively to the item. The probability of a

positive response to an item is given by

1

p(X'U = lle,a,SaC) =C,+(l '—'Ci) l+exp[—].70206,(9—6,)]’

(3.4)

where ¢; denotes the guess parameter value for the ith item. The values of ¢;
lies between zero and one, both inclusive (i.e., 0 < ¢; < 1). Typically, c¢; assume
values that are smaller than the value that would result if examinees of low ability
were to guess randomly to the item (Hambleton & Swaminathan, 1985). The
interpretation of the item difficulty parameter in the 3PL model differs from the
1PL and 2PL models. From Equation 3.4, when (0 — §;) approaches +oo, p; ()
approaches one, indicating that when the ability level of a person far exceeds
the difficulty of the item, it is almost certain that such an individual will respond
positively (without guess) to the item. Also, when (6 — &;) approaches —oo,
pi (8) approaches c;, showing that when the difficulty of an item far exceeds
the ability of an individual, he or she will only respond favourably by guessing
at the item. In other words, if (8 — ;) is negative or low, the guess parameter

is expected to be high. This means that guess is expected to be high among
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individuals with low ability levels. At 0 = §;,

1
p(Xij=1/8,a,8,c) =c;i+ (1 —c;)

1 + exp|0]
1
=ci+(l-ci)3
1 4+c¢;
= _ 3.5
> (3.5)

Thus, ¢; = f (0 —9;), a function of the difference, (6 — §;). Equation (3.5) gives
the probability of an individual responding favourably to the item at the value
of §;. When ¢; =0, p;(8) = 0.5, as in the 1PL and 2PL models. Also when
¢i >0, p;i (8) > 0.5. This means that when a respondent whose ability matches
the item’s difficulty guesses at the item, he or she would have more than 50%
chance of responding positively.

For the 3PL model, §; is located at a point on the ability scale where the
slope of the item characteristic curve is a maximum. The slope of the 3PL model
is obtained by finding the first partial derivative of the probability function with

respect to 0. That is,

0
! = — .
pt(e) - aep(xlj llev(xa B’C)

1
= 3 {Ci +(1—ci) 1 4+ exp[—1.7020:;(0 —8;)] }

9 (1-ci) }
NPT} { 1 +exp[—1.7020,;(6 — §;)]
=(1-¢;) 519 {1+ exp[-1.7020;(6 — 6:’)]}#1

—_ (l —C,') a exol PN
© {1 +exp[—1.7020:(6 — 8,)]} x 5 {1+exp| 1.7020,;(8 — &;)]}
- (1-c) 5 x {exp[—1.7020,;(8 — &)]} %

{1 +exp[~1.70204(0 — 5;)]}
%[—1.70205,'(9 —6i)]

- {1 +eXP[—(ll7:);;)L-(9 - 5.)]}2 x {exp[—1.7020,:(8 — &;)]} x 1.7020
1.7020,; (1 —¢;)  foxpl— 170204(0 — 5]} 56

- {1 +exp[—1.7020;(6 — )]}
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Equation (3.6) measures the rate of change in item endorsement with respect
to different ability levels. When (6 —J;) approaches +oo, p}(0) approaches
zero. This means that an individual whose ability is far above the item’s dif-
ficulty level, would almost surely endorse (without guess) the item. Since the
probability of endorsing the item is almost certain, the rate of change in re-
sponding positively is expected to be zero. Also, when (0 — d;) approaches —oo,
P} (0) approaches zero. That is, an individual whose ability is far lower than
the item’s difficulty level, would endorse the item by guessing. The amount of
guess, among low ability persons, is constant, and therefore, the rate of change
in endorsing the item would be zero. It is noteworthy from Equation (3.6) that,
when 6 = §;,

_ 1.7020,; (1 — ¢;)

{1 +exp[0]}?

170204 (1 —c;)
- 4

= 0.42550(.,’ (l - C,') . 3.7)

pi(0) x {exp[0]}

Atc; =1, p}(8) =0. This means that, if ¢; is at its maximum, the rate of endorse-
ment for respondents whose ability matches exactly with the item’s difficulty
would be zero. Thus, guess work is not helpful (or undesirable) for respondents
whose ability matches with the difficulty level of items. Suppose that ¢; = 0,
pi(0) is a maximum. This indicates that when there is no guess work, among

persons whose ability level matches with the item’s difficulty, the tendency to

endorse the item would be very high.

Polytomous IRT models

Polytomous items are categorical items with more than two possible re-
sponse categories. Categorical data can be described effectively in terms of the

number of categories into which data can be placed. For ordered polytomous
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items, the response categories have an explicit rank ordering with respect to

the ability. Ordered categories are defined by boundaries that separate the cate-
gories. Intuitively, there is always one less boundary than there are categories.
For instance, a five-point Likert-type item requires four boundaries to separate
the five possible response categories (Ostini & Nering, 2006). In general, each
response variable X;;, i = 1,2,...,p; j=1,2,...,n, has r; + | response categories
represented by category scores k = {0,1,2,...,g,...,r;} and r; boundaries denoted
by h={1,2,...,8,....k}. Polytomous models results in a general expression for
the probability of a person responding in a given item category. Mathematically,
the various polytomous models for ordered response categories differ in terms
of the expressions that are used to represent the location parameter (8) of the

category boundaries.
The partial credit model

To construct the partial credit (PC) model for ordered polytomous data,
one may decompose the responses into a series of ordered pairs of adjacent cat-
egories, and then successively apply a dichotomous model to each pair. The PC
model assumes that there is a point, d;;, on the latent ability continuum below
which an individual provides a particular response and above which the person
provides the next higher response. This point indicates the transition from one
category to the next category. In the PC model, there is a separate location pa-
rameter for each category boundary fo each item (Ostini & Nering, 2006; Reeve,
2002). The relationship between response categories and category boundaries

(8i), for a four-category item, may be represented diagrammatically as shown

in Figure 1.
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Figure 1: Diagrammatic representation of the relationship between the PC

model’s response categories and the category boundaries for two items

In Figure 1, §; shows the location of Item 1, whereas &, indicates the lo-
cation of Item 2. The values d;;, 8,2, and 8,3 represent the locations of the cat-
egory boundaries for Item 1. For Item 2, 8;;, 822, and 8,3 indicate the category
boundary locations. Thus, each of the two items has four response categories.

For a given pair of adjacent response categories, the probability of observ-
ing a response in category g over category g — 1 for item j is given by
s [ 0-)

P(Xij =210,8y) = " - p .
E exp| £ (0-5)

k=0

(3.8)

For notational convenience,
0
Y, (6—8u)=0.
h=0

So that
k k

Y (6-8n)=) (6—38u).

h=0 h=1
The value ;, is the category boundary location parameter, and governs the prob-

ability of an individual scoring in category g relative to category g — 1 for item
i. In Equation (3.8), g is the count of the boundary locations up to the category
under consideration. The numerator contains only the locations of the bound-

aries prior to the specific category, g, being modelled. The denominator is the
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sum of all r; 4+ 1 possible numerators (Ostini & Nering, 2006). The expression

Y.(6 — §;;) indicates the sum of the differences between a given ability level and
the location of each category boundary up to the category (g) being modelled.
Equation (3.8) utilises only one parameter, category boundary (9;;) to charac-
terise the item, and referred to as the Rasch partial credit model.

For a higher probability, the difference (6 — ;) should be large. The
difference (0 — J;,) measures the extent of ease with which an individual can
respond favourably to the particular item. For a higher probability in Equa-
tion (3.8), we expect the difference (8 — d;,) to be positive and large. On the
other hand, if (6 —0;,) approaches zero, it indicates that a respondent could
barely respond favourably. In this case, probability of endorsing the item is ex-
pected to be low.

Consider a four-category item, the probability of an individual responding

in Category 3 (i.e. g = 2) is computed as

P (X;; =20,8;) = =L [°+(e_i’;‘) + (0= %) (3.9)

where,

\|J=exp[0]+exp[0+(0—8,'1)]+exp[0+(0—8,~|)+(9—8,-2)]

+exp[0+(0—8;1) + (8 —82) + (6 - 83)].

In Equation (3.9), the numerator shows the odds of a person at a given ability
level responding in the higher category of each dichotomisation up to the cate-
gory in question. The denominator is the sum of the numerator values for every
category in the item. In other words, it is the sum of the odds at every category
in the item. The denominator Y ensures that the probability of responding in
any given category does not exceed one, and that the cumulative probabilities of
responding in a category, across all the categories for an item sum to one.

The PC model can be written to include two item parameters — difficulty
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and discrimination parameters. In this case, the probability of observing a re-

sponse in category g over category g — | for item i is given by (Muraki, 1992)

exp [ i 0 (0 — 5:’/:)]

P (X;j = g16, 0, 8) = ——=5 : (3.10)
L exp [ L oy(6— 5;‘/1)]
k=0 h=0

where o, denotes the discrimination associated with response category 4 on item
i. Equation (3.10) is the generalised partial credit (GPC) model or the two-
parameter partial credit (2PPC) model, since it uses two parameters to describe

the item.
The rating scale model

Although the rating scale (RS) model was proposed before the PC model,
the former can be derived from the latter. The RS model is distinctively ap-
propriate for a Likert scale where respondents are asked to respond to an item
using a pre-defined set of responses and where the same set of response cate-
gories is applied to all the items in the questionnaire. The RS model assumes
that all items in the questionnaire have the same kind of response categories (i.e.
the same number of categories r; = r,i = 1,2,..., p, having the same meaning)
(Bartolucci, Bacci, & Gnaldi, 2016). However, if items in a questionnaire use
two or more rating scales with different number of response categories, or if the
categories have different labels, then by definition, they are different scales, and
the RS model would apply to each scale separately (Ostini & Nering, 2006). For
the RS model, the distance between category boundaries is assumed to be equal
across all items. This is what distinguishes the RS model from the PC model. In
the RS model, the PC model’s category boundary parameter (8;;) is partitioned
into two components: (a) the item location parameter (3;) and (b) the threshold
parameter (t,) which defines the boundary between the categories of the rating

scale, relative to each item’s location. The T, indicates how far each category
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boundary is from the location parameter. In other words, the threshold values

may be viewed as offsets from an item’s location. Hence, it is the combination
of the item’s location (9;) and the threshold (offset) value, (t;) that determines
the category boundary’s location, &;; on the continuum (de Ayala, 2009). Math-
ematically,

Oin = ;i + Tp.

Figure 2 schematically represents the locations of two items, 8; and 8, and how

the thresholds for a four-point Likert scale relate to these two items.

S, 0,
TJ T3
“—’i ——P.
s 5 i 5
3} E T i
B I S T T
) b O 5, 5, & 0

Figure 2: Representation of a set of RS model threshold parameters for two

items

In Figure 2, 6; and &2 show the locations of Item 1 and Item 2, respec-
tively. The values 81, 812, and 8,3 indicate the category boundaries for Item 1.
Similarly, 8, 822, and ;3 represent the category boundary locations for Item
2. For Item 1, t; shows how far category boundary 1 (8,,) is from the item’s
location (8;). Thus, the sum of (8;) and (7) determines the location of category

boundary 1 (i.e., 8;; = 8; + 7). The probability of an individual with ability 6
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responding in category g on item j with thresholds, Ty is given by

exp[f: {9—(8;+1:;,)}]

P(Xi; = g|0) = ——= . 3.11)
Y exp [ Y {6- (6i+17h)}]
k=0 h=0
From Equation (3.11),
g g
YAo-@i+wm)}=-Y t+g(0-38).
h=0 h=0
So that
exp - £ o+5(0- 5]
P(X;; =g|8) = h=0 3.12)

T exp [- irwk(e—&-)]
k=0 h=0

Equation (3.12) supposes that all the categories of an item are discriminating
equally among the responses. However, that RS model can be re-stated to reflect
unequal discrimination values (0,) among the item’s category boundaries. To

this end, the probability of a person responding in category g on item i is obtained

as

exp [ )5 o, {6 — (8;+Ih)}]
h=0 (3.13)

P(Xi;=g|0) =

?

5 exp[ 5 och{e—<6,~+rh>}]
k=0 h=0

where o, measures the extent to which categorical responses vary among items

as 0 changes (Muraki, 1992). From Equation (3.13),
g 8 g g
Y 0n{0—(8i+T)} =) 00n— ) o8y~ ) oty
h=0 h=0 h=0 h=0

g g
= Z Oy (9—5,‘) - Z O Th.
h=0 h=0
g 8 T
Let Bg = h);o o and cg = —h)=:0 o, T,. This implies that

g
Y 0 {0—(8i+Th)} =cg+Be (0-8).
h=0
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Equation (3.13) becomes

exp [cg + Bg (6 — &))] (3.14)

r ?

L exp[ck + Bk (6 — &)
k=0

P(Xi;=g|0) =

where ¢, a function of oy, and 7y, is a category coefficient. By definition, ¢, =

Bg =0 when g = 0.
The graded response model

In the graded response (GR) model, the approach to modelling the prob-
ability of response categories is such that the ordered polytomous scores are
turned into a series of cumulative comparisons (i.e., below a given category as
opposed to at and above this category). The GR model specifies the probability
of an individual responding in category g or higher versus responding in cate-
gory lower than k. According to the GR model, the probability of responding in
category g or higher is

1

1 +exp[—0a;(0— Sig)]’ 3.15)

P(Xij>g|0)=

where ;¢ is the category boundary location for category score g and a; is the
discrimination parameter which is constant across an item’s response categories.
In essence, Equation (3.15) is a 2PL model applied to the categories of item i.
This model measures the cumulative probability of a person obtaining category
g or higher on item i. To calculate the probability of a person responding in a
given category g, the difference between the cumulative probabilities for adja-

cent categories must be determined. That is,
p(Xij=g10)=P(X;j > ¢g|0)—P(Xij=g+1]6),

where P(X;; > g+ 1| 0) is the probability of responding in category g+ 1 or
higher. Generally,

1 1

= — . (3.16
1+exp[—ai(8— ;)] 1+exp[—a(0—8ig41)] 19

p(Xij=g|0)
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In the GR model, the probit link function is used instead of the logit link func-

tion. That is, the function used is the cumulative density function of the normal

distribution.
The nominal response model

The nominal response (NR) model handles responses to items with two or
more nominal categories, such as a multiple-choice item. In the NR model, the
probability of responding in any given category is modelled directly by imple-
menting the multinomial logistic function of the latent ability, 6. Conceptually,
each of the item’s response categories has an associated probability. The sum of
these response probabilities is one. Suppose item i has four response categories,
Xi =1, X; =2, X; =3, and X; = 4, with respective probabilities p;, p2, p3, and
p4. For this set of probabilities, the odds of one response against another can be

determined. For instance,

Xi=2\_p2
0dds<X,-=1) _171.

For convenience, the odds can be transformed into a logarithmic scale through
the logit function. The logit transformation makes room for expressing the log
odds of one response category versus another in terms of a respondent’s ability

0. That is,
log (53) = + 0120, (3.17)
1

where 0 and 7y, characterise the X; = 2 response category. The notation Y is
the intercept and reflects the propensity to respond in Category 2 over Category
1 regardless of the ability level. The value, 0 is the slope and interpreted as the
change in the log odds as the ability level 8 changes by one unit. In a similar

fashion, the log odds of a response in Category 3 versus Category 1 may be
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obtained as
log (@) =73 + 036, (3.18)
Pl
In the case of Category 4 as opposed to Category 1,

log (?) — Y4 + 040, (3.19)
1

The three logit equations uses response Category 1 as baseline response category

(i.e a criterion variable).

The probability of a response in a given category can be directly expressed

using Equations (3.17), (3.18), and (3.19). Thus,

P2 = p1€Xp Y2 + 026] (3.20)
p3 = p1exp[ys + 036) (3.21)
Pa = p1exp[ys+040)]. (3.22)

The sum of response probabilities across the categories of an item is 1. That is,
Pi1+p2+p3+ps=1.
This implies that
p1+ p1exp[yz +026] + prexp[ys +036] + prexp [Ya + 0q6] = 1.

Making p; the subject gives

1
Pr=7 +exp [y2 + 0126] + exp [y3 + 030] + exp [y4 + 0t46]

Thus, Equations (3.20), (3.21), and (3.22) become

B exp [y2 + 0126]
P2=T17 exp [y2 + 020] + exp[y3 + 036] +exp 4 + 0146

_ exp [y3 +0136)
P3=1 +exp[y2 +020] +exp[y3 + 0:36] + exp [ys + 040]
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exp [Ys + 0146

PA=TTY exp [Y2 + 026] + exp [y3 + 0t30] + exp [ys + 0140]

In general, if item i has r; response categories, the probability that person j with
ability © will respond in category g is

exp [Yig + tigH)]

p(Xij = g|6) = (3.23)

1+ Z exp [Yik +oc,k6]

For simplicity in representation, lety; + ;0 = 0, i.e., ¥; = o) = 0, so that
1
Z exp [y +ou0] = I.
k=1

Equation (3.23) becomes

eXp |Yie + 000
p(Xij=gl8) = — P [¥ig + g6 (3.24)

Z eXp ['Ytk + (xlke]

Equation (3.24) is the nominal response model (Bock, 1972). Two constraints
are imposed on the parameters o and y: (1) ): i, = 0, and (2) ): Yik =

Alternatively, the parameters o and Y may be setk to zero for the basellr,;e <l:ategory.
Consequently, the number of estimated category slopes and intercepts for an item

is 2(r; — 1) (de Ayala, 2009).

IRT Graphical Techniques

In this section, we present some graphical methods that are used to de-
scribe various characteristics of items. These graphical methods include item

characteristic curve, total characteristic curve, item information curve and total

information curve.

Item characteristic curve

Item response theory postulates that the relationship between persons’

item response and the set of abilities underlying item response can be expressed
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by a monotonically increasing function, called the item characteristic curve (ICC)
or item response function. This function specifies that as the level of the ability
increases, the probability of a favourable response to an item increases (Hambleton
et al., 1991). In IRT analysis, ICCs are often used to present and evaluate char-
acteristics of items in a questionnaire. An ICC can be drawn based on an IRT
model. It is obtained by plotting response probabilities, p;(8) against persons’

abilities, 6. A hypothetical ICC is presented in Figure 3.
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p.(9)
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Figure 3: A hypothetical item characteristic curve

In Figure 3, the probability of a positive response is almost zero at the
lowest levels of ability. This probability increases until at the highest levels of
ability, where the probability of a positive response approaches 1. Thus, the ICC
has two asymptotes: (a) lower asymptote, the probability of a positive response
is zero, and (b) upper asymptote, where the probability is 1. There are two fea-
tures of an ICC that are used to describe its general form: (1) the difficulty (5;),

and (2) the discrimination (co;) of the item. The difficulty of an item describes
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where the item functions along the ability scale. For instance, an easy item func-
tions among low-ability persons and a hard item functions among high-ability
persons. This makes the difficulty of an item a location index. The ICC may con-
tain as many curves as there are items in the questionnaire measuring the ability,
0. As an illustration, the brooding scale dataset with ten items for a group of
2,569 females (Reeve, 2002) is considered. An ICC for a 2PL model based on

the brooding scale dataset is presented in Figure 4.

1.0

0.8

P(X=1)
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0.2

0.0

Figure 4: Item characteristic curves for ten items

In Figure 4, each curve corresponds to an item. All the items have different
difficulty levels. The order of the curves, from left to right on the ability-axis,
reflect their difficulty levels. The curve at the extreme left is considered to be
easy, since the probability of responding favourably to the item is high for low-

ability respondents. The curves at the centre is viewed to be averagely difficult.
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The curve at the extreme right represents a hard item because the probability of
a positive response is low for most parts of the ability axis, and only increases at
higher ability levels.

The discrimination of an item describes how well an item can distinguish
between persons having abilities below the item location and those having abili-
ties above the item location. The discrimination reflects the steepness of the ICC
in its middle part. The steeper the curve, the better the item can discriminate.
The flatter the curve, the less the item is able to discriminate. In this case, the
probability of a positive response at low-ability level is approximately the same
as it is at high-ability levels. Figure 5 shows the probability of item response as

a function of person ability for items of low and high discriminating values.

1.0

— o= 1.95,5=-0.02

---- a=0.70,86=-0.02

0.8

0.6

P(X=1)

0.4

0.2

0.0

Figure 5: Item characteristic curves for items of varying discriminations

It can be observed in Figure 5 that the ICCs have different discrimination
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values but the same difficulty parameters. The o value affects the slope of the

ICC at the point of inflexion (at the item’s difficulty). For large o values the
slope of the ICC at the point of inflexion increases, thereby making the curve
steeper. This means that as o increases, virtually smaller differences in person
ability, 0 yield larger differences in the probability of response. The effect of
o on the probabilities of response is maximum at the item’s difficulty, d, and
minimises as © and & become clearly separate. As o gets closer to zero, an
item’s discriminating power decreases.

For a 3PL model, an ICC would have a non-zero lower asymptote that
reflects the amount of guess. A typical item characteristic curve for a 3PL model

is shown in Figure 6.

1.0 T

p(0) o8+t

e Slope = 0.425¢,(1-¢,)
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Ability ()

Figure 6: Item characteristic curve for 3PL model

From Figure 6, the guess value ¢; = 0.2 indicates the probability of a pos-
itive response among low-ability individuals. As the value of ¢; increases, the
probability of a positive response increases, and vice-versa. At 6 = §;, the prob-

ability of a positive response is a function of ¢;, i.e. (1 +¢;)/2. This probability
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is high when the amount of guess is high. When ¢; = 0, the probability is 0.5,
as in the case of the 2PL model. The slope of the curve at §;, 0.4250;(1 —c;), is
a maximum. It can be observed that an item’s discrimination power is affected
by the value of ¢;. In this case, as ¢; increases, an item’s discrimination power
decreases. As a way of assessing the effect of the guess parameter value on
probability of positive response, the relationship between the 2PL and the 3PL
models is examined. Figure 7 illustrates graphs showing the effect of the guess

parameter by setting ¢; = 0.2 for all ten items under the brooding scale data.
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Figure 7: Graphs showing the effect of the guess parameter on probability of

response for (a) item 1, (b) item 2, (c) item 3, (d) item 4, (e) item 5, (f)
item 6, (g) item 7, (h) item 8, (i) item 9, and (j) item 10 on the brooding

data

From Figure 7, it can be observed that for the set of Items 1, 2 and 5, there

is a quite visible effect of guess work on the probability of positive response for

extremely low ability (i.e., © < 0). The two curves are approximately the same

for 0 close to zero, and are exactly the same for 0 greater than one. This indicates

that difficulty parameter (8) must be low for such items, since the probability

of positive response does not so much depend on guess work. There is also a
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clear indication of discrimination between respondents at 0 ability level. Thus,
though the item difficulty is low, the amount of discrimination is high. It is
noteworthy that for the set of Items 3 and 9, there is a clear effect of guess work
on probability of positive response for extremely low ability (i.e., 8 < 0). The
effect of guess work is constant and equal to 0.2 for the specified range of ability
values. However, the two curves are approximately the same for ability levels
close to 2, and are exactly the same for extremely high values of ability (i.e.,
0 — 3). This indicates that difficulty parameter must be quite high for such items,
since probability of positive response appears to depend quite largely on guess
work. There is a remarkable difference between respondents at 0 and 1 ability
levels. Thus, both item difficulty and discrimination are quite high. Figure 7
shows that, for Items 4 and 6, the effect of guess is clear and only visible for
extremely low ability level (i.e., 6 < —2). The two curves are quite different
for a wide range of ability (from —1 to 2), and are the same for extremely high
values of ability (i.e., © > 2). This indicates that item difficulty parameter must
be quite high with a low discrimination. Thus, there does not appear to be a
visible discrimination among respondents on Items 4 and 6. Further, for the
set of Items 7, 8 and 10, there is a clear effect of guess work on probability of
positive response for extremely low ability levels (i.e., 8 < 0). The effect of
guess work is constant and equal to 0.2 for the specified range of ability values.
However, the two curves are approximately the same for ability levels close to
2, and are exactly the same for extremely high values of ability (i.e., 6 > 2).
This indicates that difficulty parameter must be a bit high for these items, since
probability of positive response seems to depend largely on guess parameter
value. There is a remarkable difference between respondents at ability level of
1. Thus, both item difficulty and discrimination are quite high.

Thus, in the brooding scale data four main categories of items could be

identified. There is a group (1, 2, 5) of items that show low difficulty level but
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have high discrimination. For these items, there is a quite visible effect of guess
work on the probability of positive response for abilities less than zero. Another
group (3, 9) of items indicate that both difficulty and discrimination are quite
high. Here, the effect of guess work on probability of positive response is the
same as in the first group of items. Again, the group (4, 6) of items indicate
that difficulty parameter is quite high with a low discrimination. In this case,
the effect of guess is clear and only visible for extremely low ability level less
than —2. Further, group (7, 8, 10) of items possess quite high difficulty and
discrimination values, but the difficulty level is a bit lower than that of the second
group (3, 9). The effect of guess work on the probability of positive response is
quite clear for low abilities less than zero.

For Likert-type items with an ordered responses, an ICC can be plotted for
each category. The resulting graph is the category characteristic curves (CCC),
category response curves (CRC), or category response function (CRF) (DeMars,
2010). They represent the probability of a person responding in a particular cat-
egory given the ability level. The item parameters in the chosen polytomous
model dictate the shape and location of the CCCs . In general, the higher the
slope parameters (0t), the steeper the CCCs. In addition, the narrower and
peaked the category response curves, the more the response categories differ-
entiate among ability levels. The CCCs peak in the middle of two adjacent
category boundary location parameters (8in). For polytomous items, the cat-
egory response curves are not exclusively monotonic functions. In the case
of items with ordered categories, only the curves for the extreme negative and
extreme positive categories are, respectively, monotonically decreasing and in-
creasing (Ostini & Nering, 2006). Figure 8 displays PC model category charac-

teristic curves for a five-category item with category boundary parameter values

8| = —2, 8, =—1,83=0,and dis = 2.
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Figure 8: PC model’s category characteristic curves for a five-category item

The curves in Figure 8 show the probability of each response category for
persons at a given ability level. For instance, if a person has ability level of —3,
the probability of a response in strongly disagree category is 0.70, a response in
disagree category is 0.26, a response in neutral category is 0.04, a response in
agree and strongly agree categories become much smaller and smaller. At this
ability level, a response in strongly disagree category is the most likely, but the
other categories are also possible. The threshold parameter values indicate where
adjacent response category curves intersect. At the point of intersection, adjacent
response categories have equal probabilities of response. Strongly disagree and
disagree response categories have equal probabilities of response at —2 ability
level. Also, disagree and neutral response categories have equal probabilities

of response at —1 ability level. Figure 8 shows that the curve for the second
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category (disagree) rises as the probability of responding in the first category

(strongly disagree) decreases, but only up to a point, at which time it decreases as
the probability of responding in the third category (neutral) increases. The curve
for the last category (strongly agree) is a monotonically increasing function.

For the PC model, another way to describe the relationship between person
ability level and item responses is to graph the expected response on the item as
a function of ability level, 0 given by (Reckase, 2009)

ri
E (X,'j = g|9) = Z kP (X,'j = g|9,6ih) .
k=0

The expected response, E (X,- j =g|0) ranges from O to r; as a function of 6.
Figure 9 displays the expected response for an item with the same parameters as

used in Figure 8.
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Figure 9: PC model’s expected response for a five-category item

The curve in Figure 9 represents the expected item response category for

persons at a particular ability level. This curve can be used to predict a person’s

64



response to the specific item given the ability level. For instance, an individual
with ability level of about 1.8 is expected to respond to the item in Category 3
(agree) whereas a person at low ability level, say —3, would respond in Category

0 (strongly disagree).
Total characteristic curve

The aggregation of the item characteristic curves yields the total charac-
teristic curve (TCC). The TCC is the sum of the probabilities of responding pos-
itively to the items in the questionnaire given the person’s ability level. It ranges
from the sum of the lower asymptotes (of the ICCs) to the number of items.
Thus, the TCC indicates the expected number of items endorsed as a function of
the individual’s ability level (DeMars, 2010; Reeve, 2002). The corresponding

TCC for the ICCs in Figure 4 is presented in Figure 10.
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Figure 10: Total characteristic curve for ten items

Figure 10 presents a TCC for ten items. On the average, an individual

with extremely high ability level ( © > 3) is expected to endorse all ten items.
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Meanwhile, a person with extremely low ability is expected to endorse only a

few or none of the items. Generally, at high-ability levels, nearly all items get

endorsed and vice-versa.
Item information curve

The term “information” as used in IRT is an indicator of the quality or
certainty of the estimate of a parameter, most often the ability of a person, 6.
Information is usually represented as a function of the parameter being estimated
rather than just a single value (Reckase, 2009). The response to any item in
a questionnaire provides some information about the ability of a person. The
amount of this information depends on how closely the difficulty of the item
matches the ability of the person. For the Rasch model, this is the only parameter
influencing item information, whereas in other models it is combined with other
parameters (Partchev, 2004).

The item information of the Rasch model can be computed as
Ii(8) = pi(8) [1 — pi(0)]. (3.25)

From Equation (3.25), the maximum item information for the Rasch model is
0.25. It occurs at the point where the probability of a positive and of a negative
response are both equal 0.5. A graph of the item information function in Equa-
tion (3.25) is the item information curve (IIC). A hypothetical IIC for the Rasch

model is presented in Figure 11.
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Figure 11: Item information curve based on the Rasch model.

Figure 11 shows that any item in the Rasch model is most informative for
persons whose abilities is equal to the difficulty of the item. The item informa-
tion curve is symmetric about the value of the item’s difficulty parameter. As
ability becomes either less or greater than the item difficulty, the item informa-

tion decreases.

In the case of the 1PL model, item information can be calculated as
1;(8) = o?p;(8) [1 - p;(6)]. (3.26)

The item information function in Equation (3.26) reflects the discrimination of
the item, which is the same across all items in the questionnaire. The item in-
formation value of a 1PL model is influenced by the discrimination value. This
so because, a discrimination value blow 1 decreases the item information con-
siderably, and a value above 1 increases the item information remarkably. The
maximum item information for the 1PL model is 0.2502. The shape of the 1IC

for Equation (3.26) is very similar to that for the preceding Rasch model.
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For the 2PL model, the item information function is given by
1i(8) = o pi(6) [1 — pi(8)]. (3.27)

The discrimination parameter values for the 2PL model differs across the differ-
ent items, as evident in Equation (3.27). The discrimination value greatly affects
the item information as it appears as a square. In this case, items with high dis-
criminating values (o > 1) will provide more information for estimating ability
than those with low discriminating values (0; < 1). The maximum item infor-
mation of a 2PL model is 0.250&,-2. As an illustration, IICs for a 2PL model based

on the brooding sub-scale is shown in Figure 12.
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Figure 12: Item information curves based on 2PL model for the ten brooding

items.

Under 3PL model, the amount of item information is determined by

; [1 —pi(e)l [pi(6) *Cr‘]z_ (3.28)

1(8) = pi(0) (1—-¢)?
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The shape of the item information function in Equation (3.28) is quite similar to

that of 2PL model. However, due to the involvement of the terms [p;(0) — ¢;] and
(1 —¢;) in Equation (3.28), the amount of item information under 3PL model will
be less than that of 2PL model having the same difficulty (9;) and discrimination
(o) values (Baker, 2001). When both 3PL and 2PL models have common values
of §; and o, item information will be the same when ¢; = 0. In the case where
¢; > 0, 3PL model will always yield less item information.

Under polytomous IRT models, the amount of information for estimating

a person’s ability provided by a given item can be determined. For PC model,

item information is

. 2

I;(6) = i K iy, — (f‘, kPik) ; (3.29)

k=1 k=1
where pjx is the probability of responding in category & of item i. Equation (3.29)
shows that items with the same number of response categories provide the same
amount of information. However, items possessing more response categories
yield more information across 6 than do items with fewer categories (Dodd &
Koch, 1987). In PC model, the maximum item information occurs within the

range of transition locations (de Ayala, 2009).

For RS model, the item information is given by

2
r r
ey =1) kpik) - Y ©pi. (3.30)
k=0 k=0
The location of the maximum of the item information function is influenced by
the symmetry of the thresholds about the item location, the number of thresh-

olds, and the range of the thresholds. Generally, items with six thresholds pro-

duce more total information across the ability continuum than items with five

thresholds.
The item information function for GR model is defined as
12
L \P
L0 =Y, (—i. (3.31)
k=1 Pk
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Equation (3.31) indicates that there is an increase in item information if a re-
sponse category is added between two adjacent categories. In general, the amount
of information available by treating an item in a polytomous graded form is at
least equal to, and more likely greater than, the amount of information available
when the item is scored in a dichotomous form (de Ayala, 2009).

In the case of NR model, the amount of information provided by a given

response category is

1x(0) = aWo! py, (3.32)
where
(pn(l—m) —pip2 **+  —P1Pr \
wol| P P (1-p2) -+ —papy,
\ —PnPr —pap2 - pr(1-py))

The item information function is given by

ri
1;(0) = kZl aWo!' pi

= oaWo/. (3.33)

In the matrix W, p,, denotes the probability of response in the highest category

(r;) of the item.

Total information curve

The item information values can be combined to form the total information
or test information values. Specifically, item information values at a particular

ability level can be added together to obtain a total information value, /(6) at

that ability level. That is,

i=1
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An instrument’s total information reflects that each of the items potentially con-

tributes some amount of information to improve the certainty about a person’s
ability independent of the other items on the instrument. A graph of the total
information function in Equation (3.34) is the total information curve (TIC) . A
total information curve is useful for illustrating the extent to which an instrument
(questionnaire) provides different amount of information at different ability lev-
els. For 2PL model, the total information is given by
p
1(6) = }:la?p.-(e) [1 - pi(8)] (3.35)
i=
The values of 1(0) ranges between zero and the maximum number of items in

the dataset. As an illustration, the total information curve of 2PL model for the

TCCs in Figure 10 on the brooding scale data is displayed in Figure 13.

Information
3
I
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)

Figure 13: Total information curve for the brooding scale items

In Figure 13, the instrument provides greater information at an average
ability level, and it provides less information at more extreme ability levels. That

is, the instrument does well at differentiating between people who have ability
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levels within 1 or 2 standard deviations of the mean. In contrast, it is relatively
poor at differentiating among people who have ability levels that are more than
1 standard deviation below the mean, and it is relatively poor at differentiating
among people who have ability levels that are 2 standard deviations above the

mean.

Estimation of Parameters of IRT Models

Undoubtedly, when it comes to the utilisation of a specified IRT model,
it is particularly relevant to know the values of the parameters in the model.
Most often, the values of these parameters are unknown, and which must be
estimated through the use of sampled data. The parameters in the IRT models
can be broadly classified into two: the person’s ability parameter, and the item’s
parameter(s).

Several estimation procedures are available for estimating the IRT model
parameters. In this study, the maximum likelihood estimation technique is con-
sidered. With this technique, the estimation of the ability parameter (6) when the
item parameters are considered known is referred to as conditional estimation of
0. The case of estimating only item parameters is called the marginal maximum
likelihood estimation. This procedure is achieved by integrating the maximum
likelihood function with respect to the ability parameter which is assumed to be
continuous (Hambleton & Swaminathan, 1985). After obtaining the estimates
of item parameters, one proceeds to determine the estimates of the ability via
other methods of estimation. In this section, the simultaneous estimation of both
ability and item parameters, known as the joint maximum likelihood estimation,
is presented. For the sake of generality, the 3PL model is considered. The pre-

sentation of the joint maximum likelihood estimation is done as in the following

paragraphs.
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Suppose an instrument that contains p items is administered to a group of n
individuals of varied abilities. Suppose, further, that a response to a dichotomous
item is scored as 1 if response is favourable, and O if response is not favourable.

The probability of the jth person’s response to the ith item is given by
p(%ij|0,8i, i, ¢i) = p(xij = 1) p(x;; = 0)1 =%, (3.36)

Without loss of generality, let p(x;; = 1) = p;;. The probability of the responses

across an instrument’s items is obtained by

p(x;18,8,a,¢) ]']p, —pij) . (3.37)

In Equation (3.37), the term p(x;]6,9,0,c¢) is the probability of the response
vector for person j, X, given the person’s ability, 0, a vector of item difficulties,
8, a vector of item discriminations, o, and a vector of guess values, ¢. For item
i, the probability p; is calculated based on the specified IRT model.

The joint likelihood function, L across both persons and items, is given by

n p
ij 1~x;;
L=[1]1#; (1=pis) ™. (3.38)
Applying the natural logarithmic transformation to Equation (3.38), the joint

log likelihood function (/) is obtained
n p
Z Zx‘!lnp'1+(1 xl})ln(l_Pu)] (3.39)
= i=1

The values of 6, 8, & and ¢ that maximise Equation (3.39) are taken as the abil-

ity and item parameter estimates. These estimates are obtained by solving the

likelihood equations
ol
— =0, (s=12,--,n+3p-2), (3.40)
v
where v, is an element of the parameter vector v, defined as
vV = [9’,8’,00',c’] :
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and n+ 3p — 2 is the total number of parameters that have to be estimated in the
3PL model.

Equation (3.40) is a system of non-linear equations. To approximate the
solution of the non-linear system, the multivariate Newton-Raphson iteration
methods is applied. Suppose that v is a p-dimensional vector that maximises
f(v). If v") is the rth approximation to the value of v, then, according to the

Newton-Raphson procedure, a better approximation is given by
vt =y _ J=1y0] £(v), (3.41)

where f(v() is the (p x 1) vector of first partial derivatives of / (as given in
!

Equation (3.40)) evaluated at v("). That is, f(v(’)) = (gé—, gg ;% g‘%) . The

matrix J[v{")] is the Jacobian matrix of £, and it is the (p x p) matrix of second

partial derivatives of / evaluated at v("). That is,
o A1 . U
202 3605 J6da d6dc
. 9 . U
9506 007 0bdo  dddc
7L B R o
9006 J0dd Jo?  dude
4 M 4
9co® Jcd® dcdo  oc?

I =

The iteration procedure in Equation (3.41) is terminated when v{) does not
change considerably.

To determine the maximum likelihood estimates of the parameters, the
iterative procedure is carried out in two stages: (1) starting with initial values for
$, a, ¢ and treating the item parameters as known, O is estimated, and (2) treating
the ability parameter , © as known, the item parameters are estimated. These two
stages are continued until the ability and item values converge, with the final
values taken as the maximum likelihood estimates (Hambleton & Swaminathan,

1985).

In respect of the current circumstance, suppose that for item i,
/
vi=[8 o cil-
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If v,(’) is the rth approximation, then

) 2 of0 ) 6

(1))

i

/
where f(v [%[V?)] a%[vgt)] %,.[v,(r)]] and

PL PL L
987  950q;  I5;dc;

I = | 2L L P
: 00,35 9o  Jodc;

2L AL PL

dcid®; dcda;  dck
The process in Equation (3.42) is terminated when the difference between the
(¢t + 1)th and the rth approximations is sufficiently small. The iteration method

is carried out for n items. When convergence takes place, the item parameters

are treated as known, and the ability parameters are estimated.

Assessment of the Fitness of IRT Models

Assessing the fitness of models to data are routine in statistical procedures
and involve determining whether the model could have generated the observed
data. In IRT, the task of assessing model fitness requires: (1) checking underly-
ing assumptions such as dimensionality, local independence, and monotonicity;
and (2) assessing the agreement between observations and model predictions.
Numerous procedures are available for checking model assumptions (e.g., see
Embretson & Reise, 2000; Hambleton et al., 1991). In this current discussion,
we focus on the goodness-of-fit of IRT models. Assessment of the fitness of the

model to data is multi-faceted and must be carried out at the overall model level

as well as the item level.

Overall model fitness

The assessment of the overall fitness of IRT model can be accomplished

using different approaches (Hambleton et al., 1991; Reise & Revicki, 2015). A
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typical method is the standard Chi-square test which, in IRT context, relies on

all the observed and expected response patterns of items being modelled. The
test statistic can be used to test the null hypothesis that the IRT model for the

pattern of responses is correctly specified, and given by

?

R 2
(Or_Er)
0=)
r=1 E

r

where O, and E, are observed and expected frequencies of the rth response pat-
tern, and R is the total number of response patterns. When the null hypothesis
holds, the Q statistic has an approximate Chi-square distribution with (R—s—1)
degrees of freedom, where s is the number of item parameters estimated in the
IRT model. The null hypothesis is rejected (i.e., the IRT model does not fit the
data) when the value of Q exceeds a critical value obtained from the Chi-square

distribution with the specified degrees of freedom.

Assessment of item fitness

The methods for assessing the fitness of items to item response models are
based on discrepancy measures between observed and expected probability of a
favourable response (i.e., yes response on a two-point scale) at various points on
the ability continuum or at response category scores (Hambleton et al., 1991).
When standard Chi-square test is applied, examinees are ordered based on each
ability level, and sorted into specific number of groups (treating each subgroup
as though all examinees were at the same ability level). Within each ability
subgroup, the exact observed and expected probabilities of favourable responses
are compared based on the IRT model. In the case of ordinal polytomous re-

sponses, differences can be computed within each response category (Dodeen,

2004). The test statistic, Q; for assessing item fitness is given by

J k O:.—E; 2
0i=1Y, angﬁ%ﬁ)—, (3.43)
j=1g=0 /8
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where j denotes the ability interval and g denotes the response category. In terms

of dichotomous item responses, Equation (3.43) reduces to

0= 3 OB

j=1 =i J
where n; denotes number of persons falling into the jth ability interval. Different
forms of Q; can be obtained by varying the numbers and methods of constructing
ability intervals. The test statistic Q;, under the null hypothesis, has an approxi-
mate Chi-square distribution with J(k — 1) — s degrees of freedom.

A number of problems arise in using Chi-square statistic as tests of model
fitness to data in IRT context. Firstly, the ability intervals, J used in the compu-
tation of the test statistic is arbitrary. This indicates that, different choices of J
can be made, which can lead to different values of the test statistic and ostensi-
bly different conclusions about the fitness of items. A related issue is the of the
minimum interval size needed for a Chi-square approximation to be valid.

Another problem with Chi-square statistics has to do with sample size.
When a large sample size is used, the power of the test increases, and many
items tend to misfit the model (Dodeen, 2004). The number of response pat-
terns increases considerably when the number of items or number of response
categories increase. For example, ten items with seven response categories each
allow for 10,000,000 response patterns. Practically, the number of response pat-
terns might be markedly larger than the sample size, which in this case, leads to
sparseness in the data. Sparseness is present when the ratio of sample size to the
total number of response patterns is small and there are many response patterns
with expected frequencies less than one (Agresti & Yang, 1987). When data are
sparse, the Chi-square approximation does not hold for the distribution of the
fitness statistics. In addition, the goodness-of-fit statistic is inflated and rates of
rejection of the null hypothesis are too high. In order to improve model fitness to

sparse data, the following are recommended: (a) adding small constants to cells,

77



(b) merging cells, (c) considering only cells with observed or expected frequen-

cies that exceed a certain value, and (d) deriving the small sample distribution of

fitness statistic by bootstrapping (Kraus, 2012).

Multidimensional Item Response Theory

With respect to the IRT models presented in the previous sections, a per-
son’s response to a set of items is accounted for by only one latent ability. How-
ever, a questionnaire usually comprises some groups of items measuring differ-
ent but related abilities. In this case, the IRT unidimensionality assumption of
the person ability may be excessively obstructive.

Multidimensional item response theory (MIRT) is a generalisation of uni-
dimensional item response theory (UIRT). When the unidimensionality assump-
tion required by IRT models is violated, MIRT can be used to model the rela-
tionship between two or more abilities and the probability of responses to items
in a questionnaire. In the realm of MIRT, each person’s response to an item is
influenced by a combination of two or more abilities. In MIRT, several param-
eters are used to measure person abilities and a vector of parameters are used to

characterise the items (Duong, Subedi, & Lee, 2008).

Assumptions of MIRT models

The assumptions underlying the MIRT models are:

1. Functional form: The probability of response increases monotonically
when there is an increase in any one or any combination of a person’s

abilities, and that for infinitely low abilities the probability of response

approaches zero (de Ayala, 2009).

2. Conditional independence: For any group of individuals that are char-

acterised by the same abilities, the conditional distributions of the item
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responses are all independent of one another.

3. Dimensionality: The probabilities of responses are functions of a set of

continuous person latent abilities.

Types of MIRT models

The types of MIRT models are defined by the way in which information
from person abilities is combined with item parameters to compute the prob-
ability of responses to the item. In this regard, a MIRT model can be classi-
fied broadly as either compensatory or non-compensatory. For a compensatory
MIRT model, a linear combination of abilities is required to obtain the probabil-
ity of a response. That is, a high ability on one dimension can compensate for a
low ability on another dimension when calculating the probability of a response.
Under the compensatory MIRT models, persons with different sets of abilities
can have the same probability of response to an item. These models are said to
be additive.

Non-compensatory MIRT model separates different dimensions in ability
into parts and uses a unidimensional model for each part. The probability of re-
sponse for the item is the product of the probabilities for each part. This product
of probabilities results in a non-linear form of the non-compensatory models.
These models are considered to be multiplicative. The non-compensatory MIRT
models are also appropriately referred to as partially compensatory models be-
cause an increase in one of the ability values can improve the overall probability,
but only up to the limit set by the lowest term in the product. Thus, the compen-
sation effect is not totally removed (Reckase, 2009).

With these two major types of MIRT models, there are a variety of models.
In this work, only compensatory MIRT models are discussed due to its wider

applications. Whether compensatory or non-compensatory, MIRT model can
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either be dichotomous or polytomous just as the unidimensional case.

Dichotomous MIRT models

The simplest MIRT model is the Rasch multidimensional item response
theory model. The Rasch MIRT model is an extension of the unidimensional
Rasch model (see Equation (3.1)). According to this model, the probability of a
positive response is given by

1
" l4exp [-(1'0;+d))]’

p(Xi;=108;,d) (3.44)

where 0 is an m x 1 vector of abilities for person j with m dimensions in the
ability space, d; = —md; is a measure of difficulty for item i and 1 is an m x 1
vector of 1s . Equation (3.44) shows that the Rasch MIRT model differs from
the unidimensional Rasch model with respect to the manner in which the ability
parameter, 6 is measured. For the Rasch MIRT model, the ability parameter is
a value that is obtained by summing the different ability dimensions rather than
just a single construct.

As indicated in Equation (3.2), the 1PL model considers the discrimination
parameter to be fixed for all items. This model is extended by the multidimen-

sional 1PL (M1PL) model. In the MIPL model the probability of a favourable

response is obtained as

1
o =110;,d;) = : _ .
where d; = —0§; is a measure of difficulty for item .

The multidimensional two-parameter logistic (M2PL) model is an exten-

sion of the 2PL model. Reckase expressed the M2PL model as

1
= X a,d — 7 ’ .
p (X,J 1,9}, i 1) 1+exp [—1'702(ai0j +d,')] (340
where o; is a vector of discrimination parameters for item i and d; = -1'0!.,-8,-

is a scalar parameter that is related to the item’s difficulty. The exponent in
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Equation (3.46) can be expanded to give

!
00;+di =00 +028j2+--- + 00 + - + 0O jmy + d;
m

;0 +d;, (3.47)
=1

which indicates how the elements of the o and 0 vectors interact. Equation (3.47)
shows that the exponent in the M2PL model is a linear combination of the ele-
ments of 0. This feature reflects the compensatory nature of the M2PL model.
Equation (3.47) defines a line in an m-dimensional space. If the exponent is set

to some constant, &, that is
00;+d; =k, (3.48)

then all ©-vectors satisfying Equation (3.48) will fall along the same straight line
with the same probability of a favourable response for the model.

The M2PL model provides the possibility for extension of the unidimen-
sional 3PL model to a multidimensional sense. The multidimensional three-

parameter logistic (M3PL) model is given by (Reckase, 2009)

1
1 +exp [—1.702(ct0; +dy)]

p(Xij= 1/6;,04,ci,di) = ci+ (1 —c;i) (3.49)

The M3PL model accounts for the probability of a favourable response to an

jtem among persons having low abilities, with a guess, c;.

Polytomous MIRT models

Polytomous IRT models have been presented under the unidimensional
IRT models. In this section, polytomous IRT models have been developed to
encompass a multidimensional person ability.

The multidimensional partial credit (MPC) model is an extension of the
partial credit (PC) model. The PC model has the properties of the Rasch model

where the only item characteristic is the difficulty parameter. In MPC model,
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the ability score, 0, of the PC model is considered to be multidimensional. The
probability of a response to item i in category g is given by (Kelderman & Rijkes,

1994)

exp [ )’E (8 — 5i1g)J

P (Xi; = g|0,3) = (3.50)

ri m ’
h);.oexp [ L (6;— 5:'1/:)]
where 8;;¢ is the difficulty for item i on dimension / (! = 1,2, ...,m) for category
g (g =0,1,2,...,k). In Equation (3.50), each response score g may be seen
as the result of performing a series of steps. To obtain a response score g, g
steps must be performed. Each step in the MPC model depends on a different
ability dimension, 0 ;. The probability of a response in a given category utilises
a series of dichotomous Rasch model for each dimension with a difficulty for
that dimension.

In the estimation of the category difficulty parameters, dj1g, Kelderman and
Rijkes (1994) note that indeterminacy exists between 9, of different response
scores g within the same ability dimension / and item i. However, this indeter-
minacy can be eliminated by setting the difficulty parameters equal across the
different response categories.

The multidimensional generalised partial credit (MGPC) model which is
an extension of the generalised partial credit (GPC) model or the 2PPL model
is meant to describe the interaction of persons with items that have been scored
polytomously. The MGPC model allows the person characteristics to be repre-
sented multidimensionally. The score assigned to person j on item i is denoted

by k=0,1,2,...,8: s Ti. The MGPC model expresses the probability of a re-

sponse in category g as

, g
exp (80‘,'91' - X 8ih)

h=0

P (X;j = 810;,0,3in) = 3.51)

r; , k :
% exp (ka,-ej . 6,-,,)
k=0 h=0
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Another technique to multidimensional modelling of polytomous item re-
sponses is the multidimensional graded response (MGR) model. The MGR
model is an extension of the unidimensional graded response (GR) model. The
MGR model assumes that answering in a given response category of an item
requires a number of steps and reaching step g requires success on step g — 1.
To construct the MGR model the response scale is dichotomised at g, scoring |
response category g and above as 1 and below g as 0, and fitting a dichotomous
model to the result. The probability of responding in category g and above is

modelled by a M2PL model, and expressed as

1

7 . 3.52
L+exp [—(a;; +dig)] e

P(Xij>g|0;)=

Equation (3.52) shows that the probability of responding in category g and above
increases with an increase in any of the elements of the person ability vector, 0 I

The probability of a person responding in a specific category g is obtained as

p(Xij=g10;)=P(X;j>8|0;)—P(X;j>g+1|0;)
~ 1 1
1+exp [— (08 +dig)] 1-+exp[—(et@; +dig1)]’
(3.53)

where dj, measures the ease with which a person will respond in category g of
item i. The d; parameter will have high positive values when it is relatively easy

to respond in a specific category and large negative values when it is difficult to

answer in a given category.

Multidimensional Person and Item Parameters

The nature of items in a questionnaire differ from survey to survey. Some
items are simple and require just a single person ability to respond to them.

Other items are complex and may require multiple abilities to respond to them.

In this case, a model based on multiple dimensions of person ability is needed.
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An ideal model of the relationship between the probability of response and

the ability of a person uses a vector to represent the ability of the person in
a multidimensional space. The ability of person j is denoted by the vector
;= (0;1,82,---,8j1,-- ,8m) , With m dimensions. The elements of 8; pro-
vide coordinates for the location of a person in a multidimensional space.

In MIRT, the characteristics of an item is described by parameters of the
model. For instance, in M3PL model the characteristics of the item can be
summarised by a-vector, and the scalar ¢ and d parameters. However, unlike
unidimensional IRT models, parameters in the MIRT models do not have intu-
itive meaning. To aid the interpretation of MIRT models, some measures have
been derived from the parameters. For the M2PL model, Reckase and McKinley
(1991) showed a measure of item discrimination, the multidimensional discrim-

ination (MDISC), given as
MDISC = /.0, (3.54)

where o = (041,042, "+ , O, - ,oc,-,,,)'. Equation (3.54) shows that when o;; > 0
and o = O for all k # I, MDISC = a;. In this case, MDISC is equal and
interpreted as the unidimensional discrimination parameter ( 0.;).

The multidimensional difficulty (MDIFF) of an item is a composite mea-

sure of the difficulty level of an item and defined by (Reckase, 1985)

d.
MDIFF = — ’, . (3.55)

The MDIFF can be interpreted just as the unidimensional item difficulty, Oi.

MIRT Graphical Representations

Characteristics of items in MIRT models can be represented in a Cartesian
coordinate system known as item characteristic surface (ICS) or item response

surface (IRS). Item characteristic surface is an analogue to the unidimensional
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item characteristic curve (ICC). For M3PL model, three characteristics of an

item can be represented using item characteristic surface: difficulty (d;), discrim-
ination (o;) and guess (c¢;). The probability of positive response for a specified
ability vector, 8; can be depicted graphically using ICS. Unlike unidimensional
ICC, a single item can be represented in the ICs at a time. For a given ICS, a
corresponding contour line representing probabilities of positive response can
be constructed. Ackerman (1996) underpinned three features of an item that are

more revealing in equiprobable contour plots than ICS These are as follows:

1. The ability vector, 8; the item is best measuring;

2. The region in the ability space the item is most discriminating. The more
discriminating the item, the closer together the equiprobability contours;

and

3. The difficulty of the item.

Tllustratively, ICS and contour plot for two-dimensional M2PL model with

o; = (1.5,0.4)" and d; = 1.2 is shown in Figure 14.
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Figure 14: M2PL model’s (a) ICS and (b) contour plot for an item
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Figure 14 (a) shows the item characteristic surface, which represents the

probability of positive response to the item in the @ space, and (b) shows the
probabilities of positive response as contours of the surface. The plots indicate
that probability of positive response increases with one or both dimensions of .
The probability of positive response increases more rapidly along 6; dimension
than along 6, dimension owing to the differences in the elements of o. This
means that the form of ICS and corresponding equiprobable contours are influ-
enced by the o parameter for the item. Contours of equal probabilities form

straight lines as a result of the linear form of the exponent in the M2PL model

(see Equation (3.47)). That is,

1.56; +0.40; + 1.2 =k%. (3.56)

In Equation (3.56) and from Equation (3.46), when k equals 0, the probability
of positive response is 0.5. Any combination of the elements of © that yields
k equals O defines the coordinates of the equiprobable contour of 0.5. Several
equiprobable contours are drawn by changing the value of k. The difficulty of an
item is the distance the contour lines are from the origin which is dependent on d
and o parameters (Reckase, 2009). It can be deduced from Equation (3.55) that
along 0 axis (where 63 is zero), relative difficulty of the item would be 0.80, but
along 0, axis (where 0, is zero), it would be 3.0. This means that along 0, axis,
a person would require an ability of 3.0 to obtain a 0.5 probability of positive
response. An overall estimate of item difficulty is 0.77.

The total characteristic surface (TCS) generalises the unidimensional to-
tal characteristic curve (TCC). Total characteristic surface is the aggregation of
itemn characteristic surfaces. It is found by summing the probabilities of positive

response for each of p items in a questionnaire. The total characteristic surface

is defined by

T(0) = )i F;(0), (3.57)
i=1
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where T(8) is interpreted as the expected number of positive responses specified
by 0, and P;(@) is the probability of positive response to item i defined by the
underlying MIRT model. Figure 15 shows total characteristic surface and its

associated equiprobable contours for ten items based on M2PL model.
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Figure 15: M2PL model’s (a) total characteristic surface and (b) contour plot for

ten items

The way in which an item functions as its capability to differentiate be-
tween two locations in the @ space can be represented graphically, known as
item information surface (IIS). Item information surface is a multidimensional

counterpart of unidimensional item information curve (IIC). Item information

surface for item i is given by (Reckase, 2009)

[VEi(8))?

P(6)[1-P(8)]" (3.58)

1) =

where VP;(0) is the gradient of the item characteristic surface and measures the
rate of change in the probability of positive response, given 0. The information

provided by the item about 0 depends on the desired direction since the gradient
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of the item response surface depends on the direction. As a result, the numerator
of Equation (3.58) is replaced with the directional derivative of the response
surface. In this case, the item information surface in the direction of & is given
by

[Do.P:(0)]?

1O Fe - FET 59

where DgP;(0) is the directional derivative of the item characteristic surface in

the direction of o, and defined as
Do FPi(0) = VP,(8).4, (3.60)

and @ is the normalised vector of o. That is,

[ a ) 0 ] o
DaPl(e) Pl(e)’ ae Pl(e) e ,ae Pl(e) ) aem[)l(e)- . m
I a ] 0 L
= ——P,(O), ge_PI'(O)"" ’ae P(e)7'“ )EE(G) ’Ia|COSB
r a d 3 T

where B = (]3,,[52, -+, Br,+-+ ,Bm) is the vector of angles between the gradient

of the surface and the normalised vector. In other words, 3 is the angle between

0, coordinate axis and the line from the origin to the person’s location in the 6
space. Equation (3.61) becomes
d 0 ) 9 e
Do Pi(0) = -a———P,(O)cosﬂl + = 39, P;(0)cosP, + - vty 36, 1(@)cosB; + - -
d
+a—9;P,-(0)cosBm.
(3.62)
For M2PL model,
DoP.(0) = 0 P,(0) 1 — Fi(8)] cosP +02P;(8) [ — Pi(8)] cosPa+
-+ oyPi(8) [1 — Pi(®)] cosPi + -+ nPi(8) [1 - Fi(8)] cosBy,

— P(6)[1 — P.(0)] i oycosp. (3.63)
=1
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Substituting Equation (3.63) into Equation (3.59) gives

{P(O)[1 - R(O)] L aucosp)?

_ i
lia(6) = F,(0)[1 —F’,-EO)]
2
= P;(0) [1 — P(0)] (Z OCICOSBI) . (3.64)
=1

In Equation (3.63), the maximum value of DoF;(8) occurs if cosp; = 1; that

is B; = 0, in which case the normalised vector & has the same direction as the
gradient of the response surface, VF;(0). In this direction,

DaP(8) = Pi(®)[1 - P(0)] Y o, (365
=1

In this case, the maximum item information value for M2PL model is given by
m
Tiamax(8) = Pi(0) [1 — P;(0)] ) of
=1

= a'aP;(0) [1 - F(8)]. (3.66)

The form of item information in Equation (3.66) has the same orientation as that

for the unidimensional 2PL model. Figure 16 shows information surface for an

item with the same parameters as used in Figure 14.
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Figure 16: Item information surface
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For a set of items in a questionnaire, total information surface about @ can

be computed by summing the item information values in a particular direction.
Figure 17 shows total information for a set of ten items with same parameters as

used in Figure 15.

5 ( A "Il" ow
S 4 "” / 1"'/ il
£ 3 / I I/,Il/, I‘\\
L 2 | /I,,/,I ;\\\ “\
= 4 ' " /I //[\‘Q&\\\\\
///l/ , &

Figure 17: Total information surface for ten items

Factor Analysis

Factor analysis is a multivariate statistical technique that is employed to

discover which variables (indicators) in a set form meaningful subsets that are

relatively independent of one another. Variables that are correlated with one an-

other but largely independent of other subsets of variables are combined into

factors (abilities in IRT). These factors are thought to reflect underlying pro-

cesses that have created the correlations among variables (Tabachnick & Fidell,

2013).
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Factor model definition

Suppose that a random sample y;,y2,: - ,y, from a homogeneous popu-
lation with mean vector, # and covariance matrix, £. For yj,ys,-+,yp in any

observation vector, y, the model is given by

Y1 =A101+A0202+ -+ A0+ + A B + £

y2 =A2101 +A2202+ -+ A0 + - - - + A2Op + €2
yi = Ai16) + A0+ -+ 240+ + X6 +¢&;

Yp= Kplel +}\,p292 +-- +7\.p191 +--- +7\,pm9m +€p (3.67)

where 01,0, --,0,, are the common factors (latent abilities in IRT); the coeffi-
cients A;; are the loadings; and the error terms €,€;,-- - , €, are unique factors.
The system of Equations 3.67 expresses each y; as a linear combination of the
factors ©; with an accompanying error term €; to account for the part of the
variable y; that is unique. The loadings A; can be used in the interpretation
of the factors. For instance, 6, may be interpreted by examining its loadings
ALm,A2m, "+ s Apm and noting the y’s that have large loadings on 6y,. This subset

of y’s gives an identification to Om.

In matrix notation, Equation (3.67) can be written as

y=A0+¢ (3.68)

where y = (¥1,Y2,"*" 7)’11),’ 0=(01,62,,6m), €= (e1,€2, - ,8p)'. and

/7&11 Mz - }"lm\

At Az 0 Agm
P R (3.69)

\xml A’mz A'Pm)
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Assumptions of the factor model

Without loss of generality, it is assumed that for i = 1,2,---,p and [ =

1. E(G[) =0, E(S;) =0, and E(y;) =0.

2. var(6;) = 1 and var(g;) = ;.

3. cov(0;,0;) =0, for I # k; cov(g;, &) = 0, for i # k; and cov(g;,0;) =0,

for all i and /.

Assumption 1 shows that the means of the common factors, unique factors, and

indicator variables are zero. The assumptions for €; are similar to those of 6; ex-

cept that each €; is allowed to have different variance y;. Assumption 3 indicates

that the unique factors are uncorrelated among themselves or with the common

factor. The assumption cov(€;, &) = 0 implies that the factors account for all the

correlations among the y’s. Thus, the emphasis in factor analysis is on modelling

the covariances or correlations among the y’s.

Assumptions 1, 2 and 3 can be expressed concisely using vector and matrix

notation

E(0) = 0¢px1)

var(8) = E(80') = Ipxm)

E(B) = 0(px 1)
/W] 0
0 w2

cov(€) = E(SS’) =W(pxp) =

\0 ©
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(3.71)

(3.72)
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cov(€,0) =E(€0) = 0(pxm)

E(y) =0(px1) (3.75)
Covariance structure of the factor model

The variance-covariance of the observed variables, X can be expressed in

terms of the factor loadings and the unique factors. From Equation (3.68),

X =cov(y) = cov (AO+€)
= cov (AB) +cov (g)
= Acov(8)A’ +y
=AIA +y

=AA +y (3.76)

Thus, Equation (3.76) represents a simplified structure for X, in which the covari-

ances are modelled by the A;s alone since Y is diagonal. From Equation (3.76),
var(yi) = Ay + A5+ + AL, + Y (3.77)

Thus, the variance of y; is partitioned into a part that is due to the common
factors, called the communality (denoted h?), and a part that is unique to y;,

known as the specific variance (V;). That is,

B =2+ A+ + AL, (3.78)

Again, considering Equation (3.76),

cov(yiyk) = Mirer +hihig + -+ 4 NimAim. 3.79)

Thus, the covariance between any two variables is the sum of cross-product of

corresponding factor loadings.
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The covariances of the y’s with the 0’s can also be found in terms of the

A’s. That is,

cov(y,8) = E(y®')
=E[(A0+¢)0']
= E(A00' +£0')
= E(A60') +E(e0’)
= AE(60') +E(e0')

=A. (3.80)
Since Aj; is the (i — I)th element of A, Equation (3.80) can be written as
cov(yi,0;) = Ajy. (3.81)

Thus, in Equation (3.81), the loadings represent correlations of the variables with

the factors.

If standardised variables are used, Equation (3.76) is replaced by a model

for the correlation matrix, R, as

R=AA+y. (3.82)

Estimation of Parameters of the Factor Model

The covariance, X and correlation, R matrices of the observed variables
are functions of the parameter matrices A and Y. An initial problem in fac-
tor analysis 1S estimating the factor loadings A;; and specific variances ;. In
this section, we present two of the several techniques of parameter estimation,

Principal Component and Principal Axis methods. The principal axis method
(which is a modification of the principal component method) will be employed

in Chapter 4 to extract the factor structure.
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Principal component method

For the random sample yi,y2, - ,y., We obtain the sample covariance

matrix S. Then, we find an estimator A that will approximate Equation (3.76)

with S in place of X. That is,
S~AA +9. (3.83)
In the principal component method, we exclude { and factor S into
S=AA,

using spectral decomposition. Let S have eigenvalue-eigenvector pairs (a;, €;)

witha; > az > -+ > am > 0 such that e;e; = 1. Then,

' 7 I3
S =ajeje; +azeze,+---+ajepne,

/\/a—lell\
= (Vaie V@ vamen) | V| s
\ v/,

where aj,az, - ,am are the first eigenvalues of § and e, ey, -, e, are the cor-

responding normalised eigenvectors. Thus, A has the form

/\/51_611 Vvazerz - \/amelm\
JVaiezr aexn - \[amem

(3.85)

)
i

\,/a;eml \Va€m2 - \/amemm)

This indicates that, the estimate of the factor loading is given as

5&,’[ = \/a_leil-
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The ith diagonal element of AA is the sum of squares of the ith row of A. This

sum of squares is an estimator of the ith communality, l'i;?'. That is,

-~

>

...
-~
&
£

=
[N}

Il

b

2
a]e”

Il
gk

.\
Il
—_

I
[-1s
=9

\
Il
_

Principal axis method

The principal axis (PA) is an improvement of the principal component
(PC) method. In the PC method, the term  was excluded from Equation (3.83).
The PA method begins by finding an initial estimate of { and decomposes S —

AA, .
or R—V into AA . That is,

AA,

AA

!

S—V¥
Ry AA

11

Thus, the PA method starts with eigenvalue-eigenvector pairs of S — YorR—V.

The diagonal elements of S — are the communalities

A

B =si—Wi, i=12,--,p
where s;; is the ith diagonal element of S—1. Similarly, the diagonal elements of
R —Vare

R=1-¥;, i=12,p

A reasonable estimator for a communality in R — is

1
7 2
RoR=1-—

pii? i=12,--,p,
. ) - 2 .
where 1 is the ith diagonal element of R™!, and R{ is the squared multiple corre-

Jation coefficient between y; and all other variables (Rencher, 2002; R. A. John-

son & Wichern, 2007).
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Relationship between Factor Analysis and Item Response Theory

Item response models and factor analysis techniques have widely been ap-
plied in analysing questionnaire survey data, which are mainly item responses.
In what follows, we present the relationship between the parameters of factor
analysis and item response models (Takane & de Leeuw, 1987) under various
conditions such as item response format (dichotomous and polytomous) and di-
mensionality of the underlying factor/ability (unidimensional and multidimen-

sional).
Dichotomous items

When performing factor analysis, it is assumed that both the underlying
latent factor © and the response variables Y¥;, i=1,2,....,p, are continuous.
Suppose that 8 and Y; possess a joint normal probability distribution, then their

density function, f(y,0), is defined by

f(,8) = l exp [— 1 {(y_”")z—
: 20,04/ 1 — pz-be 2 (l - p_%,-,e) Oy
Y—Hy\ (O—ue 0—pup\’
oun (752) (S522)+ (252) ] oee

where uy and o are, respectively, the mean and standard deviation of Y;, ug and

og are, respectively, the mean and standard deviation of 6, and p%i g Ineasures

the correlation between ¥; and 0. The distribution of 0 is assumed to be normal

and defined as

2
8(0) = 5 mexp [—% (%522) ] (3.87)

The conditional distribution of y; given 6, f(y(6), is given by
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f(»9)

F010) =27

R e""[“z(l—lp.%,,e) (052)
() <9-~9>+<9-"°>2}+%<9;:°>2J
e e°f+<e ]

exp

|: 1 { (}".“.v)
_ exp | — N
N 63(1 — pi_’e) 2 (1 — p_fi,e) Oy

V2m, [o2(1-p2 o) 20 (l_p -3"*9)

{y—uy Py e(9 /xe)}z]

X

Equation (3.88) is a density function of a normal random variable with mean

Hy + pVI (9 He), (.89)
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and variance

of (1-p20)- (3.90)

Therefore, the conditional distribution of ¥; given 0 is normally distributed. That
18,

Yi|9~N[uy+pyi,e§—Z(e—ue), o_%(l—p;%,.,e)]- (3.91)

An objective of factor analysis is to model the relationship between the
underlying latent ability 6 and the observed response variable ¥;, i=1,2,....,p.

A one-factor model is given by
yi=A0+¢g, i=1,2,---,p, (3.92)
where A, is the loading of y; on 0. By the assumptions,

0~N(0,1) and &~ N(0,y;). (3.93)

For variable i,
Yi ~N(0,A? + ;). (3.94)
Making use of Equation (3.81) and Equation (3.93), Equation (3.91) becomes
Y0~ N (A8,1-22). (3.95)

In factor analysis the response variable, Y is assumed to be continuous and
normally distributed. However, responses to close-ended items in questionnaires
are categorical and, for that matter, result in categorical data. Many researchers
have described the relationship between item responses to be non-linear and de-
clared the standard factor models in Equations (3.92) and (3.67) as inappropriate
(Bernstein & Teng, 1989; Ferrando & Lorenzo-Seva, 2013). In order to apply
factor analysis model to item response data, it is assumed that the continuous

response variable, Y is discretised to yield the categorical response variable, X.
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This means that the continuous response variable, ¥ underlies each categorical
response variable, X;. Specifically, for binary items, each response score X (0
and 1) is considered to arise from an arbitrary dichotomisation of the continuous
underlying response variable Y. Figure 18 illustrates (Mehta, Neale, & Flay,
2004; Ferrando & Lorenzo-Seva, 2013) the relationship between observed item

response X and underlying response variable Y.

X=0 T X=1

Figure 18: Distribution of dichotomous responses

Figure 18 indicates that the relationship between continuous variable, ¥
and the dichotomous response variable, X is defined by

1,ifY > 1
Xi= (3.96)

0,if Y <=
where T denotes threshold between the two response categories. The definition

implies that, to obtain a positive response (i.e. Yes, represented by X; = 1), then

p(X;=1]6)=p(Y > 1)

Y —A;0 T—A;0

1= 1-A7
)
T -



p(x,-=1|e)=<1>( ’”"e"“")
1/1—7&,2

}\«,' T
= [ (9— x):l , 3.97)

\/1—A2

where ®(.) is the cumulative distribution function of the standard normal distri-

bution.
Now consider a random variable X which is logistically distributed with

parameters u and o(> 0) , with a density function defined by (Balakrishnan

1991)
exp{ — ="z (x —u)
T { ov3 } . (3.98)

flxspo) = V3 [1 +exp{—0—%(X—#)}]z

By letting Z = 5 (x — u), which has a standard Normal distribution with mean 0

and variance 1, Equation (3.98) becomes

.0,1) = 1.702- exp(—1.702z) _ -
f(z0.1) [1 +exp(—1.7022))? 5%

This equation is the standard logistic distribution function. The cumulative dis-

tribution function of Z, F(z;0,1), is given by

Z
F(z0,1) = /f(z;o, 1) dr. (3.100)
That is,
— 2
F(z0,1) = 1. 702/ exp(-1.702) (3.101)
[1 + exp(—1.7021))?
Let u = 1 +exp(—1.702¢). Differentiating u with respect to ¢ gives
du = —1.702exp(—1.702¢) dt,
or
-1
(3.102)

- 4
&= T70w=1 “
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Substituting d¢ into Equation (3.101) yields

1+exp(—1.702z)

u—1) -1
M = 1]. 2 .
F(z0,1) =170 / 2 1702w=1) ™

oo

1+exp(—1.702z)

= —— du
uz

o0

[ 1 } 1+exp(—1.702z)

u

©o

1
" 14exp(—1.7027)’

z€R, (3.103)

which is the cumulative distribution function of the logistic distribution.
The unidimensional 2PL model

1
1 +exp[—1.7020,; (6 — §;)]’

p(Xij=16,0,8) =

has the form of the logistic cumulative distribution function in Equation (3.103)

evaluated at 0;(0 — &;). Thus, for the jth individual
p(Xij = 116) = P [0,;(6—5;)]. (3.104)

Therefore, appropriately equating the probabilities in Equation (3.97) and Equa-

tion (3.104) yields
¥

,/1—9»,.2’

o = il < 1, (3.105)

and

T
oi = e (3.106)

Equation (3.105) indicates that o is directly a function of A;. This means that, an
item that greatly discriminates between individuals at lower and higher ability
levels will be highly influential in the formation of the corresponding factor.
However, if the item has poor discriminatory power then, it will not contribute
significantly to the formation of the factor. This relationship will be examined
empirically in Chapter 4.
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Equation (3.106) shows that an item’s difficulty §; is a function of its cat-

egory threshold value (t) and A;. In this case, there is no clear relationship
between the difficulty parameter and that of the factor model.

Sometimes the responses to a set of items in a questionnaire is not charac-
terised by only one ability, but a combination of several abilities of the respon-
dent. To this end, the relationship between the multidimensional item response
theory and factor analysis can be determined. Considering the m-factor model

(see Equation (3.68)), each X; can be written as
Xi =A0+¢;, (3.107)
where, A; = (i1, Ai2, -y him)’. The distribution of X; in Equation (3.94) becomes
m
Xi~N[0, Y A%+ . (3.108)
j=1
Also, the conditional distribution of X; given 0 (see Equation (3.95)) is given by
’ m
X|0~N(A8,1-) A% ). (3.109)
j=1
Following similar algebraic steps in Equation (3.97), it is determined that

(

A0 -1
- ¥ A%

V=K

(

A T
—® 0 - = . (3.110)
_ 2
1 j)=:1 7»,.1.

p(Xi=10)=2

Using M2PL model and following Equation (3.104), it shows that

p(Xi; = 1]0) =<I>(oc§0+d,-). (3.111)
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Comparing Equation (3.110) and Equation (3.111) gives

A;
= (3.112)
- m 22
A
and
di=—— (3.113)
1- ¥ A2

Polytomous items

In the case of polytomous data, the categorical response variable, X is a
realisation of the continuous response variable, ¥ by means of a series of thresh-
olds, Ty, h = 1,2,...,8,€ +1,...,k. Schematically, the distribution of polytomous

response categories may be represented as shown in Figure 19.

X =g

Te  Tgr1 Tg+2 Tk

1
1
1
1
1
I
1
1
]
1
1
1
1
1
1

X

Figure 19: Distribution of polytomous response categories

Figure 19 implies that, the relationship between continuous variable, ¥ and

the polytomous response variable, X is defined by

8 ing <Y < Tt
X;= (3.114)

0, otherwise
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To obtain a response in category g of the item, then

p(Yi=g|0) = p(tg < Y; < Tg41)

— & 'cg+1—7»,-9j _& ’Cg—l,‘ej
\/1—A2 1-A?

=\ "«'+1> =\ < ’C)
l_xg(j Ai } 1—22\7 A

(3.115)

In order to link factor analysis and item response theory models for poly-
tomous data, the graded response (GR) model is considered. The form of the

model makes it tractable. The GR model is stated as

p(Xi =g|0) = P(X; > g|0) — P(X; > g+ 1]6).

Thus,
6 = 1 _ 1
p(X, =8 I ) 1 -+ exp [—oc,-((-) - 8,'3)] I 4+exp [—oc,-(e - 8,',g+1)]
= d)[oc,-(e - 5,’8)] - CD[(X,'(O — 5,',3.;.1 )] (3.116)

By comparing Equations (3.115) and (3.116), it can be observed that
Ai

o = , (3.117)
\1-A2

T.

Sig = f (3.118)
and

t.

Big+l = =2t (3.119)
i

These establish the relationship among the parameters of factor analysis and IRT
models for polytomous items (de Leeuw, 1983).
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In many practical situations, responses to polytomous items are charac-

terised by multidimensional person ability. Thus, an equivalent of Equation (3.115)

for m-factor model is given by

p(Xi=218) —0- —L
1-¥2 L [/I-L N
=1 =1

T
——6- —%__ | (3.120)
I-Y 4 /1- LA
I=1 =1

This can be likened to a multidimensional IRT model, say MGR model, given

by
(Xi=g|8)) = - 1
P A 819j 1 + exp [—(a;e—l-d,-g)] 1 +CXP [—(Oc;-0+d,',g+1)] '

That is,

p(Xi=g|0) = D010 + dig] —q’[“:'9+di,g+|]- (3.121)

Equations (3. 120) and (3.121) show that

A
0 = ———, (3.122)
\ [1— 1)=:1 AZ
Tg
dig = ————— (3.123)

and

Tg+1
digs1 = —————. (3.124)
I WY
=1
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Measures of Correlation Coefficients

A measure of correlation provides a platform for expressing the degree
of linear relationship between two variables. Expression of the degree of rela-
tionship requires determining the coefficient of correlation. Several techniques
have been devised for calculating correlation coefficient, notably, the Pearson
correlation (r) and Spearman’s rank correlation coefficients. The Pearson r is
often used to calculate correlation coefficient when the two variables involved
are measured on at least the interval scale and are jointly normally distributed.
Suppose that for the joint distribution of two random variables, say, X and Y,
a random sample of n paired data (xy,y;), (x2,y2), ..., and (x,yy) is drawn, the

Pearson r is given by

n n n
nY Xyi— ¥ XXy
i=1 =1 =1

r= : (3.125)

n n 2 n n
[n 52— ():xi) } [n 5 32— (z:y,-)z]
i=1 i=1 i=1 i=1

Theoretically, 7 can assume a maximum value of 41 and a minimum value of

—1. There is a perfect degree of relationship between X and Y when r assumes a
value of 1 in absolute terms. However, it is practically impossible for r to attain
the value of +1 or —1 unless the marginal distributions of X and Y are identical
in shape (Glass & Hopkins, 1996).

In this study, two methods of calculating correlation coefficient — tetra-

choric and polychoric correlations — have been applied due to the nature of

items involved.

Tetrachoric correlation

The Pearson r serves as the basis for most other methods of calculating
correlation coefficients. For instance, when X and Y are both dichotomies, one

of the classes is scored zero and the other as one, as illustrated in Table 2.
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Table 2: Two Dichotomous Variables

Variable X
0 1 Total
0 a b a+b
Variable Y
] ¢ d c+d
Total at+c b+d n

where a, b, ¢, and d are the observed frequencies. The quantities in Equa-

tion (3.125) have the following equivalents in the table.

Z"t Zx =b+d,

i=1

Z}’i = Z)’,Z =c+d,
i=l1 i=1
n
inyi =d,
i=1

and

n=a+b+c+d.

Substituting these equivalents into Equation (3.125) gives the special case known

as the Phi coefficient (). That is,
(a+b+c+d)d—(b+d)(c+4d)
o= \/—a+b+c+d)(b+d) (b+d)?][(a+b+c+d)(c+d)—(c+d)?
ad +bd +cd +d? — bc — bd — cd — d?
= J[(?+b+c+d—b—d)(b+d)][(a+b+c+d—c_d)(c+d)]
ad —bc
N \/(—a+b)(a+c)(b+d)(c+d)'
be the proportion of observing score 1 on X; p, the proportion of

(3.126)

By letting px

observing score 1 on Y; and pyy the proportion of observing score 1 on both X

and Y, the phi coefficient becomes
Pxy — Per

= \/Px4xPyq y
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where g = 1 — p, denotes the proportion of observing score 0 on X and g, =

1 — py the proportion of observing score 0 on Y. The phi coefficient has the same
interpretation as Pearson r, and in a like manner, attain a maximum theoretical
absolute value of one only if py = py. If p differs substantially from p,, the
maximum value of ¢ can be much lower than one (Glass & Hopkins, 1996).

If the dichotomous nature of X and Y are practically compelled, then it
becomes inappropriate to use phi coefficient as a measure of correlation. In this
case, a measure of correlation between the artificially dichotomised variables is
the tetrachoric correlation coefficient (ry¢). Tetrachoric correlation coefficient
provides an estimate of Pearson r when both X and Y are artificial dichotomies

with underlying normal distributions. It can be calculated by (Chen & Popovich,
2002; Glass & Hopkins, 1996)

ad — bc
Ty Tyn? ’

(3.128)

Ttet =

where T, and Ty are the ordinates of the standard normal distributions at p, and
py, respectively. The value ryer can be interpreted to mean an estimate of what
the observed correlation would be if both variables were measured continuously.

The sample size n must be above 400 (Glass & Hopkins, 1996) for the estimate

of r provided by 7rer tO be substantially accurate.

Polychoric correlation

An ordinal variable can be thought of as a crude representation of an unob-
served continuous variable. The polychoric correlation coefficient is an estimate

of a measure of association between ordinal variables which rests upon an as-

sumption of an underlying continuous bivariate normal distribution (Basto &

Pereira, 2012). As noted in Equation (3.114), we suppose that the ordinal re-

sponse variable, X (with category scores 0,1,2,---,8,--- k) is a representation

of an underlying continuous response variable, Y by means of series of thresh-
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Taking partial derivative of / with respect to p, and setting the result to zero gives

I k2
]ipp2_ (1 (ZX[,—ZPZ ZXItXZJ'*‘ZXzJ)

i=l j=1
kLK

Z Z X1iX2j =0.

i=1 j=

1- p2
Further simplification yields
KK k!
p(1-p%)+ (1 +p2) Y Y XXz —= (ZX,,+ ):ij) =0. (3.130)
i=1j=1 i=1
Equation (3.130) has three roots for p, the value of p which maximizes the like-

lihood function, L (see Equation (3.129)) is taken as the polychoric correlation

between X; and X, (Holgado-Tello, Chac6n-Moscoso, Barbero-Garcia, & Vila-

Abad, 2010; Kendall & Stuart, 1961).

Chapter Summary

The chapter discussed key concepts and methods used in IRT. It presented
various IRT models and their graphical representations. The graphical properties

were explored using the brooding scale dataset. By the graphs, four groups of

brooding items were identified: (1) items that show low difficulty level but have

high discrimination; (2) items indicate that both the difficulty and discrimina-
tion are quite high; (3) items indicate that the difficulty parameter is quite high

with a low discrimination; and (4) items that possess quite high difficulty and

discrimination values, but the difficulty level a bit lower than that of the second

group. The chapter also presented the procedures used in assessing the fitness
of IRT models. It was found that this task is multi-faceted and must be carried

out at the overall model level as well as the item level. The assessment of the

fitness of IRT models can be accomplished using different approaches. In this

study, we employed the widely used standard Chi-square test, which relies on

all the observed and expected response patterns of items being modelled. In this
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chapter, we also discussed the concept of multidimensional IRT models, which
can be used to model the relationship between two or more person abilities and
the probability of responses to items.

The methods of factor analysis that are employed in this study have been
discussed in the chapter. The factor model and its underlying assumptions were
reviewed. Further, two methods — the Principal Component and Principal Axis
— for estimating the parameters of the factor model have been discussed with
the intention of implementing them in the study to extract the factor structure.

In this chapter, it has been shown that the parameters of IRT and factor
analysis models are closely linked. It is noted that, item discrimination parame-
ter is directly a function of factor loading, such that items that greatly discrimi-
nate between individuals at lower and higher ability levels are highly influential
in the formation of factors.

Two measures of correlation — tetrachoric and polychoric coefficients —
were presented. It is found that tetrachoric and polychoric correlation coeffi-
cients are maximum likelihood estimates of the correlation between two ordinal

variables having bivariate normal distribution.
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CHAPTER FOUR

RESULTS AND DISCUSSION

Introduction

The purpose of this study is to examine the effects of measurement scales
on results of item response theory models and multivariate techniques. The study
is based on simulated datasets under various conditions such as item response
format, number of ability dimensions underlying response scales, and sample
size using R package mirt command: simdata (a, d, N, itemtype). Two main
statistical techniques — Item Response Theory (IRT) models and Factor Analysis
— are employed in analysing the simulated datasets using standard R 3.4.3 codes.
We will first present a description of the generation of the datasets. Next, we

present the analyses of the datasets.

Data Simulation

In order to examine the effect of response scale on results of factor anal-
ysis, data is simulated using mirt package in R software. Several datasets are
generated under different conditions for a total of twenty items. Datasets are
generated for varied response scales, namely dichotomous, three-point, five-
point, and seven-point scales. For each response scale, different sample sizes
are considered. These sample sizes include 30, 100, 150, 200, 500, 800, and
1000. The rationale is to investigate the effect of sample size on factor analysis
results. In addition, for each response scale, different dimensions of underlying
person-ability are considered, particularly unidimensional, two-dimensional and
three-dimensional. The datasets are generated using the command: simdata (a,

d, N, itemtype) (Chalmers, 2012), where argument a denotes a vector/matrix of

discrimination parameter values, d vector/matrix of difficulty parameter values,
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N sample size and “itemtype” the underlying IRT model. These arguments are

specified to generate the desired dataset.

Firstly, unidimensional dichotomous response dataset is simulated using
2PL model. The 2PL model is considered, because it assumes that items have
different discrimination powers. In questionnaires, items differ in terms of con-
tent, and so are their discriminations. In this system, a 20 x 1 vector of discrim-
ination values are specified for a, and another 20 x 1 vector of difficulty values
for d for all sample sizes. Table 4 shows the discrimination and difficulty pa-
rameter values used in simulating unidimensional item response data for twenty
items.

In the table, we have 0.4 < o < 3.0 and —2.5 < 8 < 2.5. High values of
o means that the item is discriminating largely between low-ability and high-
ability persons. High positive value of & means the item is “difficult” and only
high-ability persons can respond to it in higher response categories. Conversely,
an item with high negative 8 value is considered to be “easy” and persons with
high ability levels tend to respond favourably to it. A & value of zero or close

to zero means that the item is averagely difficult and persons of average ability

could respond to it in higher response categories.
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Table 4: Discrimination and Difficulty Levels of Each Item

Item Discrimination (o) Difficulty ()
| 0.5 0.00
2 0.7 0.12
3 0.8 -2.30
4 0.6 0.10
5 0.4 2.00
6 2.2 -2.50
7 1.5 -2.00
8 2.7 -1.50
9 1.8 -2.20
10 1.6 2.50
11 2.0 2.30
12 29 1.50
13 3.0 2.20
14 2.1 0.30
15 2.8 0.50
16 1.4 0.25
17 1.9 0.40
18 1.2 0.42
19 1.3 0.56
20 2.9 0.20

To generate a two-dimensional dichotomous dataset, a argument is modi-
fied to a 20 x 2 matrix of discrimination values. Here, same vector of discrim-
ination values on first dimension is repeated on the second dimension. Thus,

the two dimensions have the same discrimination values. The intent is to deter-
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mine how the information will manifest in factor model. In this case, one of two
possibilities is expected in the factor model. On one hand, a factor solution is
expected to be dominated by two repeating factors since the same information
is contained on the two dimensions that underlie the data. On the other hand, a
single dominant factor is expected with the other influenced by few items. To
simulate a three-dimensional dichotomous dataset, 20 x 3 matrix of discrimina-
tion values is specified for a. The three dimensions have same discrimination
values, with similar rationale as for the two-dimensional case.

Next, a unidimensional three-point scale data is generated using a polyto-
mous IRT model, specifically GPC model. Polytomous models incorporates cat-
egory boundaries to cater for the multi-category nature of items. For instance, a
three-point scale requires two category boundaries, five-point scale requires four
category boundaries, etc. For a given scale, number of response categories is
specified using argument d. For three-point scale, d consists of a 20 x 2 matrix
of difficulty values with 20 x 1 discrimination values depicting unidimensional
fashion. The GPC model considers items of varying discriminations just as 2PL

model.
Higher response scale datasets, five and seven-point, are also simulated in

the same manner as three-point scale.

Data Analysis

Two statistical analytical techniques — item response theory (IRT) mod-

els and factor analysis — are employed in analysing simulated datasets using

standard R 3.4.3 codes (R Core Team, 2017). The IRT analysis is conducted

using R package mirt (Chalmers, 2012). The analyses of unidimensional di-

chotomous item response datasets are based on two-parameter logistic (2PL) IRT

model, whereas multidimensional two-parameter logistic (M2PL) IRT model is

employed in the analyses of multidimensional dichotomous datasets. For unidi-
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mensional polytomous item response datasets, we employ the generalised partial

credit (GPC) model in the analyses. In terms of multidimensional polytomous
datasets, the multidimensional generalised partial credit (MGPC) model is used
to conduct the analyses.

Factor analysis is also performed on each simulated item response dataset
using R package psych (Revelle, 2017). Factor analyses of dichotomous item re-
sponse datasets are based on tetrachoric correlation matrices. On the other hand,
polychoric correlation matrix is used as input in factor analysis of polytomous

item response datasets. The R codes used in all the analyses are provided in

Appendix.

Assessment of Dichotomous Response Scale

This section presents the results of IRT and factor analysis on dichoto-
mous response scale. In regard of this scale, three different dimensions of the
underlying ability are considered. These are unidimensional, two-dimensional
and three-dimensional. For unidimensional dichotomous scale, three types of
factor analyses are carried out. That is, one-factor, two-factor and three-factor
solutions. For all three dimensions considered, factor solutions are obtained at

various sample sizes. We begin with an exploration of characteristics of items in

the unidimensional dichotomous item response dataset.

Unidimensional item response datasets

Table 5 shows the estimates of discrimination and difficulty parameters of

unidimensional 2PL model.
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Table 5: Discrimination and Difficulty Estimates of Unidimensional 2PL Model

for Various Sample Sizes

Item Sample Size
30 100 150 200
& 6 & 8 G o & 5

1 0.684 -0.153 0.567 0.719 0.744 0.331 0.490 0.148
2 1.287 0.147 1.539 -0.001 0.845 0.184 0.828 0.045
3 0.679 -1.514 0.267 -3.273 0.450 -1.944 0.344 -1.857
4 0.321 0.274 1.008 -0.005 0.696 0.059 0.654 0.131
5 -0.377 1.655 0.076 1.588 -0.044 2.537 0492 2237
6 0501 -1.458 1.718 -1.715 1.737 -2.281 2.146 -2.204
7 0.432 -2.269 0367 -1491 2250 -2.283 0927 -1.723
8 1.866 -0.880 2.266 -0.743 3.201 -1.353 2.346 -0.927
9 1.298 -1.325 1.852 -2412 2175 -2.173 2296 -2.504
10 0.967 2.187 9.008 12.668 1.522 2352 1.118 1.942
11 4018 3418 2.143 2214 2092 2015 2084 2271
12 3.056 2370 2.537 1760 3.153 1.735 3.964 1.750
13 8.339 6.370 5.092 3.717 3521 2889 2694 1.687
14 1.469 0.522 2730 0.522 2221 0.157 1.963 0.506
15 4389 1254 3263 1.062 3.648 0374 3289 0411
16 0.863 0.622 0.732 -0.002 1.339 0.100 1.524 0.420
17 1.697 0.346 1258 0.467 1.807 0437 2523 0.659
18 1.316 0.147 0.778 0363 1.287 -0.041 1.091 0.346
19 1.874 -0.056 1.606 0.759 1353 0.536 0921 0.525
20 4.551 -0.557 3.292 0402 2440 0406 4249 0.041
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Table 5, continued

Item Sample Size
500 800 1000
& 5 & & & 5

1 0460 0034 0504 0090 0453 -0.029
2 0.710 0.187 0.081 -0.001 0.784  0.100
3 0.814 -2227 0.895 -2.210 0.700 -2.396
4 0.690 -0.160 0.638 0.132 0.656 0.159
5 0.558 1.976 0274 1985 0443  2.056
6 2276 -2.385 2196 -2353 2654 -2.520
7 1.641 -2.120 1723 -1.864 1.886 -2.248
8 2679 -1435 2.835 -1.370 2720 -1.362
9 2275 -2.554 2486 -2.866 1.739  -2.000
10 1.786 2529  1.599  2.551 1.663  2.468
11 1.594 2.158 2.050 2437 2271 2595
12 3.385 1.874  2.898 1.678 2971 1.805
13 3268 2344 3496  2.830  3.108 2420
14 2069 0458 2272 0410 2.120 0.378
15 3723 0340 2438 0649 2865 0.771
16 1.331  0.365 1.480 0430 1456 0.352
17 1.905  0.347 1.930 0453 1.765  0.410
18 1.069  0.297 1.053 0421 1.371 0.724
19 1333 0720 1.165 0.641 1.127  0.720
20 2.889  0.061 2920 0.198 2900 0.377

The results show that t

culty (8§) parameters generally fluctuates with increasing sample size. That is, the

he estimated values of discrimination (&) and diffi-
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estimates of discrimination and difficulty parameters change depending on the
sample. There is a marked difference between the specified and estimated item
parameter values at lower samples (» = 30 and 100). However, the differences
tend to reduce at sample sizes of 150 and beyond. In addition, the differences
become negligible at larger samples (n = 500,800, 1000). For example, from
Table 4 the specified discrimination value (o) of Item 10 is 1.6, which is quite
close to the estimated values (&) at samples of sizes 150 through 1000.

Table 6 shows the significances of the fit of items for unidimensional 2PL
model. The Table also shows the fitness of 2PL model for unidimensional di-
chotomous response dataset for various sample sizes.

The hypothesis based on which the Table 6 is generated is that
Hy : Items fit the model; against
H, : Items do not fit the model.

Items fit the unidimensional 2PL model since the p-values are generally much
higher than 0.05. Only at n = 150, 200 and 1000 it is detected that three items
(6, 12, and 7, respectively) do not fit the model. The 2PL model significantly fits

the unidimensional dichotomous item response data for all sample sizes.
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Table 6: P-values for Item Fitness for Unidimensional 2PL Model for Various

Sample Sizes

Item Sample Size

30 100 150 200 500 800 1000
1 0.377 0.251 0.666 0446 0.202 0.507 0.178
2 0.360 0.694 0459 0314 0988 0.564 0.368
3 0.344 0.155 0.113 0.274 0.141 0.530 0.768
4 0.792 0.553 0.260 0.055 0.890 0.665 0.609
5 0.530 0.851 0979 0.668 0.681 0.559 0.901
6 0.325 0304 0.001 0465 0905 0.849 0.818
7 NaN 0317 0.608 0.377 0476 0.165 0.019
8 0.767 0931 0.595 0939 0483 0.177 0.997
9 0592 0535 0382 0.648 0708 0.467 0.353
10 NaN NaN 0433 0296 0.269 0.893 0.188
11 NA 0877 0.682 0486 0490 0.318 0.079
12 NaN 0234 0.008 0.033 0.783 0.429 0.182
13 NA 0.188 0.856 0.530 0.605 0.275 0.758
14 0310 0294 0973 0437 0890 0.657 0414
15 0.457 0.750 0.812 0.210 0.317 0.906 0.639
16 0.131 0.136 0.729 0.240 0.282 0363 0457
17 0.303 0.387 0256 0961 0.856 0.560 0.559
18 0.228 0.253 0.071 0989 0.677 0.558 0.428
19 0.550 0.433 0.675 0217 0947 0.768 0.424
20 0.669 0.562 0.177 0907 0314 0225 0421
Model Fit  0.114 0966 0.514 0381 0363 0.387 0.938
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Figure 20 illustrates graphical representations of items in unidimensional

dichotomous response dataset for various sample sizes.
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Figure 20: Item characteristic curves for unidimensional 2PL model for sample

sizes: (a) 30; (b) 100; (c) 1505 (d) 200; (e) 500; (f) 800; and (g) 1000

In Figure 20, the curve for Item 9 is extremely steep at a low ability level
(at -2). For individuals with extremely low ability, Item 9 sharply discriminates.
The only item with similar nature is Item 6. However, Item 6 discriminates at
a little higher ability than Item 9. Items 2, 14, 16 through 20 are discriminat-
ing maximally at average ability levels. Meanwhile, Item 11 is discriminating
among individuals at high ability levels for small samples but, tend to discrimi-
nate at average levels for large sample sizes. Item 13 discriminates the most at
extremely high ability levels for n = 30, but conforms to discriminating at just
high ability levels like other items for n > 150. For n = 30, the curves of all
items have the desired shape (monotonic increasing), except for Item 5. It can
be seen that this is as a result of negative estimate of discrimination parameter.

In item response modelling, this implies that those with high ability rather have
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a low probability of response. As sample size increases, the curve for Item 5

conforms to the expected form. Thus, the expected discrimination of the items
is better achieved in larger sample sizes.
Table 7 displays the loadings of one-factor solutions for unidimensional

item response datasets for various sample sizes on dichotomous scale.
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Table 7: Loadings of One-Factor Solutions for Unidimensional Datasets for

Various Sample Sizes on Dichotomous Scale

Item Sample Size

30 100 150 200 500 800 1000
1 0.400 0346 0399 0.283 0269 0307 0.277
2 0.597 0405 0464 0457 0398 0454 0434
3 0249 0507 0211 0.183 0402 0424 0.359
4 0.149 0544 0405 0.38 0.380 0.373 0.372
5 -0.220 0.000 0.000 0.251 0.275 0.143 0.229
6 0.228 0.639 0.658 0.774 0.769 0.745 0.810
7 0.156 0211 0773 0434 0.660 0.697 0.701
8 0.608 0.755 0.831 0.787 0.828 0.853 0.831
9 0422 0.640 0734 0.753 0.784 0.789 0.676
10 0474 0796 0.626 0.520 0.700 0.637 0.678
11 0.889 0774 0.775 0.760 0.661 0.749 0.781
12 0744 0865 0857 0.888 0.874 0.864 0.855
13 0931 089 0902 0826 0.878 0.891 0.870
14 0529 0839 0.773 0.738 0.765 0.805 0.774
15 0.865 0.865 0.855 0.858 0.894 0.814 0.849
16 0402 0429 0.618 0.663 0.626 0.665 0.654
17 0.677 0.627 0.721 0.823 0.736 0.750 0.725
18 0.603 0430 0575 0555 0.540 0.539 0.636
19 0.640 0.685 0627 0473 0.615 0.573 0.565
20 0.809 0.861 0.806 0907 0.848 0.863 0.852
Prop Var  0.339 0.424 0450 0429 0455 0461 0.4458
Fit 0.706 0.870 0.8964 0881 0916 0922 0.924
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By comparing Table 5 and Table 7 we see that there is direct relationship
between parameters of IRT and those of factor models, particularly the discrim-
ination parameter and the factor loadings. We note that items with high discrim-
ination values load highly on factors. The discrimination values of these items
are greater than one. Thus, for an item to be influential in the formation of a
factor, it should possess a discriminatory power with absolute value greater than
one. The result also shows that specific indicators have no influence or do influ-
ence in a different direction, for example Variable 5. However, this observation
is associated with low sample size (n = 30). The negative loading changes to
positive for higher sample sizes. The item interpretation changes accordingly
for Variable 5. Also, we observe from Table 7 that the number of influential
indicators appear to converge (at 15) for higher sample size starting at n = 150,
The indicators are the same at point of convergence. The proportion of variance
accounted for by the single factor increases from 33.9% (for n = 30) to a highest
of 46.1% (for n = 800).

Table 8 contains loadings of two-factor solutions for unidimensional item

response datasets for various sample sizes on dichotomous scale.
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Table 8: Loadings of Two-Factor Solutions for Unidimensional Datasets for

Various Sample Sizes on Dichotomous Scale

Item Sample Size 30 Sample Size 100 Sample Size 150 Sample Size 200
PA1 PA2 PAl PA2 PAl PA2 PAl PA2

0371 0.196 0.232 0.268 0.389 0.000 0.277 0.104

[

2 0.136 0.858 0000 0582 0443  0.142 0326  0.324
3 0519 -0255 0.608 0000 026 0381 0271  0.000
4 0338 -0.198 0.96 0677 0454 -0.138 0217  0.350
5 0.152 -0576 0188 -0.170 0.141 -0.660 0.000  0.453
6 0000 0322 0392 0552 0634  0.174 0530  0.577
7 -0.132 0437 0000 0339 0757  0.I55 0000  0.673
8 0495 0345 0761 0242 0821  0.39 0.603  0.504
9 0515 0000 0405 0536 0734 0000 0371  0.768
10 0215 0506 0594 0533 0683 -0.135 0625  0.000
11 0651 0605 0560 0545 0763  0.39 0715 0322
12 0406 0705 0.647 0579 0829 0214 0758 0470
13 0722 0576 0811 0404 0927 0000 0729  0.407
14 0565 0.136 0909  0.195 0721 0307 0708 0295
15 0565 0.687 0803 0332 0825 0220 0703 0490
16 0488 0000 0218 0432 0522 0496 0537 0388
17 0715 0.188 0400 0517 0656 0364 0757 0370
18 0618 0.8 0420 052 0525 0280 0301 0520
19 0855 0000 0560 0392 0629 0000 0505  0.124
20 0614 0522 0799 0365 0774 0226 0650  0.641
PropVar 0256 0.195 0300  0.183 0427 0072 0286  0.194
Cum Var 0.451 0.483 0.499 0.480
Fit 0.801 0.896 0917 0.904
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Table 8, continued

Item Sample Size 500 Sample Size 800 Sample Size 1000
PA1 PA2 PAl PA2 PAl PA2

0.185 0.204 0.304 0.000 0.211 0.185

Pt

2 0268 0309 0285 0482 0394 0.188
3 0289 0286 0271 0433 0223 0.321
4 0355  0.156 0262 0327 0344 0.151
5 0.000 0471 0000  0.487 0.000 0.383
6 0793 0222 0688 0285 0.791 0.271
7 0624 0263 0683  0.183 0.713 0.190
8 0891  0.195 0812 0276 0.801 0.293
9 0.677 0399 0.686 0397 0.679 0.195
10 0440 0596 0.686  0.000 0.507 0.468
11 0.521  0.405 0683 0307 0.688 0.372
12 0575 0709 0811 0304 0.695 0.498
13 0700 0529 0830 0326 0.677 0.558
14 0573 0513 0691 0425 0.640 0.434
15 0686 0576 0703 0420 0.636 0.585
16 0422 0487 0615 0253 0.553 0.348
17 0645 0361 0674 0327 0.532 0.517
18 0523  0.196 0584  0.000 0.489 0.416
19 0521 0327 0534 0209 0.522 0.231
20 0682 0501 079 0334 0.683 0.513
prop Var 0314 0172 0387  0.105 0.333 0.145
Cum Var 0.486 0.492 0.478
Fit 0.925 0.934 0.930
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In Table 8, with the exception of sample sizes n = 150 and n = 800, there
is generally the incidence of repetition of high loadings on the same indicator
variable of the two factors which can distract interpretation. However, for n =
150, the first factor loads highly on as many as 15 indicators and explains 42.7%
of variation. The second factor loads highly on only one indicator (Variable 5)
and is a contrast to its representation in IRT. In addition, amount of variance
explained by the second factor appears to be negligible. These observations
are consistent with the correlation matrix as Variable 5 has negative correlation
with most of the other variables. The sample size of n = 150 thus gives a more
plausible factor solution than all other samples. The n = 150 also explains the
highest cumulative variation. For n = 800 the second factor is rather considered
as redundant.

Table 9 are loadings of three-factor solutions for unidimensional item re-
sponse datasets for various sample sizes on dichotomous scale. From Table 9,
the result becomes less meaningful and even unrealistic for sample sizes beyond
30. There is generally the incidence of repeating indicators on multiple factors.
There is also the incidence of unrealistic loadings that are greater than one in
higher factor numbers, particularly for Factor 3. Specifically, the loadings of
Item 5 on Factor 3 is greater than one for n = 150 and 200 (1.019 and 1.200,
respectively). This incidence is as a result of an extraction of higher factor struc-

ture from a lesser dimensional dataset.
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Table 9: Loadings of Three-Factor Solutions for Unidimensional Datasets for

Various Sample Sizes on Dichotomous Scale

Item Sample Size 30 Sample Size 100
PA1 PA2 PA3 PA1 PA2 PA3

0.785 0.000 -0.106 0.340 0.000  0.536

[u—

2 0.302 0.000 0.818 0.000 0.581 0.141
3 0.152 0.515 -0.232 0.635 0.000 0.000
4 0.127 0.312 -0.202 0.231 0.531 0.475
5 0.000 0.205 -0.544 0.125 0.000 -0.379
6 0.000 0.000 0.360 0.407 0.480 0.251
7 -0.119  0.000 0.509 0.000 0.270 0.199
8 0.495 0.265 0.245 0.773 0.233 0.000
9 0.000 0.724 0.155 0.437 0.429 0.343
10 0.610 0.176 0.334 0.519 0.662 0.000
1 0742 0289 0453 0558 0509  0.202
12 0.377 0.280 0.672 0.621 0.594 0.114
13 0.593 0.494 0.499 0.730  0.607  -0.285
14 0.000 0.737 0.253 0.920 0.202 0.000
15 0.374 0.484 0.708 0.805  0.383 0.000
16 0.000 0.554 0.000 0.145 0.541 0.000
17 0.753 0.346 0.000 0.339  0.605 0.000
18 0.721 0.246 0.000 0433 0.127 0.000
19 0498 0675 0000 0547 0401  0.000
20 0.453 0.465 0.486 0.773 0411 0.000
Prop Var 0.206 0.170 0.169 0.288  0.189 0.053
Cum Var 0.544 0.530
Fit 0.864 0.916
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Table 9, continued

Item Sample Size 150 Sample Size 200
PAl PA2 PA3 PA1 PA2 PA3

1 0.435 0.000 0.000 0206 0.189 -0.189
2 0.301 0.379 0.000 0265 0.389  0.000
3 -0.120 0.617 -0.165 0.184  0.000 -0.168
4 0.398 0.000 0.212 0215 0341  0.000
5 0.000 -0.121 1.019 0.188  0.264 1.200
6 0.622 0.249 0.000 0406 0.718 -0.125
7 0.572 0.513 0.158 0.000 0.709 0.124
8 0.809 0.285 0.000 0.564 0.546  0.000
9 0.741 0.204 0.000 0385 0.717  0.000
10 0.401 0.473 0429 0519 0.194  -0.198
11 0.753 0.268 0.000 0.665 0.392  0.000
12 0.644 0.568 0.000 0.756 0.481  0.000
13 0.696 0.539 0.301 0709 0440  0.000
14 0.595 0.502 0.000 0.727 0.292  0.000
15 0.911 0.205 0.000 0.751 0.448 0.101
16 0.472 0452 -0.172 0499 0431 0.000
17 0.421 0.689 0.000 0682 0465 -0.174
18 0.336 0.539 0.000 0236 0579 -0.107
19 0.486 0.385 0.114 0636 0.000 0.130
20 0.790 0.279 0.000 0.633 0.652  0.000
Prop Var 0.328 0.170 0.074 0266 0.214 0.084
Cum Var 0.572 0.563
Fit 0.937 0.918
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Two-dimensional item response datasets

We now consider an assessment of two-factor model on two-dimensional
dichotomous datasets. In this system, datasets are generated by specifying the
same vector of item discrimination parameter values on both dimensions of the
underlying ability. Here, we expect that a good factor solution should have two
repeating factors since the same information is contained on the two underlying
dimensions of the dataset. Alternatively, we could expect a single dominant first
factor in the two-factor solution with similar reasoning as in the former instance.

We begin with an assessment of the fitness of items for datasets as shown in

Table 10.
It can be observed from Table 10 that almost all items significantly fit the
two-dimensional model. The only exception is when n = 30 where the fitness

of majority of items have not been possible to evaluate due to sparseness in the

data. Correspondingly, the overall model fitness could not be determined due

to low degrees of freedom. The item response model significantly fits the two-

dimensional dichotomous response data for all other sample sizes.
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Table 10: P-values for Item Fitness for Two-Dimensional 2PL Model for

Various Sample Sizes

Item Sample Size

30 100 150 200 500 800 1000
| 0.284 0.094 0.097 0.716 0.199 0.319 0.319
2 0.259 0.094 0.144 0270 0.672 0.383 0.761
3 NaN 0322 0.654 0.258 0.684 0.178 0.813
4 0.297 0.063 0.467 0221 0.715 0.620 0.523
5 NaN 0906 0547 0.268 0.166 0.313 0.446
6 NA 0744 0832 0205 0.694 0.443 0.329
7 NaN 0.199 0.209 0.338 0.224 0.509 0.752
8 NaN 0.112 0.093 0466 0.148 0.159 0.841
9 NA 0023 0.121 0.186 0.438 0.692 0.019
10 NaN 0.604 0590 0.601 0.677 0.063 0.965
11 NaN 0.255 0.158 0.683 0928 0.322 0.017
12 NA 0651 0079 0.197 0254 0.69 0.232
13 NaN 0940 0460 0354 0344 0.237 0.340
14 NA 0992 0317 0319 0.587 0.543 0.333
15 NaN 0302 0430 0800 0.518 0.291 0.747
16 NaN 0290 0.036 0.020 0.586 0.860 0.284
17 NaN 0945 0403 0.617 0308 0.872 0.768
18 0712 0.730 0932 0.674 0.259 0336 0.067
19 NA 0.182 0.239 0.609 0924 0.153 0402
20 NaN 0.026 0.347 0686 0486 0488 0.877
Model Fit - 0920 0406 0249 0953 0974 0.123

Table 11 contains two-factor solutions for two-dimensional item response
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datasets for various sample sizes on dichotomous scale.

Table 11: Two-Factor Solutions for Two-Dimensional Datasets for Various

Sample Sizes on Dichotomous Scale

Item Sample Size 30 Sample Size 100 Sample Size 150 Sample Size 200
PAl PA2 PAl PA2  PAl PA2 PAl PA2

0.162 0470 0.567 0.170 0.255 0.225 0478  -0.172

—

2 0219 -0313 0555 0136 0375 0428 0440 0219
3 0383 0660 0441 0000 0245 0395 0351  0.654
4 0326 0315 0571 0000 -0.127 0828 0611 0271
5 0.153 -0.556 0000 0939 0826 0000 0000  0.543
6 0540 0175 0847 0000 0540 0684 0852  0.234
7 0271 0659 0848 0000 0483 0545 0694  0.297
8 0.693 0287 0902 -0.I58 0696 0603 0877  0.342
9 0.187 0335 0861 0000 0563 0597 0538  0.731
10 0531 0249 0739 0297 0653 0450 0622  0.555
i1 0851 0.129 0898 0000 0540 0601 0751  0.304
12 0778 0531 0953 0110 0607 0714 0798  0.488
13 0.868 0271 0888  0.116 0649 0612 0761 0555
14 0699 0274 0859 0000 0583 0696 0670  0.563
15 0855 -0.136 0927 0000 0545 0664 0811 0447
16 0831 -0273 0835 052 0377 0630 0756  0.182
17 0851 0201 0898 0000 0709 0558 0763 0367
18 0240 0383 0793 0000 0.6377 0468 0547  0.543
19 0787 0379 0773 0000 0676 0248 0676 0417
20 0814 0342 0930 0191 0705 0641 0755  0.552
propVar 0378 0144 0619 0058 0322 0317 0447 0204
Cum Var 0.522 0.677 0.639 0.651
Fit 0.873 0.973 0.965 0.971
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Table 11, continued

Item Sample Size 500 Sample Size 800 Sample Size 1000
PA1 PA2 PAl PA2 PAl PA2

1 0.362 0.185 0.324 0.161 0.348 0.217
2 0.561 0.234 0.460 0.223 0.525 0.261
3 0.467 0.169 0.666 0.000 0.135 0.924
4 0.502 0.000 0.303 0.405 0.456 0.203
5 0.000 0.885 0.000 0.343 0.354 0.000
6 0.838 0.187 0.681 0.624 0.762 0.402
7 0.797 0.000 0.645 0.523 0.710 0.282
8 0.900 0.178 0.665 0.574 0.817 0.414
9 0.821 0.117 0.604 0.523 0.694 0.372
10 0.808 0.141 0.604 0.457 0.731 0.315
11 0.881 0.119 0.673 0.519 0.809 0.277
12 0.883 0.348 0.758 0.482 0.848 0.340
13 0.901 0.265 0.813 0.411 0.879 0.351
14 0.834 0.221 0.748 0.457 0.789 0.363
15 0.884 0.165 0.795 0462 0.846 0.390
16 0.767 0.195 0.494 0.577 0.672 0.354
17 0.843 0.134 0.818 0.300 0.786 0.324
18 0.651 0.000 0.586 0.460 0.732 0.000
19 0.742 0.240 0.687 0.290 0.659 0.383
20 0.909 0.128 0.793 0.455 0.813 0.439
Prop Var 0.314 0.172 0.387 0.105 0.333 0.145
Cum Var 0.486 0.492 0.478
0.925 0.934 0.930

Fit




The n = 150 generates a repeating factor consistent with two repeating

dimensions underlying the dataset. The cumulative variation is also highest for

this sample size.
Three-dimensional item response datasets

In this system, we assess the performance of a three-factor model based on
three-dimensional dichotomous item response dataset for various sample sizes.
Table 12 shows the significance of the fitness of items for three-dimensional
dichotomous datasets.

Table 12 indicates that items significantly fit the three-dimensional 2PL
model. However, for smaller samples the fitness of items is appalling. The
fitness of items to the model get better as sample size increases. We observe that

the three-dimensional 2PL model significantly fits the data for all sample sizes,

except atn = 30 where the fitness of the model could not be determined due low

degrees of freedom.
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Table 12: P-values for Item Fitness for Three-Dimensional 2PL Model for

Various Sample Sizes

Item Sample Size

30 100 150 200 500 800 1000
1 NaN 0316 0470 0.061 0.089 0959 0.3279
2 NaN 0243 0251 0.074 0.773 0.140 0.024
3 NA 0.745 0.152 0.054 0518 0.244 0.173
4 0.280 0.540 0917 0.036 0.662 158 670
5 NA 0.180 0.146 0.481 0.101 0.055 0.078
6 NaN 0.105 0.061 0.138 0590 0.698  0.495
7 NaN 0440 0488 0.121 0.127 0447 0.004
8 NA 0580 0.124 0.059 0.184 0.633  0.300
9 NA 0.117 0.023 0.022 0495 0500 0.716
10 NaN NaN 0.163 0907 0.569 0.872 0.848
11 NaN NaN 0215 0.615 0907 0.368 0455
12 NA 0571 NaN 0438 0.045 0244 0.071
13 NA NaN 0.025 0469 0233 0.091 0.473
14 NA 0.082 0558 0441 0.096 0.723 0.255
15 NA 0037 0266 0395 0419 0331 0.003
16 NaN 0.120 0444 0.834 0469 0.109 0.698
17 NA 0.747 0551 0220 0271 068  0.566
18 NaN 0.091 0465 0204 0.182 0.662 0.679
19 NaN 0.859 0518 0.720 0.946 0.353 0.861
20 NA 0.039 0.104 0.176 0381 0.031 0.061
Model Fit - 0.882 0462 0885 0556 0783 0.371
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Table 13 are loadings of three-Factor solutions for three-dimensional item

response datasets for various sample sizes on dichotomous scale. Lower sample
sizes show two dominant factors in the result. This pattern is inconsistent with
the expected dimension of the scale. However, for n = 150 and 200, as expected
only the first factor is highly influenced by the indicator variables. The factor
solution for » = 150 is more conceivable as it accounts for as high as 78.9%

cumulative variation. The fitness of the model is almost perfect for all sample

sizes.
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Table 13: Loadings of Three-Factor Solutions for Three-Dimensional Datasets

for Various Sample Sizes on Dichotomous Scale

Item Sample Size 30 Sample Size 100
PAL PA2 PA3 PA1 PA2 PA3

0.000 0.853 0239 0.618 0.000 0.000

o

2 0495 0363 0.000 0482 0389 0.257
3 0.000 0.000 -0.710 0.000 0.707 0.000
4 0.000 0.172 0.728  0.493 0540  0.000
5 0408 0217 -0.253 0.000 0.000 0.919
6 0353 0700 0293 0593 0566 0418
7 0375 0.578 -0401 0363 0.692 0.514
8 0620 0.649 -0.200 0502 0.611 0476
9 0737 0.522 -0.177 0.641 0.560  0.333
10 0.858 0.000 0.000 0.658 0596 0.142
11 0776 0231 0246 0555 0.712 0.133
12 0757 0491 0171 0591 0598  0.357
13 0.859 0340 0.000 0826 0476 0.214
14 0.759  0.600 0.149 0.747 0419 0.315
15 0861 0456 0.125 0600 0.699 0.206
16 0933 0.135 0000 0781 0326 0220
17 0.677 0665 0.169  0.689 0437 0387
18 0381 0.661 0309 038 0580 0.366
19 0.687 0.587 -0.135 0429 0.689  0.000
20 0705 0.671 0.000 0560 0585 0.516
Prop Var  0.401 0.257 0.088 0321 0300 0.132
Cum Var 0.746 0.753
Fit 0.973 0.986
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Table 13, continued

Item Sample Size 150 Sample Size 200
PA1 PA2 PA3 PA1 PA2 PA3

1 0200 0945 0000 0485 0.183 0.106
2 0.644 0204 0.191 0507 0552  0.000
3 0514 0.165 0.117 0262 0.695 0.112
4 0425 0551 0000 0239 0.160 0.723
5 0267 0.100 0969 0.114 0.613 0.183
6 0.849 0436 0000 0779 0.276 0.405
7 0.791 0.183 0216 0679 0321 0.280
8 0.891 0304 0000 0815 0421 0.231
9 0761 0393 0.111 0636 0590 0.182
10 0764 0.191 0285 0.841 0.153  0.000
11 0776 0.426 0292 0.788  0.383  0.253
12 0868 0351 0272 0729 0464 0.246
13 0.849 0253 0358 0765 0346 0.300
14 0.814 0294 0.172 0.601 0.469 0488
15 0.843 0335 0284 0736 0415 0.342
16 0.783 0356 0285 0630 0277 0.423
17 0813 0384 0223 0.748 0438 0.213
18 0.823 0.000 0.174 0.743 0125 0.284
19 0.806 0.283 0327 0.661 0338 0.338
20 0.841 0407 0234 0760 0435 0.279
Prop Var 0552 0.144 0.094 0432 0.171 0.099
Cum Var 0.789 0.702
Fit 0.990 0.983

140



Investigation of Three-Point Likert Scale

Three-point Likert scale consists of three response categories. This scale
can also take on different dimensions. Similar to dichotomous scale, three differ-
ent dimensions of the underlying ability are considered. These are one, two and
three dimensions. From now on, we dwell on the performance of various factor
solutions on three-point response scale at different sample sizes. As a start, we

consider unidimensional three-point Likert scale.

Unidimensional three-point Likert scale

Table 14 shows the p-values of fitness of items for unidimensional three-
point scale datasets based on generalised partial credit (GPC) model.

We observe from Table 14 that in migrating from dichotomous to three-
point scale, the significance of fitness of items for the model generally fluctuates
for all sample sizes. While the p-values of some items improve for given sample
size, those of other items deteriorate. For instance, at n = 30 the fitness of Item 1
for three-point scale improves over that of dichotomous scale. On the contrary,
at n = 30 the fitness of Item 2 for three-point scale decreases as compared to
dichotomous scale. The overall fitness of GPC model for unidimensional three-

point response data is significant at sample sizes of 100 and over.
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Table 14: P-values for Item Fitness for Unidimensional GPC Model for Various

Sample Sizes on Three-Point Scale

Item Sample Size

30 100 150 200 500 800 1000
0662 0533 0343 0.685 0.598 0.629 0.823

ot

2 0.176 0.632 0706 0013 0818 0460 0.690
3 0566 0.467 0872 0773 0741 0277 0.055
4 0731 0925 0.199 0286 0409 0454 0.288
5 0218 0365 0308 0604 0246 0.866 0.359
6 0.190 0502 0773 0598 0.153 0453 0.558
7 0065 0391 0791 0320 0536 0887 0.514
8 0267 0455 0927 0426 0340 0770 0.826
9 0459 0419 0930 0715 0894 0228 0.006
10 0332 0619 0934 0711 0663 0505 0851
1 NaN 0278 0743 0742 0272 0391 0245
12 NaN 0.152 0018 0101 0258 0799 0.105
13 0017 0495 0462 0295 0263 0016 0923
14 0114 0345 0364 0078 0568 0038 0482
15 NaN 0464 0645 0894 0073 0635 0895
16 0233 0690 0323 0176 0.198 0617 0.930
17 0332 0398 0394 0516 0218 0076 0.557
18 0221 0852 0171 0123 0356 0586 0967
19 0116 0732 0.91 0674 0401 0554 0277
20 NaN 0088 0919 0.144 0489 0564 0691

Model Fit  0.002 0.477 0.198 0589 0.581 0.603 0911
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Table 15 gives the loadings of one-factor solutions for various sample sizes
of unidimensional datasets on three-point scale. It also gives the proportion of
variation (Prop Var) explained by the factor as well as the fitness of the factor
model to the data.

Table 15 shows that there is increased number of indicators that influence
the factors from a highest of 15 (in two-point scale) to 18 (under three-point

scale). Even though there does not appear to be converging number of the influ-

ential indicators, the dominant number is 17. Incidentally, for n = 150, the num-
ber of influential indicators is also 17. The proportion of variation accounted for
by the factors increased from 50.7% (for n = 30) to a high of 59.6% (for n = 200)
then fluctuates afterwards. There is a high level of fit of the model for all sample

sizes. It appears, therefore, that the model is as good for smaller sample size as

for higher samples.
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Table 15: Loadings of One-Factor Solutions for Unidimensional Datasets for

Various Sample Sizes on Three-Point Scale

Item Sample Size

30 100 150 200 500 800 1000
1 0.209 0473 0457 0464 0386 0417 0.409
2 0.753 0564 0.514 0.533 0.510 0.577 0.501
3 0.343 0.569 0.561 0.583 0.565 0.570 0.602
4 0.148 0.559 0453 0454 0477 0450 0.508
5 0.522 0298 0.416 0408 0.359 0.332 0.409
6 0.768 0.869 0.841 0.861 0.863 0.855 0.890
7 0475 0.686 0.803 0.747 0.791 0.803 0.781
8 0.824 0.886 0915 0.879 0.897 0914 0.899
9 0.769 0.747 0.821 0.853 0.824 0.847 0.816
10 0.789 0.802 0.759 0.818 0.813 0.791 0.806
11 0922 0.884 0808 0.884 0.865 0.846 0.865
12 0.962 0911 0.929 0.933 0907 0918 0.931
13 0.858 0.888 0910 0904 0928 0913 0.929
14 0.748 0.868 0.843 0.845 0.861 0.879 0.865
15 0.963 0.855 0931 0913 0922 0.896 00910
16 0.547 0.617 0.753 0.717 0.759 0.765 0.769
17 0.713 0.715 0.810 0.883 0.840 0.844 0.827
18 0.786 0.682 0.694 0.726 0.694 0.682 0.724
19 0.561 0.802 0.713 0.732 0.757 0.707 0.712
20 0.821 0.891 0.883 0.929 0.897 0927 00916
Prop Var  0.507 0.558 0.577 0596 0.588 0.589 0.597
Fit 0900 0953 0962 0968 0968 0969 0.971
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The loadings, proportion of variation explained and fitness of two-factor

model for various sample sizes of unidimensional datasets on three-point scale
are presented in Table 16. There is higher number of indicator variables on the
factors, particularly for the first factor than its counterpart under the two-point
scale. The proportion of variation explained also increases up to n = 150 and
decreases thereafter. There is a general repetition of indicators on factors at all
samples, with exception of n = 150. Unlike all other sample sizes, the results for
n = 150 is more plausible as the first factor accounts for almost all cumulative

variation explained by the solution. The fitness of the model is almost perfect

for all sample sizes.
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Table 16: Two-Factor Solutions for Unidimensional Datasets for Various Sam-

ple Sizes on Three-Point Scale

Item Sample Size 30 Sample Size 100 Sample Size 150  Sample Size 200
PAl PA2 PAl PA2 PAl PA2 PAl PA2

0.000 0.534 0410 0.243 0.463 0.114 0.300 0.359

P

2 0746 0201 0.150 0734 0517  0.000 0338 0419
3 0274 0214 0547 0228 0539 0155 0199  0.651
4 0000 0.186 0291 0535 0413  0.192 0430  0.205
5 0223 0726 0238 0179 0.148 0939 0373  0.198
6 0.806  0.126 0.701 0512 0.783 0.308 0.711 0.501
7 0.719 -0.311 0.530 0433 0.764 0.245 0.629 0.421
8 0.772 0298 0.788 0434 0.841 0.369 0.620 0.623
9 0.508 0.707 0521 0543 0803  0.188 0627 0577
10 0792 0.193 0712 0393 0699 0303 0650  0.501
11 0902 0.269 0.656 0.592 03816 0.113  0.586 0.669
12 0896 0360 0585 0731 0901 0234 0699 0617
13 0763 0387 0767 0462 0857 0303 0642 0637
14 0690 0289 0845 0341 0811 0233 0616 0578
15 0859 0429 0709 0481 0.882 0296 0.706  0.580
16 0316 0588 0318 0.595 0.730 0.191 0.706 0.299
17 0.631 0327 0411 0.636 0.834 0.000 0.542 0.715
18 0670 0409 0725 0193 0658 0218 038  0.652
19 0255 0754 0538 0612 0623 0387 0421  0.625
20 0765 0304 0815 0410 0858 0216 0841 0464
prop Var 0417  0.179 0357 0242 0522 0098 0331  0.287
Cum Var 0.596 0.599 0.620 0.618
Fit 0.937 0.962 0.968 0.971
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Table 16, continued

Item Sample Size 500 Sample Size 800 Sample Size 1000
PA1 PA2 PAl PA2 PAl PA2

0.505 0.000 0.373 0.194 0.367 0.210

.

2 0376  0.345 0442 0374 0.373 0.335
3 0340 0459 0358  0.487 0.582 0.268
4 0.407 0267 0241 0448 0.333 0.387
5 0.000  0.464 0.140  0.385 0.185 0.396
6 0.692 0529 0777 0380 0.704 0.553
7 0449  0.672 0711 0383 0.562 0.543
8 0.682  0.586 0.738  0.540 0.626 0.645
9 0611 0554 0732 0430 0.556 0.598
10 0506  0.644 0.699 0380 0.583 0.557
i1 0618 0605 0751 0401 0.536 0.691
12 0639  0.644 0774 0493 0.658 0.658
13 0642 0669 0740  0.533 0.661 0.652
14 0.630 0588 0.682  0.560 0.653 0.569
15 0668  0.635 0709 0549 0.633 0.653
16 0406  0.672 0.589  0.495 0.572 0.514
17 0.697 0492 0704  0.464 0.700 0.470
18 0457 0525 0669  0.234 0.376 0.656
19 0527 0544 0524 0488 0.547 0.459
20 0670 0597 0.788  0.489 0.610 0.686
prop Var 0304 0301 0404 0.199 0.311 0.295
Cum Var 0.605 0.603 0.606
Fit 0.971 0.972 0.973
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In Table 17, three-factor solutions for unidimensional response datasets
for various sample sizes on three-point scale are displayed.

Table 17 shows that there is increased number of indicators on factors
particularly for the first factor (over that of two-point scale). There is, however,
the incidence of repeating indicators of multiple factors for all sample sizes. The
sample size of n = 150 appears to produce a more reasonable result as the last
factor (Factor 3) accounts for a negligible proportion of the cumulative variation.

The fitness of the three-factor model increases as sample size increase.
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Table 17: Three-Factor Solutions for Unidimensional Datasets for Various

Sample Sizes on Three-Point Scale

Item Sample Size 30 Sample Size 100
PA1 PA2 PA3 PA1 PA2 PA3

0.000  0.000 0.848 0459 0231 0.000

—

2 0699 0.411 0000 0205 0.821  0.000
3 0256 0217 0.102 0565 0.181  0.000
4 0000 0261 0000 0249 0454 0434
5 0.115 0.88 0239 0.109 0.000 0.710
6 0777 0268 0000 0704 0438 0.255
7 0.745 -0264 -0.120 0538 0376 0.194
8 0766 0223 0244 0779 0343  0.290
9 0462 0681 0317 0575 0511  0.000
10 0742 0529 0227 0711 0321 0.225
11 0883 0278 0.153 0674 0504 0.266
12 0875 0336 0223 0625 0652 0232
13 0739 0372 0209 0798 0378 0.180
14 0679 0275 0152 0828 0243 0.293
15 0824 0453  0.195 0770 0443  0.000
16 0296 0425 0415 0318 0513 0.326
17 0675 0000 0491 0421 0552 0.307
18 0652 0343 0268 0710 0.125 0.194
19 0247 0478 0566 0552 0527  0.282
20 0820 0000 0468 0808 0315 0.283
prop Var 0401  0.157 0.111 0369 0.191 0.080
Cum Var 0.669 0.639
Fit 0.956 0.971

149



Table 17, continued

Item Sample Size 150 Sample Size 200
PA1 PA2 PA3 PA1 PA2 PA3

1 0448 0.149 0.124 0244 0323 0.241
2 0255 0605 0.000 0315 0362 0.242
3 0264 0.624 0.131 0217 0.636 0.174
4 0235 0404 0200 0.134 0200 0.508
5 0.176 0.112 0.780 0309 0.145 0.245
6 0690 0375 0306 0.602 0.394 0485
7 0564 0546 0238 0.760 0224 0.262
8 0799 0310 0379 0495 0551 0482
9 0768 0298 0.166 0.671 0438 0.333
10 0.617 0334 0302 0499 0424 0498
11 0681 0448 0.100 0.664 0.535 0.298
12 0809 0415 0214 0646 0494 0457
13 0741 0439 0289 0705 049  0.329
14 0672 0470 0203 0535 0481 0441
15 0.707 0.538 0287 0542 0493 0554
16 0.649 0354 0160 0399 0239 0.647
17 0770 0365 0000 0579 059 0334
18 0.601 0294 0194 0245 0.671 0382
19 0477 0406 0414 0476 0535 0238
20 0.844 0280 0203 0619 0367 0.633
Prop Var  0.388 0.168 0.082 0265 0.206 0.170
Cum Var 0.637 0.641
Fit 0.973 0.975
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Two-dimensional three-point Likert scale

In two-dimensional three-point scale, two person-abilities underlie item
responses. In this system, we expect two repeating factors as the two dimensions
that underlie the generation of the data are just the same. Alternatively, we
could expect a single dominant factor in the first factor with the other influenced

by about one or at most two indicators and explains negligible amount of the

cumulative variation. Table 18 shows the p-values of fitness of items for two-

dimensional GPC model on three-point scale data for various sample sizes.
From Table 18, it can be observed that, generally, items significantly fit

the two-dimensional GPC model on three-point scale. However, on the same

three-point scale, the magnitude of p-values differ from unidimensional to two-

dimensional case. There appears to be two groups of items: (1) items whose

p-value decreases with an additional ability dimension, and (2) items whose

p-value increases with additional ability dimension. Specifically, for n = 150,

the first group contains the set of Items 2, 6, 7, 8, 9, 10, 11, 13, 14, 19 and

20, while the rest of the items constitute the second group. Items of the first

group will require just one person-ability to get a response in higher categories,

whereas those of the second group need multiple person-abilities to get a similar

odel to the two-dimensional three-point

response. The overall fitness of the m

response data is significant at all sample sizes, except for n = 30.
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Table 18: P-values for Item Fitness for Two-Dimensional GPC Model for

Various Sample Sizes on Three-Point Scale

Item Sample Size

30 100 150 200 500 800 1000
| 0405 0.049 0493 0.737 0.777 0.462 0.142
2 0.142 0472 0.102 0.102 0.592 0472 0.081
3 NaN 0337 0968 0439 0.104 0436 0.889
4 0.023 0438 0243 0.630 0.512 0.154 0.155
5 0260 0304 0892 0304 0985 0.163 0.682
6 NaN 0239 0.704 0.201 0.618 0.065 0.709
7 NaN 0.286 0.171 0.092 0.006 0.202 0.810
8 NaN 0.112 0737 0.848 0.408 0.504 0.645
9 NaN 0.001 0.133 0.798 0.523 0.606 0.477
10 NaN 0412 0.101 0.641 0.867 0.204 0.712
11 0206 0356 0493 0.404 0.830 0.187 0.955
12 NaN 0.243 0.228 0.054 0.159 0.328 0.496
13 NaN 0.193 0.010 0.184 0.028 0.108 0.179
14 NaN 0460 0.267 0.034 0908 0.212 0.191
15 NaN 0343 0.878 0.017 0.716 0.621 0.122
16 0.180 0.169 0437 0363 0967 0.067 0431
17 0.051 0.145 0782 0.615 0.100 0469 0.122
18 0.005 0.038 0.294 0262 0.146 0.389 0.545
19 NaN 0.192 0.158 0590 0.685 0.191 0.520
20 NaN 0.782 0.774 0985 0.807 0.167 0.003
Model Fit 0.006 0.469 0969 0482 0872 0924 0.779

The loadings of two-factor solutions for two-dimensional item response
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dataset for various sample sizes on three-point scale are illustrated in Table 19.

Table 19: Two-Factor Solutions for Two-Dimensional Datasets for Various

Sample Sizes on Three-Point Scale

Item Sample Size 30 Sample Size 100 Sample Size 150 Sample Size 200
PAl PA2 PAl PA2 PAl PA2 PAl PA2

0.237 0318 0.673 0.196 0.444 0.199 0.140 0.749

o

2 0238 0613 0510 0578 0322 0692 0591 0213
3 0.588 0.660 0.593 0277 0495 0553 0.659  0.231
4 0658 0.46 0533 0429 0258 0613 0712  0.163
5 .0.140 0000 0000 0632 0491 0430 0469  0.000
6 0623 0658 0874 0346 0741 0578 0.809 0428
7 0.809 0442 0837 0295 0640 0610 0855  0.249
g 0540 0684 0900 0344 0738 0560 0.860  0.407
9 0899 0334 0860 0381 0791 0482 0803  0.409
10 0780 0.522 0682 0527 0671 0588 0801 0429
11 0.638 0558 0888 0272 0728 0525 0795 0418
12 0623 0703 0925 0308 0736 0617 0833  0.505
13 0.828 0523 0908 0295 0773 0593 0907 0356
14 0722 0508 0817 0358 0748 0614 088 0332
15 0781 0466 0828 0480 0691 0635 0866 0445
16 0412 0829 0819 0409 0682 0482 0722 0467
17 0522 0659 0900 0281 0684 0661 0748 0494
18 0.857 0000 0870 0205 0824 0335 0772 0297
19 0504 0784 0814 0301 0776 0367 0810  0.342
20 0.646 0674 0863 0429 0741 0632 0.829 0475
propVar 0406 0308 0615 0148 0445 0304 0582  0.160
Cum Var 0.714 0.763 0.749 0.742

0.974 0.990 0.989 0.989

Fit
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Table 19, continued

Item Sample Size 500 Sample Size 800 Sample Size 1000
PAl PA2 PAl PA2 PAl PA2

0.301 0.446 0.425 0.276 0.570 0.000

Pk

2 0.554 0.377 0.642 0.250 0.630 0.288
3 0.487 0.577 0.660 0.323 0.652 0.327
4 0.392 0.466 0.372 0.452 0.578 0.202
5 0.235 0.471 0.165 0.462 0.230 0.739
6 0.752 0.541 0.701 0.603 0.858 0.382
7 0.669 0.567 0.638 0.607 0.837 0.267
8 0.647 0.700 0.648 0.671 0.879 0.391
9 0.664 0.609 0.636 0.582 0.831 0.395
10 0.669 0.603 0.661 0.570 0.852 0.326
11 0.696 0.579 0.639 0.650 0.870 0.310
12 0.657 0.693 0.744 0.609 0.877 0.379
13 0.773 0.579 0.708 0.651 0.897 0.373
14 0.614 0.693 0.721 0.581 0.856 0.378
15 0.696 0.644 0.728 0.620 0.861 0.417
16 0.644 0.565 0.556 0.600 0.815 0.302
17 0.723 0.571 0.733 0.535 0.802 0.448
18 0.740 0.356 0.599 0.539 0.727 0.335
19 0.641 0.579 0.647 0.479 0.792 0.292
20 0.785 0.551 0.711 0.637 0.884 0.354
Prop Var 0.403 0.320 0.400 0.301 0.611 0.136
Cum Var 0.723 0.700 0.747
Fit 0.988 0.986 0.991
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In the table, we observe that there is increased number of indicators on

factors, particularly for Factor | over that of two-point scale. The amounts of
variation explained are almost the same for the two factors for sample sizes
30, 150, 500, and 800. The amount of cumulative variation explained by the
two-factor model generally fluctuates with increasing sample size, but highest at

n = 100. At this point, the fitness of the model is also highest.

Three-dimensional three-point Likert scale

Table 20 shows the p-values of fitness of items for three-dimensional GPC
model on three-point scale for various sample sizes. On the three-dimensional
response datasets, most items fit the model, particularly for larger sample sizes
(n > 150). For smaller sample sizes (n < 100), the p-values of items worsened on
high dimensions, especially for items that may require only one person-ability to
get a response in higher categories. Table 20 indicates that items whose fitness
is quite high or almost perfect may require up to three person-abilities to get a
response in higher categories. At n = 30, even though items misfit the model, the
overall fitness of the model is significant. The plausibility is that the IRT model

yields better results on high response scales with large number of dimensions.
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Table 20: P-values for Item Fitness for Three-Dimensional GPC Model for

Various Sample Sizes on Three-Point Scale

Item Sample Size

30 100 150 200 500 800 1000
1 NaN 0.238 0.527 0.893 0.022 0.507 0.257
2 NaN 0.275 0.084 0.065 0.890 0.223 0.228
3 0.063 0.012 0.565 0.153 0.310 0285 0.078
4 0.007 0.046 0.095 0468 0910 0.671 0.111
5 0.041 0.048 0.194 0.866 0.033 0.531 0.049
6 NaN NaN 0214 0.570 0.510 0.128 0.718
7 NaN 0292 0.902 0.796 0.741 0.107 0.076
8 NaN 0.065 0.054 0.18¢ 0921 0.011 0.126
9 NaN 0.167 0351 0.843 0315 0.138 0.722
10 NaN 0.067 0.043 0.068 0.123 0.631 0.733
11 NA 0327 0384 0345 0440 0.663 0.144
12 NaN 0.177 0.012 0.077 0524 0.579 0.878
13 NaN 0293 0.031 0.292 0.143 0.046 0.754
14 NaN 0.102 0.191 0.164 0.552 0.739 0.180
15 NA 0013 0.024 0347 0526 0.325 0.180
16 NaN 0.101 0.060 0.062 0.039 0.174 0.660
17 NaN 0.085 0.041 0210 0.387 0379 0.909
18 NaN 0359 0.182 0.769 0.678 0.490 0.642
19 NaN 0409 0.097 0556 0.210 0.675 0.304
20 NaN 0.019 0.101 0576 0.011 0.146 0.013
Model Fit  0.830  0.623 0.717 1.000 0.948 0.998 0.766
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The loadings of corresponding three-factor solutions for three dimensional
three-point scale dataset for various sample sizes are shown in Table 21.

Table 21 demonstrates that there is increased number of indicators that
influence the formation of factors, Factor 1 in particular, over that of two-point
scale. In a like manner, the amount of cumulative variation is quite high in
favour of three-point scale. There is a higher number of indicator variables on
the factors, the first factor in particular. The solution for n = 150 is consistent
with our expectation as the first is dominant with 18 influential indicators and
the others are influenced by a single indicator each. The amount of cumulative

variation largely oscillates with increasing sample size, but peaks at n = 150

with highest model fitness.
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Table 21: Three-Factor Solutions for Three-Dimensional Datasets for Various

Sample Sizes on Three-Point Scale

Item Sample Size 30 Sample Size 100
PA1 PA2 PA3 PA1 PA2 PA3

0779 0403 -0.147 0205 0.258 0.820

—

2 0.835 0000 0109 0613 0400 0.6l
3 0.102 0000 1034 0805 0268 0.000
4 0231 029 0536 0678 0383  0.229
5 0.198 0945 0000 0189 0558 0.167
6 0.924 0245 0238 0727 0548 0.366
7 0.844 0392 0172 0592 0694 0.290
8 0575 0513 0526 0735 0579 0228
9 0.708 0493 0369  0.645 0597 0.387
10 0.735 0610 0223 0611 0634 0.353
11 0.745 0530 0343 0766 0487 0284
12 0762 0489 0346 0593 0706 0.253
13 0.664 0581 0422 0674 0599  0.336
14 0.804 0446 0344 0663 0.619 0.303
15 0721 0592 0323 0747 0553 0304
16 0570 0655 0366 0568 0.666 0.269
17 0802 0365 0383 0523 0744 0297
18 0756 0217 0321 0686 494 0252
19 0752 0302 0301 0759 0361 0281
20 0.865 0396 0222 0660 0735 0.156
propVar 0497 0225 055 0412 0316 0107
Cum Var 0.878 0.835
- 0.995 0.995

158



Table 21, continued

Item Sample Size 150 Sample Size 200
PA1 PA2 PA3 PA1 PA2 PA3

1 0327 0.163 0877 0556 0232 0.189
2 0.655 0260 0318 0553 0522 0.191
3 0757 0282 0.153 0.692 0.359 0.000
4 0.615 0232 0432 0288 0.361 0.562
5 0323 0921 0.18¢ 0200 0.760 0.239
6 0.871 0236 0289 0.767 0300 0.468
7 0.853 0254 0274 0830 0280 0.278
8 0.889 0.208 0.341 0.804 0334 0423
9 0.869 0261 0247 0734 0375 0.367
10 0.853 0261 029 0784 0.271 0.363
11 0.894 0219 0287 0779 0309 0.440
12 0.886 0.274 0337 0751 0372 0.469
13 0.888 0208 0321 0760 0.380  0.467
14 0.845 0.195 0354 0741 0400 0.407
15 0881 0255 0363 0730 0364 0.503
16 0.832 0239 0318 0705 0220 0.536
17 0.869 0276 0228 0.767 0366 0370
18 0.820 0215 0265 0787 0205 0279
19 0.806 0.330 0298 0785 0.193  0.388
20 0.881 0264 0341 03821 0291 0318
Prop Var 0.638 0.126 0100 0506 0.152  0.134
Cum Var 0.864 0.792
Fit 0.997 0.994
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Examining Five-Point Likert Scale

In this section, we present and discuss the results from five-point Likert
scale datasets. On this scale, 16 datasets have been generated under different
conditions such as number of dimensions and sample size. For these datasets, we
assess the performance of GPC item response model and that of factor analysis.

We begin with five-point response scale with underlying unidimensional person-

ability.
Unidimensional five-point Likert scale

Table 22 illustrates the p-values of item fitness for the unidimensional gen-

eralised partial credit (GPC) item response model at various sample sizes. The

Table also contains the p-values of the fitness of the overall GPC model to the

five-point response data at various sample sizes.

We note from Table 22 that overwhelming majority of items significantly
fit the unidimensional GPC model at all sample sizes, except n = 30 where the

p-values of some items could not be determined. Not unexpectedly, the overall

GPC model significantly fits the five-point response dataset, with the exception

of n = 30. As sample size increase from 100 up to 1000, the fitness of the item

response model fluctuates, but highest at n = 1000.
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Table 22: P-values for Item Fitness for Unidimensional GPC Model for Various

Sample Sizes on Five-Point Scale

Item Sample Size

30 100 150 200 500 800 1000
0.097 0.146 0519 0.007 0.747 0.247 0.808

p—

2 0234 0063 0481 0348 0.583 0.143 0.838
3 0.003 0773 0932 0425 0.199 0.537 0.982
4 0384 0581 0.135 0.158 0293 0.268 0.979
5 0.183 0.189 0090 0499 0.734 0227 0.600
6 NaN 0526 0746 0328 0705 0.540 0918
7 0013 0753 0378 0.132 0.858 0.036 0.380
8 NaN 0330 0201 0452 0590 0480 0.306
9 NaN 0047 0914 0813 0709 0.693 0.006
10 NaN 0097 0.185 0045 0421 0768 0.434
11 NaN 0096 0277 0221 0329 0494 0.265
12 NaN 0918 0.122 0598 0945 0.111 0.117
13 NaN 0070 0.174 0.154 0.193 0233 0.59%
14 0025 0.125 0.128 0296 0232 0429 0.641
15 NaN 0029 0013 0247 0907 0833 0311
16 0381 0038 0060 0154 0925 0454 0.463
17 0220 0.190 0.178 0035 0592 0700 0.964
18 0001 0125 0007 0459 0232 0899 0.601
19 0031 0304 0053 0876 0.172 0821 0486
20 NaN 0223 018 0037 0.660 0067 0.635

Model Fit 0.007 0253 0.368 0.809 0435 0.150 0.990
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The loadings of corresponding one-factor model at various sample sizes
are represented in Table 23. In Table 23, there is increased number of indicators
that influence the factor from a highest of 18 (on three-point scale) to 20 (under
five-point scale). Even though there does not appear to be converging number
of influential indicators, the dominant number is 20. Incidentally, the dominant
number of influential indicators starts with n = 150. The proportion of variation
accounted increases from 58% (for n = 30) to highest of 72.9% (for n = 1000).
It is relevant to note that proportion of variation explained is almost the same
for n = 200 as for n = 1000. There is a high level of fitness of the model for all
sample sizes. The model is as good for smaller samples as for larger ones. There

is also improved fitness for n = 30 over smaller scales.
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The loadings of corresponding one-factor model at various sample sizes
are represented in Table 23. In Table 23, there is increased number of indicators
that influence the factor from a highest of 18 (on three-point scale) to 20 (under
five-point scale). Even though there does not appear to be converging number
of influential indicators, the dominant number is 20. Incidentally, the dominant
number of influential indicators starts with n = 150. The proportion of variation
accounted increases from 58% (for n = 30) to highest of 72.9% (for n = 1000).
It is relevant to note that proportion of variation explained is almost the same
for n = 200 as for n = 1000. There is a high level of fitness of the model for all

sample sizes. The model is as good for smaller samples as for larger ones. There

is also improved fitness for n = 30 over smaller scales.
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Table 23: Loadings of One-Factor Solutions for Unidimensional Datasets for

Various Sample Sizes on Five-Point Scale

Item Sample Size

30 100 150 200 500 800 1000

0399 0.600 0591 0613 0560 0.588 0.573

[

2 0.664 0661 0699 0615 0.678 0706 0.667
3 0409 0726 0643 0704 0723 0719 0.738
4 0295 0710 0582 059 0637 0617 0.656
5 0628 0393 0512 0542 0488 0476 0.557
6 0865 0014 0907 0922 0927 0914 0940
7 0559 0775 0875 0861 0872 0875 0.881
8 0901 0934 0942 0938 0944 0952 0.946
9 0.847 0844 0898 0908 0910 0917 0.895
10 0827 0863 0860 0885 0878 0.880 0.890
11 0027 0920 0887 0935 0920 0915 0924
12 0042 0950 0945 0967 0951 0957 0.962
13 0875 0935 0951 0941 0958 0956 0.963
14 0780 006 0908 0915 0927 0931 0923
15 0048 0922 0958 0962 0962 0.948 0.955
16 0688 0803 0871 0845 0868 0884 0866
17 0768 0827 0885 0929 0915 0918 0.908
18 0816 0764 0798 0832 0805 0816 0845
19 0690 0856 0833 0816 0842 0829 0839
20 0926 0935 0933 0953 0947 0955 0955
prop Var 0.580 0678 0697 0714 0717 0720 0729
Fit 0010 0982 0985 0987 0988 0988 09%
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Table 24 shows the loadings of two-factor solutions for unidimensional
five-point response data at various sample sizes. The Table also shows the pro-
portion and cumulative variation explained as well as fitness of the two-factor

model.

There is a higher number of indicator variables on the two factors for the
five-point scale than those of the three-point scale. The cumulative variations ac-
counted for by the two-factor model are consistently higher for a five-point scale
than its three-point scale counterpart. Thus, for unidimensional datasets, a five-
point scale gives optimum results over three-point scale. Generally, cumulative
variation explained increases remarkably from 64.5% (for n = 30) up to 73.2%
r n = 150), slight increment to 73.9% (for n = 200 and 500), then fluctuates

(fo

thereafter. The indicator variables greatly influence Factor 1 than Factor 2 for
n = 150, 500, and 1000 which is in line with the underlying dimension of the

scale. The two-factor model nearly perfectly fits the five-point scale dataset for

all sample sizes.
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Table 24: Two-Factor Solutions for Unidimensional Datasets for Various

Sample Sizes on Five-Point Scale

Item Sample Size 30 Sample Size 100 Sample Size 150 Sample Size 200
PAI PA2 PAl PA2 PAI PA2 PAl PA2

0.126  0.519 0.462 0.382 0.544 0.248 0.508 0.354

P—

2 0.573 0339 0.222 0.766 0.529 0.468 0.323 0.559
3 0.157 0490 0.575 0.444 0.620 0.230 0.290 0.733
4 0.228 0.187 0419 0.603 0.218 0.747 0.397 0.448
5 0228 0.787 0.288 0.268 0.419 0.295 0.552 0.202
6 0.766  0.413 0.687 0.602 0.731 0.539 0.710 0.589
7 0.886 -0.242 0.520 0.583 0.685 0.551 0.720 0.419
8 0.813 0411 0774 0.533 0.832 0.449 0.683 0.642
9 0571 0.662 0.591 0.607 0.764 0471 0.652 0.632
10 0.723 0409 0.758 0.445 0.701 0.499 0.743 0.501
11 0.798 0474 0.678 0.620 0.740 0.487 0.685 0.636
12 0.866 0410 0.622 0.734 0.763 0.559 0.703 0.663
13 0.709 0510 0.778 0.531 0.819 0.485 0.672 0.659
14 0.597 0.504 0.844 0415 0.821 0.405 0.670 0.623
15 0.805 0.500 0.726 0.569 0.829 0.483 0.766 0.588
16 0.481 0510 0.554 0.587 0.755 0.436 0.678 0.511
17 0.671 0.381 0.567 0.609 0.722 0.511 0.633 0.684
18 0.708 0.412 0.793 0.261 0.803 0.238 0.486 0.702
19 0370 0.682 0.586 0.631 0.615 0.582 0.559 0.597
20 0.778 0.500 0.750 0.562 0.797 0.458 0.811 0.528
Prop Var 0.409 0.237 0.398 0.306 0.493 0.225 0.395 0.337
Cum Var 0.645 0.704 0.732 0.739
Fit 0.966 0.985 0.987 0.989
"
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Table 24, continued

Item Sample Size 500 Sample Size 800 Sample Size 1000
PA1 PA2 PAl PA2 PAl PA2

0.554 0.124 0.511 0.298 0.293 0.652

[u—

2 0.625 0.262 0.546 0.448 0.552 0.377
3 0.687 0.231 0.509 0.522 0.623 0.397
4 0.586 0.249 0.346 0.574 0.599 0.276
5 0.236 0.757 0.242 0.477 0.519 0.214
6 0.880 0.296 0.794 0.465 0.802 0.491
7 0.795 0.360 0.735 0.477 0.804 0.370
8 0.902 0.286 0.744 0.595 0.834 0.448
9 0.858 0.307 0.781 0.486 0.789 0.423
10 0.804 0.351 0.730 0.492 0.802 0.392
11 0.878 0.281 0.772 0.495 0.818 0.431
12 0.856 0421 0.783 0.550 0.843 0.465
13 0.893 0.346 0.749 0.593 0.835 0.478
14 0.882 0.291 0.740 0.565 0.812 0.441
15 0.900 0.340 0.747 0.584 0.836 0.461
16 0.792 0.358 0.735 0.493 0.741 0.449
17 0.859 0.315 0.749 0.530 0.771 0.482
18 0.751 0.290 0.761 0.345 0.760 0.374
19 0.801 0.265 0.605 0.577 0.723 0.425
20 0.891 0.322 0.781 0.549 0.811 0.505
Prop Var 0.621 0.118 0.470 0.262 0.550 0.190
Cum Var 0.739 0.731 0.740
Fit 0.990 0.990 0.991
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Table 25 indicates the loadings of three-factor solutions for unidimensional
five-point response data at various sample sizes. The Table also presents the
proportion and cumulative variation explained as well as fitness of the three-
factor model.

There is increased number of influential indicator variables, especially on
Factor 1, over that of three-point scale. Also, cumulative variation explained by
the three-factor model are higher for five-point than a three-point scale. Table
25 shows that there is the incidence of several repeating indicators on multiple
factors for all sample sizes, except for n = 150 which has few. This is a clear
violation of the factor principle. The sample size of 150 seems to produce most
realistic result as it contains highest number of influential indicators on Factor
1, which accounts for largest (46.2%) proportion of variation. In addition, the
remaining two factors are influenced by just one or two indicators. The three-

factor model largely fits the unidimensional five-point scale datasets.
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Table 25: Three-Factor Solutions for Unidimensional Datasets for Various Sam-

ple Sizes on Five-Point Scale

Item Sample Size 30 Sample Size 100
PAl PA2 PA3 PA1 PA2 PA3

0.135 0532 0.000 0492 0366 0.000

[S—

2 0582 0350 0000 0260 0758 0.115
3 0.164 0501 0000 059 0399 0.155
4 0.131 0000 0892 0367 0524 0.446
5 0220 0772 0160 0.156 0.125 0711
6 0785 0432 0000 0692 0531 0271
7 0.889 -0245 0000 0520 0518 0270
8 0789 0371 0299 0763 0451 0312
9 0556 0638 0221 0624 0568 0.142
10 0704 0380 0236 0767 0387 0.192
1 0797 0470 0.106 0681 0552 0274
12 0858 0400 0.142 0639 0664 0273
13 0705 0503 0122 0789 0470 0216
14 0.578 0477 0233 0843 0347 0232
15 0800 0491 0.38 0753 0517 0172
16 0492 0527 0000 0546 0509 0312
17 0652 0352 0228 0576 0542 0253
13 0679 0364 0335 0766 0.156 0333
19 0344 0648 0286 059 0570 0246
20 0785 0508 0000 0761 0495 0234
prop Var 0399 0225 0069 0403 0244  0.086
Cum Var 0.694 0.732
Fit 0.975 0.989
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Table 25, continued

Item Sample Size 150 Sample Size 200
PAl PA2 PA3 PA1 PA2 PA3

1 0.513 0201 0233 0283 0279 0.59%
2 0539 0431 0.166 0338 0.518 0.184
3 0.588 0.171 0254 0.218 0.739 0.289
4 0234 0682 0217 039 039 0.212
5 0236 0227 0.647 0484 0.146 0.295
6 0.665 0468 0424 0.711 0501 0.330
7 0671 0491 0283 0.672 0413 0372
8 0777 0384 0378 0.675 0557 0.346
9 0.764 0426 0222 0724 0554 0.214
10 0.670 0450 0.298 0.638 0418 0471
11 0759 0444 0.178 0.673 0555 0.345
12 0.767 0512 0232 0.626 0582 0451
13 0.804 0429 0277 0.652 0583 0.353
14 0.786 0333 0331 0573 0547 0.463
15 0.811 0420 0296 0.637 049 0.541
16 0734 0375 0282 0574 0440 0.448
17 0.740 0456 0.199 0595 0.606 0.383
18 0.736 0.130 0428 0459 0.630 0.341
19 0.580 0.533 0319 0543 0525 0314
20 0.800 0439 0223 0.698 0444  0.500
Prop Var 0462 0.177 0.098 0333 0262 0.150
Cum Var 0.737 0.745
Fit 0.989 0.990
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Two-dimensional five-point Likert scale

In this structure, we expect a good two-factor solution to possess either two
repeating factors or a single dominant first factor since the same information is
contained on both dimensions that underlie item responses. Table 26 shows the
p-values of item fitness to the two-dimensional generalised partial credit (GPC)
item response model at various sample sizes. The Table also contains the p-
values of the fitness of the overall GPC model to the five-point response data at
various sample sizes.

Table 26 indicates that most items significantly fit the two-dimensional
GPC model at sample size of 100 and beyond. The fitnesses of almost all items
could not be evaluated at n = 30 due to low degrees of .freedom. Surprisingly,
the IRT model significantly fits the data at n = 30. The overall fitness of the IRT
model generally fluctuates with increasing sample size. Although the fitnesses
o the IRT model are significant, the amount of significance on the two-

of items t
dimensional five-point scale has deteriorated as compared to that of the three-

point scale.
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Table 26: P-values for Item Fitness for Two-Dimensional GPC Model for

Various Sample Sizes on Five-Point Scale

Item Sample Size

30 100 150 200 500 800 1000

0.070 0229 0449 0.239 0427 0.3% 0.046

P

2 0011 0085 0.107 0.141 0034 0581 03823
3 NaN 0148 0.192 0256 0.195 0375 0416
4 0064 0323 0424 0215 0467 0621 0236
5 0.139 0372 0230 0476 0.884 0267 0.532
6 NaN 0.51 0218 0371 0.091 0246 0213
7 NaN 0107 0.143 0843 0202 0492 0.080
8 NaN 0017 0022 0.68 0083 0883 0082
9 NaN  0.146 0240 0009 0300 0361 0.172
10 NaN 0276 0538 038 0226 0.112 0618
11 NaN 0001 0243 0490 0426 0268 0.569
12 NaN 0192 0018 0033 0297 0367 0475
13 NaN 0130 0313 0831 0.118 0309 0.068
14 NaN 0078 0209 0072 0448 0.797 0.142
5 NaN 0079 0625 0.118 0454 0899 0.836
16 NaN 0.136 0067 0430 0473 0068 0815
17 NaN 0335 0425 0045 0776 0009 0.795
18 NaN 0007 0.187 0422 0324 0060 0330
19 NaN 0440 0514 0337 0.145 0355 0641
20 NaN  0.129 0052 0346 0841 0045 0.0

Model Fit 0.550 0.896 0.956 0579 0326 0.969 0.864

Table 27 shows the corresponding two-factor solutions for the two dimen-
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sional five-point response data at various sample sizes.

Table 27: Two-Factor Solutions for Two-Dimensional Datasets for Various

Sample Sizes on Five-Point Scale

Item Sample Size 30 Sample Size 100 Sample Size 150 Sample Size 200
PA1 PA2 PAl PA2 PAl PA2 PAl PA2

0.556 0.000 0.731 0.280 0.253 0.634 0.249 0.711

P

0.540 0.000 0.742 0.384 0.727 0375 0.625 0.488

2

3 0931 -0.148 0753 0205 0580 058 0635 0543
4 0724 0000 0696 0313 0726 0309 0683 0386
5 0000 0967 0282 0978 0600 0454 0597 0205
6 0915 0111 0930 0244 0680  0.690 0699  0.654
7 0952 0000 0886 0261 0693 0633 0799 0491
8 0924 0000 0931 0299 0659 0692 0781 0590
9 0905 0000 0922 0273 0644 0711 0733  0.602
10 0923 0251 0837 0402 0736 0587 0708 0632
11 0880 0.124 0913 0284 0673 0681 0732  0.606
12 0932 0.82 0946 0263 0715 0672 0703 0684
13 0976 0000 0929 0310 0712 0680 0805 0578
14 0908 0.149 0901 0281 0.698 0684 0785 0571
15 0007 0198 0924 0322 0777 0592 0699  0.695
16 0871 002 0887 0353 0588 0697 0645  0.667
17 0883 0000 0930 0273 0738 0636 0660  0.673
18 0780 0.134 0868 0294 0501 0805 0766 0486
19 0903 0113 0870 0284 0612 0678 0723  0.595
20 0953 0187 0901 0379 0763 0.626 0740 0.636
prop Var 0719 0062 0726 0136 0440 0399 0488 0344
Cum Var 0.781 0.862 0.839 0.832
Fit 0.990 0.997 0.996 0.996
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Table 27, continued

Item Sample Size 500 Sample Size 800 Sample Size 1000
PAI PA2 PAl PA2 PAl PA2

0.591 0.382 0.540 0.398 0.667 0.266

J—t

0.691 0.380 0.691 0.413 0.705 0.420

2

3 0.633 0.550 0.699 0.444 0.720 0.424
4 0.613 0.453 0.520 0.512 0.645 0.363
5 0.329 0.606 0.305 0.548 0.342 0.715
6 0.799 0.529 0.746 0.606 0.835 0.488
7 0.695 0.615 0.726 0.595 0.840 0.412
8 0.710 0.675 0.708 0.661 0.834 0.514
9 0.756 0.571 0.728 0.572 0.831 0.483
10 0.776 0.535 0.701 0.611 0.838 0.452
11 0.704 0.644 0.709 0.644 0.855 0.438
12 0.755 0.619 0.750 0.633 0.843 0.496
13 0.808 0.565 0.734 0.653 0.864 0.474
14 0.761 0.589 0.769 0.580 0.826 0.504
15 0.768 0.594 0.736 0.645 0.839 0.509
16 0.681 0.610 0.664 0.610 0.811 0.454
17 0.787 0.540 0.809 0.517 0.794 0.525
18 0.713 0.521 0.672 0.585 0.787 0.433
19 0.739 0.556 0.700 0.535 0.820 0.420
20 0.750 0.621 0.750 0.629 0.849 0.482

prop Var 0505 0317 0478 0330 0618 0222
0.822 0.808 0.840

0.996 0.995 0.997

Cum Var

Fit
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There is increased number of influential indicators on factors, notably Fac

, -
tor 1, over that of a three-point scale. In addition, cumulative variations ex
plained are higher for a five-point scale than a three-point scale. Thus, for two

dimensional datasets, five-point scale yields more enhanced results than lower

scales. Table 27 shows that the two factors are substantially influenced by com-

parable sets of indicator variables for n = 150, 200, and 800. This occurrence

is consistent with number of ability dimensions underlying the scale. For these

samples, n = 150 has highest 83.9% of cumulative variation, and as such gives

most plausible result.

Three-dimensional five-point Likert scale

In this system, W€ expect that a plausible three-factor solution to possess

either three repeating factors or a single dominant first factor since the same in-

formation is contained on three dimensions that underlie item responses. The

p-values of item fitness for three-dimensional GPC item response model for var-

jous sample sizes are illustrated in Table 28.
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Table 28: P-values for Item Fitness for Three-Dimensional GPC Model for Var-

jous Sample Sizes on Five-Point Scale

Item Sample Size

30 100 150 200 500 800 1000

1 NaN 0210 0448 0240 0376 0.181 0.000
2 NaN 0265 0.143 0330 0330 0391 0.000
3 NaN 0447 0847 0326 0.095 0.046 0.000
4 NaN 0025 0943 0013 0884 0638 0.000
5 NaN  0.146 0466 0480 0.008 0825 0.000
6 NaN NaN 00290 0736 0215 0406 0.000
7 NaN 0138 0355 0115 0332 0248 0.000
8 NaN 0011 0141 0119 0004 0350 0.000
9 NaN 0025 0.123 0147 0090 0.194 0.000
10 NaN 0064 0064 0004 0633 0668 0.000
1 NaN 0058 0303 0213 0224 0136 0.000
12 NaN 0053 0006 0080 0297 0356 0000
13 NaN 0043 0244 0007 0501 0448 0.001
14 NaN | 0120 0070 0300 0482 0065 0.000
s NA  NaN 0009 0509 0393 0002 0001
16 NaN | 020 0.182 0062 0186 0000 0.000
7 NaN 0041 0602 0299 0214 0037 0000
18 \aN 0012 0086 0398 061 0745 0000
9 \GN 0321 0264 0487 0023 0424 0.000
20 \aN 0007 0002 0011 0017 0002 0016

0977 0997 1000 0887 0997 1.000

Model Fit 0.728
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Table 28 shows that the fitness of items cannot be determined for all item
at n = 30 due to sparseness in the data. Generally, the p-values of item fitnes s
to the model are much reduced for all sample sizes in this scenario. Particul S1es
for n = 1000, all items do not fit the data. This is an indication that rnaj::it};

of the items do not fit the higher dimensional IRT model on higher re
sponse

scales. Surprisingly, the three-dimensional GPC model almost perfectly fits th
s the

five-point response data at all sample sizes. We observe that the item
response

model yields better results on high response scales. Generally, the overall fit
’ ness

of the IRT model fAuctuates with increasing sample size

Table 29 presents the loadings of three-factor solutions for three dim
en-

sional item response datasets for various sample sizes on five-point scale. Th
e. There

is comparable number of indicator variables that influence formation of fact
actors
on both three and five-point scales for all sample sizes. However, there is d
A a mod-

vement in the amount
indicator variables greatly influence the formation of two

erate impro of variation explained over a three-point scal
e.

It is worthy of note that

ower sample sizes.
e scale. On the contrary,

This incidence is not appealing in terms of ex-

factors for 1
for n = 150 and 200, only Factor

pected dimension of th

dominates the other two. The result for n = 150 is most desirabl
€

1 considerably
0% cumulative variation. The fitness of the three-factor

0SSesses highest 9

ee—dimensional five

asitp
model on the thr -point scale is almost perfect for all sample

sizes, and peaks at n = 150-
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Table 29: Three-Factor Solutions for Three-Dimensional Datasets for Various

Sample Sizes on Five-Point Scale

Item Sample Size 30 Sample Size 100
PAl PA2 PA3 PA1 PA2 PA3

0.784 0.000 0.627 0.608 0.262 0.329

5%

0.851 0.413 0.000 0.661 0.404 0.396

2
3 0215 0841 0000 0382 0801 0292
4 0285 0564 0319 0747 0402 028l
5 0260 0460 0676 0286 0240 0716
6 0778 0469 0319 0773 0496 0396
7 0719 0464 0398 0674 0477 0494
8 0574 0680 0311 0592 0617 0495
9 0503 0637 0374 0717 0448 0488
10 0683 0569 0378 0675 0452 0535
11 0651 0628 0361 0661 0547 0451
12 0612 0593 0444 0648 0468 0544
13 0615 0.644 0383 0689 0523 0462
14 0606 0583 0380 0693 0497 0478
5 0610 0658 0425 0704 0545 0433
16 0576 0651 0393 062 0442 0571
17 0674 0551 0390 0647 0453 0563
18 0666 0462 0372 0562 0589 0441
074 0513 0318 0625 0573 0336
;9) 0743 0467 0424 0651 0508 0552
0404 0320 0156 0410 0251 0.226
Z):; :Z 0.880 0.887
Fit 0.998 0.998
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Table 29, continued

Item Sample Size 150 Sample Size 200
PA1 PA2 PA3 PA1 PA2 PA3

1 0.382 0.748 0.242 0.690 0262  0.266
2 0.673 0.387 0.369 0.703 0.257 0.422
3 0.769 0.291 0.342 0.725 0.217 0.372
4 0.615 0.512 0.339 0.403 0.799 0.313
5 0.388 0.261 0.757 0.337 0.271 0.802
6 0.822 0.392 0.348 0.839 0.371 0.300
7 0.801 0.362 0.395 0.836 0.315 0.324
8 0.828 0.431 0.327 0.856 0.362 0.332
9 0.809 0.370 0.368 0.806 0.329 0.370
10 0.796 0424 0337 0.810 0.365 0.298
11 0.814 0.422 0.344 0.825 0.390 0.322
12 0.806 0.458 0.356 0.824 0.391 0.341
13 0.786 0421 0.409 0.817 0.407 0.371
14 0.778 0.467 0.334 0.779 0413 0.384
15 0.800 0.439 0.382 0.799 0.432 0.362
16 0.757 0.459 0.378 0.780 0.453 0.272
17 0.814 0.371 0.372 0.851 0.341 0.302
18 0.766 0.420 0.356 0.841 0.234 0.298
19 0.755 0.402 0.402 0.833 0332  0.261
20 0.797 0.432 0.401 0.856 0.360 0.297
Prop Var 0.561 0.188 0.152 0.597 0.147 0.135
Cum Var 0.900 0.880
Fit 0.999 0.998
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Assessment of Seven-Point Likert Scale

In this segment, we present and discuss the results from seven-point Likert
scale datasets. On this scale too, 16 datasets have been generated under dif-
ferent conditions such as number of ability dimensions and sample size. For
these datasets, we assess the performance of GPC item response model and that

of factor analysis. We begin with seven-point response scale with underlying

unidimensional person-ability.
Unidimensional seven-point Likert scale

Table 30 shows the p-values of fitness of items for unidimensional seven-
point scale dataset based on generalised partial credit (GPC) model.

We note from Table 30 that majority of items generally fit the unidimen-
sional GPC model, except for n = 30 where the fitnesses of items could not be
parseness in the data. The overall GPC model significantly fits

determined due s

the unidimensional seven-point response dataset for sample sizes from 150 to

1000. For small samples (n = 30 and 100), the IRT model misfits the data.
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Table 30 P-yalugs [or Hem Fitiiess for Unidimensional GPC Madel for Various

Sample Sizes on Seven-Point Scale

Sample Size

[tem

30 100 150 200 500 800 1000
1 NaN 0268 0277 0775 0.622 0.363 0.315
2 NaN 0454 0536 0457 0.140 0.863  1.000
3 NaN  0.738 0.446  0.420 0.135 0475 0.078
4 0.062 0329 0.183 0.181 0. 107 0.008 0.463
5 0.029 0306 0.161 0270 0.394 0.254 0.675
6 NaN  0.106 0514 0.163 0345 0220 0.391
H NaN  0.616 0243 0.148 0.331 0.742 0.426
g NaN  0.035 0372 0.408 0.171 0436 0.664
9 NaN 0201  0.728 0.047 0.131 0.536 0.083
10 NaN  0.454 0.246 0.591 0.636 0.186 0.228
11 NaN  0.193 0265 0.667 0.712 0.066 0.306
12 NaN  0.366 0520 0291 0859 0.737 0.198
13 NaN  0.149 0.425 0.107 0.177 0.052 0.566
14 NaN 0. 124 0.026 0.026 0.194 0.702 0.373
15 NaN  0.053 0340 0.937 0219 0.195 0.501
16 NaN  0.044 0.085 0.169 0.668 0910 0.075
17 NaN  0.291 0.101  0.189
18 NaN  0.086 0.003 0.925
19 NaN  0.322 0.023 0.241
20 NaN 0230 0.040 0.611 0717 0407 0.035
Model Fit 0.000 0.038 0.703 0.144 0533 0476 0.963
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The loadings of corresponding one-factor model at various sample sizes
are represented in Table 31. There is increased number of indicators that influ-

ence the factor even for lower sample size. For all n 2> 150, all twenty indicator

variables are influential. The proportion of variation accounted for increases

from 61.6% (forn = 30) to a highest of 79.4% (for n = 1000). It is also relevant

to note that the amount of information explained remains as high (77.6%) for

5 = 200 as for n = 1000. Generally, there is almost a perfect fit of the model for

all sample sizes.
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Table 31: Loadings of One-Factor Solutions for Unidimensional Datasets for

Various Sample Sizes on Seven-Point Scale

Item Sample Size

30 100 150 200 500 800 1000
1 0.409 0.710 0.675 0.707 0.663 0.683 0.663
2 0.668 0.731 0.778 0.689 0.761 0.776 0.758
3 0.517 0.774 0.737 0.786 0.798 0.792 0.818
4 0426 0755 0.662 0.702 0.722 0.724 0.753
5 0.599 0483 0616 0.639 0.605 0.577 0.649
6 0.874 0931 0931 0.933 0.948 0.938 0.961
7 0.647 0.839 0911 0.900 0.908 0915 0.915
8 0918 0951 0957 0.957 0.960 0.966 0.962
9 0.871 0.875 0.926 0.936 0933 0939 0.922
10 0.885 0.893 0.895 0.912 0916 0914 0.922
11 0.935 0.939 0.908 0955 0946 0942 0.949
12 0.957 0.957 0959 0.976 0966 0970 0.974
13 0.885 0.949 0960 0.950 0970 0972 0.973
14 0.813 0.921 0.934 0938 0948 0.955 0.947
15 0.948 0.940 0969 0965 0978 0.966 0.970
16 0.690 0.845 0.893 0.889 0906 0915 0.903
17 0.817 0.868 0909 00951 0939 0.945 0.937
18 0.814 0.820 0.843 0.875 0862 0871 0.883
19 0.713 0.892 0.878 0.861 0.886 0.886 0.886
20 0.943 0.939 0951 0.965 0965 0.967 0.969
Prop Var 0616 0.736 0.759 0.776 0.784 0.787 0.794
Fit 0.968 0.990 0.992 0993 0994 0.994 0.995
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Table 32 shows the loadings, proportion and cumulative variations ex-
plained , and fitness of two-factor solutions for unidimensional seven-point re
sponse data at various sample sizes. Although the number of influential indica

tors on Factor 1 have not increased over that of five-point scale, those of Factor 2

have shot up for all sample sizes, except n = 100. Generally, under seven-point

scale, there are comparable sets of indicator variables that largely contribute to

the formation of both factors. This situation is a contravention of the expected

underlying unidimensionality of the scale. Thus, the change in scale (from five to

seven-point) seems to disrupt the dimensionality of underlying ability. The only

reasonable factor solution for the seven-point scale is the case where n = 100

with Factor 1 accounting for as high as 64.7% of cumulative variation. An obser

vation of Table 32 shows that there is increased amount of cumulative variation

explained over five-point scales for all sample sizes. The fitness of the two-factor

model is almost perfect for all sample sizes.
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Table 32: Two-Factor Solution for Unidimensional Datasets for Various Sample

Sizes on Seven-Point Scale

Item Sample Size 30 Sample Size 100 Sample Size 150 Sample Size 200
PAl PA2 PAl PA2 PAIl PA2 PAl PA2

0.180 0.416 0.689 0.186 0.428 0.531 0.548 0.448
0518 0421 0.709 0.193 0.668 0.424 0.365 0.629

2
3 0290 0453 0731 0255 0431 0622 0468 0658
4 0262 0348 0652 0413 0633 0292 0424 0579
5 0000 0833 0222 0819 0329 0554 0551 0.343
6 0675 0554 0848 038 0685 0630 0.706  0.609
7 0.898 0000 0786 0291 0.687 0.599 0.708  0.558
8 0756 0530 0884 0352 0.656 0.701 0.707  0.645
9 0547 0699 0858 0209 0731 0.574 0.681  0.643
10 0661 0587 0846  0.288 0701  0.560 0.771  0.507
11 0743 0.570 0.895 0289 0.701  0.579 0.697  0.654
12 0796 0.543 0906 0310 0785 0565 0725  0.653
13 0654 0594 0906 0286 0.727  0.627 0728 0610
14 0610 0536 03880 0277 0619 0707 0749  0.569
15 0758 0572 0922 0221 0.682 0689 0768  0.588
16 0471 0503 0.780 0325 0.618 0647 0.697  0.555
17 0672 0472 0818 0291 0727 0553 0660  0.689
18 0.603 0545 0752 0328 0422 0792 0548  0.702
19 0395 0634 0829 0329 0718 0516 0665  0.548
20 0784 0.535 0883 0318 0727 0613 0820 0533
prop Var 0.370 0292 0647 0118 0417 0357 0436  0.350
0.662 0.764 0.774 0.787
com ™ 0.976 0.993 0.993 0.994
Fit
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Table 32, continued

Item Sample Size 500 Sample Size 800 Sample Size 1000
PA1 PA2 PAl PA2 PAl PA2

0.613 0.279 0.591 0.359 0.363 0.603

o

2 0.644 0.405 0.573 0.526 0.533 0.544
3 0655 0456 0555 0573 0562  0.604
4 0.607 0.392 0.429 0.621 0.620 0.432
5 0.307 0.629 0.301 0.545 0.539 0.367
6 0798 0513 0781 0528 0717 0.641
7 0713 0565 0729 0554 0.746 0.534
8 0847 0462 0726  0.637 0738 0.617
9 0.785 0.504 0.757 0.558 0.740 0.552
10 0.712 0.582 0.738 0.542 0.749 0.541
11 0.810 0.490 0.773 0.542 0.767 0.563
12 0747 0620 0762  0.601 0.749 0.622
13 0gol 0346 0738 0631 0.743 0.628
14 0.804  0.504 0719 0.629 0.746 0.584
15 0.804 0.556 0.719 0.647 0.737 0.630
16 0.713 0.563 0.731 0.551 0.679 0.595
17 0.789 0.510 0.730 0.600 0.686 0.641
18 0729 0461 0762 0446 0729  0.506
19 0.767 0.449 0.640 0.616 0.693 0.553
20 0.802 0.537 0.756 0.603 0.741 0.624
Prop Var 0.535 0.258 0.472 0.324 0471 0.329
Cum Var 0.793 0.796 0.800

0.994 0.995 0.995

Fit
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Table 33 indicates the loadings of three-factor solutions for unidimensional

seven-point response data at various sample sizes. The Table also presents the

proportion and cumulative variation explained as well as fitness of the three

factor model.
There is equivalent number of influential indicators on factors for both

five and seven-point scales for all sample sizes. Also, there is no improvement

in the proportion of variation explained by the first factor over that of five-point

scale. There is, however, moderate improvement in the proportion of variation

accounted for by the other two factors. Even if there were appreciable increase

in the proportion of variation explained by Factors 2 and 3, it could only mean a

change in dimensionality of the scale. Lower sample sizes show two dominant

h contrasts the underlying ability di
r is substantially influenced by indicator variables

factors, whic mension. However, for n = 150

and 200, only the first facto

_ 150 is most reasonable as Factor 1 explains highest (46.3%)

The result for n
rtion of cumulative variation. Even though the fitness of the three-factor

propo
ct, as sample size increases, there is marginal or no im-

model is almost perfe

provement in the amount of fitness.
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Table 33: Three-Factor Solutions for Unidimensional Datasets for Various

Sample Sizes on Seven-Point Scale

Item Sample Size 30 Sample Size 100
PA1 PA2 PA3 PAl PA2 PA3
1 0.114 0.172 0.780 0.535 0.441 0.167
2 0.513 0.444 0.000 0.327 0.750 0.160
3 0.285 0.388 0.244 0.619 0.404 0.241
4 0.269 0.333 0.000 0.439 0.498 0.418
5 0.000 0.844 0.221 0.202 0.160 0.758
6 0.680 0.584 0.000 0.656 0.547 0.374
7 0.879 0.000 0.000 0.583 0.535 0.280
8 0.751 0.442 0.312 0.729 0.515 0.333
9 0.546 0.618 0.321 0.655 0.562 0.186
10 0.665 0.632 0.000 0.702 0.487 0.268
11 0.739 0.505 0.272 0.670 0.602 0.270
12 0.790 0.475 0.281 0.641 0.658 0.292
13 0.653 0.553 0.227 0.741 0.535 0.264
14 0.615 0.515 0.156 0.806 0.420 0.251
15 0.756 0.515 0.252 0.762 0.534 0.197
16 0.471 0.460 0.215 0.573 0.539 0.316
17 0.676 0.337 0.375 0.589 0.582 0.273
18 0.602 0.438 0.343 0.779 0.249 0.321
19 0.397 0.534 0.336 0.595 0.593 0.311
20 0.782 0.426 0.352 0.738 0.504 0.296
Prop Var 0.367 0.241 0089 0403 0272 0.104
0.696 0.779
;Zum v 0.981 0.994
it
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Table 33, continued

Item Sample Size 150 Sample Size 200
PA1 PA2 PA3 PAl PA2 PA3

1 0.571 0.206 0.316 0.562 0.340 0.267
2 0.603 0.446 0.243 0.306 0.643 0.316
3 0.577 0.237 0.417 0.582 0.539 0.178
4 0.302 0.716 0.251 0.465 0.475 0.260
5 0.269 0.270 0.672 0.310 0.246 0.685
6 0.667 0.477 0.449 0.724 0.465 0.361
7 0.662 0.475 0.415 0.700 0.425 0.375
8 0.761 0.365 0.460 0.702 0.504 0.410
9 0.798 0.403 0.283 0.674 0.510 0.404
10 0.701 0.436 0.348 0.756 0.348 0.404
11 0.750 0.408 0.320 0.663 0.532 0.442
12 0.771 0.487 0.318 0.730 0.510 0.399
13 0.790 0.417 0.358 0.744 0.466 0.368
14 0.733 0.356 0.466 0.740 0.427 0.393
15 0.772 0.399 0.430 0.734 0.444 0.447
16 0.726 0.345 0.394 0.660 0.430 0.415
17 0.740 0.458 0.290 0.714 0.547 0.325

) 0.673 0.195 0.541 0.652 0.554 0.244
l 0.617 0.517 0.374 0.639 0.423 0.395
lz 0.811 0.393 0.326 0.825 0.365 0.389
f’rop Var 0.463 0.174 0.157 0.433 0.219 0.150
Cam Var 0.794 0.802
Fit 0.994 0.995
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Two-dimensional seven-point Likert scale

In this scheme, we expect an ideal two-factor solution to possess either two
repeating factors or a single dominant first factor since the same information is
contained on both dimensions that underlie item responses. Table 34 shows the
p-values of item fitness to the two-dimensional generalised partial credit (GPC)
item response model at various sample sizes. The Table also contains the p-

values of the fitness of the overall GPC model for the seven-point response data

at various sample sizes.

On the seven-point response scale, there is reduced fitness of most items

to the two-dimensional GPC model as compared to the unidimensional case. At

lower sample sizes (n = 30 and 100), the fitness of items has worsened. On the

contrary, the fitness of the overall GPC model to the two-dimensional seven-

point response data have become much significant. The item response model

significantly fits the data at all sample sizes.
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Table 34: P-values for Item Fitness for Two-Dimensional GPC Model for

Various Sample Sizes on Seven-point Scale

Sample Size

Item

30 100 150 200 500 800 1000
1 NaN 0365 0.198 0550 0.823 0015 0.508
2 NaN 0.021 089 0298 0.135 0753 0311
3 NaN 0.094 0.020 0422 0.122 0936 0436
4 NaN 0.204 0.266 0.168 0.679 0.435 0.530
5 NaN 0090 0667 0.119 0292 0.004 0.575
6 NaN  0.130 0.116 0.060 0.694 0.039 0.010
7 NaN 0,009 0.198 0.268 0.346 0.587 0.554
8 NaN  0.023 0.038 0476 0421 0412 0.150
9 NaN  0.016 0.060 0.629 0.254 0392 0.072
10 NaN  0.098 0.017 0.356 0.130 0427 0.051
11 NaN  0.003 0.030 0.182 0.054 0881 0.813
12 NaN  0.009 0.025 0.624 0.169 0786 0.306
13 NaN  0.002 0.131 0413 0.153 0.185 0.232
14 NaN 0.210 0.068 0051 0.138 0.706 0.536
15 NaN  NaN 0.083 0.101 0271 0576 0479
16 NaN  0.344 0258 0.209 0.018 0301 0.547
17 NaN  0.042 0.082 0009 0771 0081 0.252
8 NaN  0.169 0248 0.174 0.055 0222 0245
19 NaN 0.085 0.238 0541 0560 0285 0.496
20 NaN ~ NaN 0.036 0295 0413 0075 0.073
Model Fit 0.842 0.854 0.979 0.930 0252 0.994 0.667
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Table 35 shows corresponding two-factor solutions for the two-dimensional

seven-point response data at various sample sizes.

There is a similar number of indicator variables that highly influence the
formation of factors, especially Factor 1, for both five and seven-point scales. In
addition, there is no substantial increase in the proportion of variation explained

by the first factor. In this case, seven-point scale has no substantial information

-point scale for two-dimensional datasets. Two factors are highly

dicators for n = 150, 200 and 500.

over a five
dominated by similar sets of influential in

For these samples, n = 150 provides most desirable result as it accounts for

largest cumulative variation (87.5%). The two-factor model is nearly perfectly

significant, and remains the same at all sample sizes except for n = 30.
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Table 35: Two-Fa

Sample Sizes on Seven-Point Scale

ctor Solutions for Two-Dimensional Datasets for Various

Item Sample Size 30 Sample Size 100 Sample Size 150  Sample Size 200
PAl PA2 PAl PA2 PAl PA2 PAl PA2

1 0.659  0.000 0.764 0.347 0324 0.723 0.325 0.703
2 0.597  0.000 0.743 0.462 0.742 0.432 0.600 0.603
3 0.945  0.000 0.784 0.311 0.685 0.547 0.652 0.612
4 0.753  0.000 0.738 0.341 0.773 0.346 0.688 0.481
5 0.147 1.101 0.343 0.879 0.635 0.480 0.659 0.305
6 0.902 0.163 0.906 0.360 0.742 0.632 0.656 0.712
7 0953 0.118 0.883 0.337 0.727 0.614 0.763 0.574
8 0930 0.138 0.894 0405 0.685 0.685 0.758 0.628
9 0.892 0.184 0.904 0.358 0.725 0.639 0.706 0.654
10 0920 0.280 0.832 0.449 0.760 0.568 0.693 0.661
11 0.883 O 176 0.890 0.371 0.712 0.656 0.716 0.642
12 0.900 0.253 0.893 0.398 0.737 0.654 0.671 0.722
13 0.959 0.204 0.892 0.417 0.745 0.647 0.750 0.647
14 0.903 0.238 0.879 0.385 0.746 0.638 0.726 0.652
15 0.902 0.247 0.901 0.398 0.804 0.561 0.632 0.715
16 0870 O 130 0.858 0.432 0.688 0.624 0.662 0.675
17 0879 O 176 0.902 0.368 0.764 0.609 0.632 0.725
18 0.824 0.214 0851 0.391 0.616 0.734 0.722 0.590
19 0.905 0221 0.849 0.399 0.659 0.654 0.707 0.633
20 0.941 0.285 0.866 0.465 0.794 0.587 0.713 0.675
prop Var 0.728 0.093 0.702 0.184 0504 0.370 0.463 0.406
Cum Var 0.821 0.886 0.875 0.869
0.998 0.998 0.998

0.994
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Table 35, continued

Item Sample Size 500 Sample Size 800 Sample Size 1000
PAl PA2 PAl PA2 PAl PA2

0.624 0.476 0.648 0.384 0.711 0.342

p—

0.712 0.470 0.782 0.356 0.766 0.428

2

3 0597 0653 078 038 0781 0.422
4 06s8 0525 0696 0404 0715 0.391
5 0404 0643 0379 0734 0417 0766
6 0779 0581 0859 0456 0842 0.493
7 0689 0647 0850 0440 0851 0.429
8 0671 0722 0846 0486 0840 0.518
9 0744 0608 0847 0424 0846 0.478
10 0733 0618 0833 0457 0849 0.466
1 06s2 0687 0830 0506 0863 0.452

12 0.725 0.663 0.852 0.502 0.857 0.484
0.632 0.843 0.514 0.866 0.484

13 0.763

14 0724 0648 0.861 0.454 0.845 0.493
i5 0700 0680 0848 0.506 0.844 0.514
16 0679  0.650 0803 0477 0839 0.443
17 0.723 0.639 0.876 0.413 0.823 0.509
18 0.707 0.588 0.815 0.440 0.823 0.442
19 0.689 0.647 0.814 0.431 0.840 0.428
20 0731 0653 0860 0.482 0.856 0.484
prop Var 0477 0390 0646 0220 0.656 0.230
Cum Var 0.868 0.866 0.886
Fit 0.998 0.998 0.998
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Three-dimensional seven-point Likert scale

In this system, we expect that a plausible three-factor solution should pos-
sess either three repeating factors or a single dominant first factor since the same
information is contained on three dimensions that underlie item responses. The
p-values of item fitness for three-dimensional GPC item response model for var-
ious sample sizes are illustrated in Table 36.

There is further deterioration of the fitness of items to three-dimensional
GPC model as compared to two-dimensional case on the seven-point scale.
Meanwhile, the item response model significantly fits the three-dimensional
seven-point response data for all sample sizes. The fitness of the IRT model

largely fluctuates with increasing sample size.
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Table 36: P-values for Item Fitness for Three-Dimensional GPC Model for

Various Sample Sizes on Seven-Point Scale

Item Sample Size

30 100 150 200 500 800 1000

1 NaN  0.300 0.094 0018 0.083 0.570  0.000
2 NaN  0.031 0.644 0.024 0.100 0.605 0.000
3 NaN  0.068 0.501 0.000 0.175 0.075 0.000
4 NaN 0.113 0. 105 0.054 0323 0.782 0.000
5 NaN  0.032 0.749 0.736 0.030 0.703  0.000
6 NaN  NaN 0.001 0.060 0.612 0.025 0.000
7 NaN  0.000 0.030 0.198 0.384 0.026 0.000
8 NaN  NaN 0.029 0.040 0.713 0.084 0.000
9 NaN NaN 0. 157 0.081 0.068 0.646 0.000
10 NaN  NaN 0.067 0.013 0.046 0.785 0.000
11 NaN  0.000 0.183 0.079 0.037 0.843 0.000
12 NaN  NaN NaN 0.080 0950 O. 103  0.000
13 NaN  NaN 0.042 0021 0.184 0.074 0.000
14 NaN  NaN 0.001 0.183 0.087 0.050 0.000
15 NA  NaN 0.095 0080 0406 0. 159 0.000
16 NaN  0.020 0.013 0.160 0011 0.135 0.000
17 NaN  0.002 0084 0.504 0569 0.3 89 0.000
18 NaN  0.013 0.009 0.742 0.152 0.569 0.000
19 NaN  0.048 0357 0.007 0.149 0.525 0.000
20 NaN  0.001 0.006 0050 0.007 0.001 0.000

Model Fit 0.834 0.5% 0437 0489 0981 0.997 1.000
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Table 37 illustrates the loadings of three-factor solutions tor three dimen-
sional response datasets for various sample sizes on seven-point scale. There
are comparable sets of indicator variables that significantly contribute to the for-
mation of Factor 1 for both five and seven-point scales. Even though there is
increased number of indicators on other two factors, the corresponding cumula-
tive variation explained have increased only marginally. To this end, seven-point
scale has negli gible amount of information over a five-point scale. There appears
to be three dominant factors for all sample sizes except n = 200. Factors 2 and

3 explain equivalent proportions of variation for all sample sizes. In any case

amount of cumulative variation explained increases from 87.8% (for n =30) up

to 91.6% (for n = 150), and decreases afterwards. Thus, n = 150 offers most

credible result.
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Table 37: Three-Factor Solutions for Three-Dimensional Datasets for

Various Sample Sizes on Seven-Point Scale

Item Sample Size 30 Sample Size 100
PA1 PA2 PA3 PA1 PA2 PA3

1 0.277 0.887 0.288 0.339 0.603 0.431
2 0.747 0.437 0.261 0490 0.632  0.404
3 0.687 0.168 0.363 0.741 0.414  0.353
4 0.528 0202 0514 0496 0.714  0.311
5 0340 0422 0664 03 14 0300  0.743
6 0.718 0.560 0334  0.588 0.669  0.445
7 0.637 0.538 0.436  0.611 0.563 0.495
8 0.743 0344 0482  0.661 0.567 0.459
9 0.709 0452  0.447 0.570 0598  0.517
10 0.678 0492 0482 0580 0577  0.527
11 0.706 0.456 0.495 0.635 0.581 0.458
12 0.674 0517 0462 058 058  0.509
13 0.691 0.429 0.538 0.603 0.621 0.466
14 0.678 0.518 0492  0.583 0.594 0515
15 0.660 0.436 0.613 0.639  0.617 0.438
16 0.670 0449 0533 0.574 0538  0.542
17 0.702  0.499 0.415 0580 0.546  0.564
18 0.642 0.517 0.370  0.713 0.454  0.441
19 0.646 0.503 0.403 0.639 0.577 0.375
20 0.694 0.577 0394  0.640  0.550 0524
prop Var 0.426 0.241 0212 0346  0.327 0.234
Cum Var 0.878 0.907
Fit 0.998 0.999
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Table 37, continued

Item Sample Size 150 Sample Size 200
PAl PA2 PA3 PAl PA2 PA3

1 0.392 0.706 0.346 0.709 0314  0.304
2 0.586 0.479 0.463 0710 0346  0.395
3 0.794 0.362 0.350 0.756 0226  0.404
4 0.572 0.570  0.405 0.462  0.760 0.355
5 0.411 0.380  0.630 0.388 0.301 0.796
6 0.714 0.508 0.435 0.810 0.416  0.347
7 0.695 0.464 0492 0.818 0.374  0.336
8 0.725 0.516 0.436 0.824 0.379  0.395
9 0.671 0.491 0.503 0.787 0.393 0.387
10 0.665 0.529 0.472 0794 038  0.361
11 0.716 0.518 0.432 0.812 0.422  0.338
12 0.683 0.544 0477 0.806 0.413 0.377
13 0.681 0.501 0.508 0.784 0.430  0.420
14 0.671 0.550 0436  0.767 0.445 0.393
15 0.688 0.524 0432 0.785 0.446 0.387
16 0.662 0.518 0.485 0.752 0.468 0.342
17 0.710 0.451 0.487 0.823 0.381 0.345
18 0.691 0.491 0.440 0.819 0.320  0.333
19 0.659 0.469 0.526 0.803 0.401 0.324
20 0.667 0532 0513 0.820  0.408 0.349
Prop Var 0.435 0260  0.221 0.578 0.171 0.158
Cum Var 0.916 0.907
- 0.9%9 0.999
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Comparison of Results of Various Response Scales and Sample Sizes

In this section, we carry out a comparison of IRT results across four dif-
ferent response scales and sample sizes base on the dimensionality of datasets.
We also compare the results of factor solutions under different dimensions of the

underlying latent ability. For each dimension, a comparison of factor solutions

is done at various response scales and sample sizes.

IRT results across different scales and sample sizes

We assess IRT results under various conditions such as the number of

points on response scales, number of ability dimensions, and sample size. Table

38 illustrates summary statistics for IRT results across different response scales

with different number of dimensions underlying datasets.

We note from Table 38 that on unidimensional dichotomous response scale

overwhelming majority of items fit the IRT model for all samples. The corre-

sponding overall fitness of the IRT model is significant at all sample sizes. This

result is gimilar to the two-dimensional case, except for n = 30 where the fit-

ness of the model could not be determined due to low degrees of freedom. On

three-dimensional dichotomous response data, the number of fit items decreases

sharply for 7 = 30, but marginally at higher samples. We observe that on di-
chotomous scale, the fitness of the model generally fluctuates as the number of

underlying dimensions increase.
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Table 38: Summary Statistics for IRT Results Across Different Scales on Varied

Dimensions
Scale Measures Sample Size
30 100 150 200 500 800 1000
Fit Items 15 19 1
Unidim. 8 19 20 20 19

Model Fit 0.114 0.966 0.514 0381 0.363 0.387 0.938

Fit Items 4 18 1

o.point Twoudim. ' 9 19 20 20 18
Model Fit - 0.920 0.406 0.249 0.953 0.974 0.123

Fit Items 1 15 17 18 19 19 17

Three-dim. )
Model Fit - 0.882 0462 0.885 0.556 0.783 0.371

Fit Items 15 20 19 19
Unidim. i 20 8 ?
Model Fit 0.002 0477 0.198 0.589 0.581 0.603 0911
Fit Items 6 17 19 18
Three-Point ~ Two-dim. . ' 2 o
Model Fit 0.006 0469 0.969 0482 0.872 0924 0.779
Fit Items 1 14 15 20 16 18 18

Three-dim. )
Model Fit 0.830 0.623 0.717 1.000 0.948 0.998 0.766

Fit Items 6 16 18 16 20

Unidim. . v 19
Model Fit 0.007 0.253 0.368 0.809 0.435 0.150 0.990
Fit Items 3 17 18 17 19 18 18

Two-dim. .
Model Fit 0.550 0.896 0.956 0579 0.326 0.969 0.864

Five-Point
Fit Items 0 11 16 16 16 15 0

Three-dim. .
Model Fit 0.728 0.977 0997 1.000 0.887 0.997 1.000

Fit Items I 18 16 18 20 18 19

Unidim. lFit 0000 0038 0703 0.144 0533 0476 0963
‘ Fit Items 0 10 14 19 19 17 19
Seven-Point Two-dim . o 0842 0854 0979 0930 0252 0.994 0.667

pefems 0 3 12 13 15 170

Three-dim. )
Model Fit 0.834 0.594 0.437 0489 0981 0.997 1.000
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On unidimensional three-point response scale, almost all items fit the i
response model at all sample sizes, except n = 30. The model signiﬁcantj lt:tn
the unidimensional three-point response data at various samples, except n j,- 30s
Similar result holds for two-dimensional three-point response scale Wi;l_‘l r |
spect to three-dimensional three-point response scale, the number of fit ite:l;
declines at all samples, except for n = 200. The overall fitness of the IRT model

on three dimensions improves consi
siderably over th i
at of two dimensi Thi
nsions. This

may be attributed to the increase in the number of dimensions

In respect of unidimensional five-point response scale, overwhelming
’ ma-

jority of items it the model at sample size of 100 and beyond. For these 1
: samples,

the overall fitness of the item response model is significant With additional d
. itional di-

mension to the scale, the number of fit items remains fairly comparable, but th
e, but wi

a gain in overall fitness of the model. In the case of three-dimensional five-poi
e-point

scale, the number of fit items decreases with further gain in overall fitn f th
ess of the

model.
There is greater number of items that significantly fit the item resp
onse

model on the unidimensional seven-point response scale at all samples
, except

n = 30. Inthe two-dimensional case, the number of fit items is virtually th
e same

as that of unidimensional, except for n = 30 and 100. With three di
. imensions,

the number of fit items decreases slightly, though the overall fitness of the mod
e model

continues to improve.

Wwe now dwell on the effects of response scales and sample siz IR
e on IRT

results for specific dimensionality of datasets. Tabl
. e 39 shows IRT mod
el sum-

mary statistics for various response scales and sample sizes on unidi
nidimensional

datasets.
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Table 39: IRT Model Summary Statistics on Unidimensional Datasets for

Various Response Scales and Sample Sizes

Scale Measures Sample Size

30 100 150 200 500 800 1000

Fit Items 15 19 18 19 20 20 19

Two-Point
Model Fit 0.114 0.966 0.514 0.381 0.363 0.387 0.938
Fit Items 15 20 19 19 20

Three-Point . ° ?
Model Fit 0.002 0477 0.198 0.589 0.581 0.603 0911
Fit Items 6 16 18 16 20 19 19

Five-Point

Model Fit 0.007 0.253 0.368 0.809 0435 0.150 0.990

Fit Items 1 18 16 18 20 18 19
Seven-Point .
Model Fit 0.000 0.038 0.703 0.144 0.533 0476 0.963

Table 39 indicates that on unidimensionality across various scales, overall

fitness of item response model deteriorates with increasing scale points for small

samples, particularly at n = 30 and 100. This suggests that on unidimensional

higher response scales, samples of sizes 100 and below would not produce reli-

able results. Meanwhile, t00 large a sample, particularly » = 1000, may produce

almost the same IRT results since the performance of the model does not change

for all response scales. In some instances on polytomous response scales with

one dimension, overall fitness of the IRT model increases with increasing points

on the scale.
Table 40 dis

e scales and sample sizes on

plays item response model summary statistics for various re-

spons two-dimensional datasets.
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Table 40: IRT Model Summary Statistics on Two-Dimensional Datasets for

Various Response Scales and Sample Sizes

Scale Measures Sample Size
30 100 150 200 500 800 1000
Fit Items 4 18 19 19 20 20 18
Two-point
Model Fit - 0920 0.406 0.249 0.953 0974 0.123
Fit Items 6 17 19 18 18 20 19
Three-point i
Model Fit 0.006 0.469 0.969 0482 0.872 0924 0.779
Fit Items 3 17 18 17 19 18 18
Five-point
P Model Fit 0.550 0.896 0.956 0.579 0.326 0.969 0.864
Fit Items 0 10 14 19 19 17 19
-point
SO\ fodel Fit 0.842 0854 0979 0930 0252 0994 0.667

We observe from Table 40 that in respect of two-dimensional response

scales, the number of fit items is almost the same at sample sizes of 150 and

beyond. For some of these samples, the overall fitness of the model increases

with increasing points on the scale.
Table 41 presents item response model summary statistics for various re-

sponse scales and sample sizes on three-dimensional datasets.
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Table 41: IRT M
odel Summary Statistics on Three-Dimensional D
atasets for

Various Response Scales and Sample Sizes

Scale Measures S 1
ample Size

30
100 150 200 500 8GO0 1000

M i 7 1
0 882 0 462 . . .

Fit Items 1 14
15 20
16 18
18

* * . l 000 0 8 ‘ ’ 99 '7
* . 8 0 6
M . 6

Fit Items

Five-point
Model Fit 0.728 0.977 0.997 1000 0.887 0997 1.0
. . .000

Fit Items 0
Seven-point ’ 2 . 15 7 0
_-_’_Jf_e_lfi 0.834 0594 0437 0489 0981 0.997
. . 1.000

There is almost the same number of fit items at sample sizes of 150
and be-

oss all response scales with three dimensi
nsions. For pol
ytomous resp
onse

yond acr
model fitness seems to be quite high at larger sa
m-

imensions,

scales with three d
d five-point scales. However, there does not app
ear

particularly for three an

ples,
nship between the model fitness and the number of fit ite
ms.

to be any relatio

In summary, the ove
g number of points on
generally fluctuates with increasing sample size

rall fitness of the IRT model increases, in some cas
, es,

with increasin the scale. For a given response scale, th
ale, the

fitness of the model

One-factor solutions on unidimensional datasets for various scales

sents summary statistics for one-factor i
solutions on unidi
unidimen-

Table 42 pre
ponse scales and sample sizes.

sional datasets at yarious €S
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Table 42: Summ istics fi
ary Statistics for One-Factor Solutions on Unidi
nidimensional

Datasets

Scale Measures S
ample Size

30
100 150 200 500 800 1000

No. of Ind. 11 14 15 13 15 S 5
'wo-Poi l
I oint Cum. Var 0.339 0.424 0450 0.429 0.455 4 | 6
. . . 0. 61 0 44
1t O . 4
Fi 706 0.870 0900 0.880 0.916 0922 092

No. of Ind. 16 18 17 17 17
17 18

Three-Point Cum. Var O 507
. . 0.558 0.577 0.5
. 596 0.588 0.589
. 0.597

Fit 0.
900 0.953 0.962 0.968 0.968 0.969 0.971

No. ofInd. 17 19
20 20 20
19 20

. . 0. l O l 7
. . 20 O 729
.

Fit
i 0.949 0.982 0.985 0.987 0.988 0.988 0.990

Five-Point

No. of Ind. 18 19 20
20 20
20 20

Cum. Var 0616 0736 0759
. : 0776 0.784¢ 0
: 787 0.794

Seven-Point
0.706 0.968 0.990 0.992 0.993 0.994 0.995

Fit

2 that the number of influential indicators on the f;
ac-

It is evident in Table 4
points on the scale increase across all

sample sizes. In .

. In addition

tor increases as
of indicators starts from
n= 150 in ea
ch case. Th
. e cu-

the dominant number

ariation (Cum- Var) ac
¢ for two-point scales. In the othe
’ rs, the amount
of cumulativ:
e

mulative Vv counted for by the factor peaks at n = 150
= and

fluctuates thereafte
ame for n > 150 within rounding errors. Similarl
’ 1lar Y, the

n is almost the s
he fit of the model also 1
s consistent with what is observed in the IRT anal

analysis.

signiﬁcance oft

sample size- This result i
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Two-factor solutions on unidimensional datasets for various scales

The summary statistics for
ensional datasets are displayed in Table 43. The Table also shows

on unidim

summary statistics for various sample sizes.

Table 4

Datasets

Scale Measures

No. of Ind.

Two-Point
Cum. Var

Fit

No. of Ind.

Three-Point
Cum. Var

Fit

No. of Ind.

ive-Point
Five Cum. Var

Fit

No. Of Ind

-Point
Seven-Po1 Cum. Var

Fit

3. Summary Statistics for Two-Factor Solu

two-factor solutions at different scale-points

tions on Unidimensional

Factors

PAl
PA2

PAl
PA2

PAl
PA2

PAl
PAZ2

30

100

Sample Size

150

200

500

800

1000

10

8
0.339
0.706

14

0.596

0.937

14

0.645

0.966

14
14
0.662
0.976

10

8
0.424
0.870

14

0.599

0.962

16
14
0.704
0.985

19

0.764
0.993

15

1
0.450
0.900

17

0.620
0.968

18

0.732
0.987

16
18
0.774
0.993

12

6
0.429
0.880

13
13
0.618
0.971

16
16
0.739
0.989

17
18
0.787
0.994

13

6
0.455
0916

13
14
0.605
0.971

19

0.739
0.990

19
12
0.793
0.994

15
0
0.461
0.922

15

0.603
0.972

18
10
0.731
0.990

18
18
0.796
0.995

15

4
0.446
0.924

15
13
0.606
0.973

19

0.740
0.991

19
18
0.880
0.995

the desired factor structure is observed at n =

influential indicators and only one on



the second. However, at higher scale-points, the structure occurs at a small sam-
ple size of n = 100. It is notable that at the desire factor structure, the cumulative
variation peaks and deteriorates thereafter. This is true either for the cumulative

variation or for the value of fitness of the model.
Three-factor solutions on unidimensional datasets for various scales

Table 44 presents the summary statistics for three-factor solutions for var-
jous scale-points on unidimensional datasets. We consider various statistics for
sample sizes of 30, 100, 150 and 200. Higher sample sizes are ignored as their
results do not show improvement over lower sample sizes.

Generally, we find results for n = 150 to be consistent with underlying di-
mensionality of the data. It gives the first factor as the dominant one and the other
two are just much fewer-indicator factor (or none) that contribute marginally to
the cumulative proportion of variation explained. Again, at this sample size,

cumulative variation (or the fitness) peaks and deteriorates thereafter.
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Table 44: Summary Statistics for Three-Factor Solutions on

Unidimensional Datasets

Scale Measures Factors Sample Size

30 100 150 200

PAI 6 10 10 10

No. of Ind. PA2 5 8 7 6

Two-Point PA3 5 1 0 1
Cum. Var 0.544 0530 0572 0563
Fit 0864 0916 0937 0918

PA1 13 14 14 10

No. of Ind. PA2 3 7 4 5

Three-Point PA3 2 | 1 4
Cum. Var 0.669 0.639 0.637 0.641
Fit 0956 0.971 0973 0975

PAl 14 16 18 14

No. of Ind. PA2 8 12 2 12

Five-Point PA3 1 | 1 3
Cum. Var 0694 0732 0737 0.745
Fit 0975 0989 0989  0.990

PA1 14 17 18 17

No. of Ind. PA2 9 13 2 8

Seven-Point PA3 1 1 2 1
Cum. Var 069 0779 0.794 0.802
Fit 0981 0994 0994 0.995
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Two-factor solutions on two-dimensional datasets for various scales

Two-dimensional datasets are generated by specifying the same vector of
item discrimination parameter values on both dimensions of the underlying abil-
ity. In this system, we expect that a good factor solution should have two re-
peating factors since the same information is contained on the two underlying
dimensions of the dataset. Alternatively, we could expect a single dominant
first factor in the two-factor solution with similar reasoning as in the former in-
stance. Here, we compare the results of two-factor solutions on two-dimensional

datasets at various sample sizes and scale-points. The results are summarised in

Table 45.
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Table 45: Summary Statistics for Two-Factor Solutions on Two-Dimensional

Datasets
Scale Measures  Factors Sample Size
30 100 150 200 500 800 1000
PAl 12 18 14 16 17 15 16
No. of Ind.
PA2 4 1 13 8 1 6 1
Two-Point
Cum. Var 0522 0677 0639 0651 0486 0492 0.478
Fit 0.873 0973 0965 0971 0925 0934 0.930
PAL 16 19 15 18 16 17 19
No. of Ind.
PA2 13 3 14 2 15 14 1
hree-Point
Three Cum. Var 0714 0763 0749 0.742 0.723 0.700 0.747
Fit 0974 0990 0989 0.989 0.988 0.986 0.991
PAl 19 19 19 19 19 19 19
No. of Ind.
PA2 1 1 17 15 17 17 5
. _ . t
Five-Pollt . Var 0781 0862 0.839 0832 0.822 0.808 0.840
Fit 0990 0997 0996 0.996 0.996 0.995 0.997
PAI 19 19 19 19 19 19 19
No. of Ind.

PA2 1 1 17 18 18 5 4

Seven-Point 0.821 0.886 0.875 0.869 0.868 0.866 0.886

Cum. Var
Fit 0.994 0998 0998 0.998 0.998 0.998 0.998

Table 45 shows that the cumulative variation and fitness of the model peak
at n = 100 for all scale points, and deteriorates or fluctuates thereafter. The de-
re is thus obtained at n = 100. It is also observed that the

sired factor structu

amount of cumulative variation explained by the model increases with increas-
ing scale-point. The fitness of the model as well as the number of significant

indicators are also generally high at higher scale-points.
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Three-factor solutions on three-dimensional datasets for various scales

Table 46 displays the summary statistics for three-factor solutions at vari-
ous samples and scale-points on three-dimensional datasets. Since the results do
not show improvement for higher sample sizes, the results for n = 500, 800 and
1000 are excluded.

Generally, a sample size of 150 produces a more consistent factor solu-
tion based on the underlying dimensionality of the data. At this sample size,
cumulative variation and/or model fitness peaks and deteriorates thereafter. The
amount of cumulative variation explained increases with increasing scale-points.
It follows that the number of influential indicators on factors increases with in-
creasing scale-points, which is particularly true for the first factor. This means
that factors are more well defined and could be more interpretable on larger

scale-points. The results are, however, almost the same on higher scale-points

of five and seven.
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Table 46: Summary Statistics for Three-Factor Solutions on Three-Dimensional

Datasets
Scale Measures Factors Sample Size
30 100 150 200
PAI 12 13 17 16
No. of Ind. PA2 10 13 2 4
Two-Point PA3 2 3 1 I
Cum. Var 0746  0.753 0789  0.702
Fit 0973 098 0990 0.983
PA1 17 18 18 18
No. of Ind. PA2 8 12 1 2
Three-Point PA3 2 1 1 2
Cum. Var 0818 0.835 0864 0.792
Fit 0995 0995 0997 0.994
PA1 17 18 18 18
No. of Ind. PA2 13 8 2 1
Five-Point PA3 1 6 1 0
Cum. Var 0880 0.887 0900 0.880
Fit 0998 0998 0999 0.998
PA1 18 16 18 18
No. of Ind. PA2 8 17 12 1
Seven-Point PA3 5 8 5 1
Cum. Var 0878 0907 0916 0.907
Fit 0998 0999  0.999  0.999
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Chapter Summary

The chapter investi
gated the effects of m
easurement scales on
results of

jtem response theory and factor analysis models. This was done th
rough the

format, number of ability dimensions underlying response scales, and
, and sample

size.
The study reveals that estima
ted values of discriminati
scrimination (&) and di
iffi-

parameters generally fluctuates with increasing sample size. Th
. There is

culty (9)

a marked difference between the specified i
and estimated item
parameter values

at lower samples (n =30 and 100), but the difference tends to reduce at
at sample

sizes of 150 and beyond. In addition, the differences become negligible at 1
at larger

samples (n = 500, 800, 1000). This result is consistent with what Stone (1992
e )

observed.

The study shows that there is a direct relationship between pa
rameters

nd those of factor models, particularly item discrimination and fact
actor

result is consistent with what has been found by de Leeuw (1983)

of IRT a
loadings. This
eeuw (1987).

and Takane and de L
The study shows that items fit the unidimensional 2PL model since th
e the

are generally much higher than
hree items (6, 12, and 7, respectively) do not fit the model. Th
. The

p-values 0.05. Only at n = 150, 200 and 1000 it
is detected that t

2PL model signiﬁcantly fits the unidimensional dichotomous item response d
ata

for all sample sizes.
We observe that almost all ite

model. The onl

ms significantly fit two-dimensional IRT

y exception is when n = 30 where the fitness of majority of
o

jtems have not been possible to evaluate due to sparseness in the data. C
. Corre-
spondingly, the overall model fitness could not be determined due to low deg
rees
of freedom. The item response model significantly fits the two-dimensional di
1..

213



chot
omous response data for all other sample sizes

The study indicates that i
at items significantl
y fit the three-dimensi
nsional 2PL

model. How
ever, for smaller samples the fitness of items is appall
ppalling. The

fitness of item
s to the model get better as sample size increases. Wi
. We observe that

the three-dimensional 2PL m i
odel significantl
y fits the data for all
sample sizes,

except atn= ow
3 here the fitness of the model could not be determined d
v ue IOW

degrees of freedom.

Wi . . )
e notice that in migrating from dichotomous to three-point scal
-point scale, the sig-

nificance of fitness of items to th
e model generall
y fluctuates for all
sample sizes.

Whi - i
]e the p-values of fitness of some items improve for given sample si
e size, those

of other items deteriorate. The overall fi
. tness of GPC mod
el to unidimensi
onal

three-point response data is signifi
cant at sample size
s of 100 and ov
er.

We observe that, generally, items significantly fit the two-di
-dimensional

GPC model on three-point scale However. i
. , on this scale, the magni
J gnitude of p-

values differ from unidimensional to two-dimensional case. Th
- There appears to
o groups of items: (1) jtems whose p-val
ue decreases with
an additional

and (2) items whose p-value increases with additional abili
ability

be tw

ability dimension,

ion. Items of the first g
whereas those of the second group need multipl
iple

dimens roup will require just one person-ability to get
eta

response in higher categories,

p-abilities to get 2 similar res
{hree-point response data is significant at all sample si
e s1zes,

perso ponse. The overall fitness of the model to

the two-dimensional

except for n = 30.
On three—dimensional response datasets, most items fit the model
. el, particu-
or sample sizes (7 2 150). For smaller sample sizes (n < 100)
< , the

larly for 1arg
sened on high dimensions, especially for items that
may

values of items WOr.
person—ability to get
o fitness is quite high or almost perfect may requi

uire up

p-
require only on¢

s that items whos

a response in higher categories. The results

indicate

pilities to get a response in higher categori
egories. At n =30

- , Even

to three perSOH-a
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though items misfit the model, the overall fitness of the mode] is significant. Th
. The

plausibility is that the IRT model yields better results on high response scales

with large number of dimensions.

Considering unidimensional five-point scale, we detect that overwhelming
majority of items significantly fit the unidimensional GPC model at all sam

ple sizes, except n = 30 where the p-values of some items could not be deter

mined. Not unexpectedly, the overall GPC model significantly fits the five-point

response dataset, with the exception of n = 30. As sample size increase fr
om

100 up to 1000, the fitness of the item response model fluctuates, but highest at

n = 1000.

On two-dimensional five-point scale, it indicates that most items signif.

icantly fit the two-dimensional GPC model at sample size of 100 and beyond

The fitnesses of almost all items could not be evaluated at n = 30 due to low

degrees of freedom. Surprisingly, the IRT model significantly fits the data at

0. The overall fitness of the IRT model generally fluctuates with increasing

n=3

sample size-

In the case of three-dimensiona] five-point scale, it shows that the fitness

ms cannot be determined for all items at n = 30 due to sparseness in the

of ite
y, the p-values of jtem fitnesses to the model are much reduced

data. Generall
n this scenario. Particularly, for n = 1000, all items do not

for all sample sizes 1

data. Surpn'singly, the three-dimensional GPC model almost perfectly

fit the
ample sizes. We observe that the item

e-point response data at all s

fits the fiv
response model yields petter results on high response scales. Generally, the
overall fitness of the IRT model fluctuates with increasing sample size. This
results aré consistent with those of Beauducel and Herzberg (2006).
unidimensional seven-point scale, we note that majority of

In terms of
items generally fit the unidimensional GPC model, except for n = 30 where the
fitnesses of items could not be determined due sparseness in the data. The overall
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nlﬁc idi i

sample sizes from 150 to 1000.

However.
_ the fitness of the overall GPC model to the two-dimensional
ional seven-

point response data have become much significant

The IRT analysi i i
alysis of three-dimensional seven-point scale indi
. . . icates that
there is further deterioration of the fitness of items to the three-di
-dimensional GPC

model as compared to the two-dimensional case. Meanwhile, th
. . . ' e’ © IRT mOd
significantly fits the three-dimensional seven-point response data fi °
a for all sample

sizes.
izes. The fitness of the IRT model largely fluctuates with increasing sampl
ample

size.
We observe that, for one-factor solutions of unidimensional dich
ichotomous

scale, the number of influential indicators appear to converge (at 15) f
| or higher
sample size starting at 72 = 150. The indicators
are the same at poi
point of conver-

ence. The proportion of variance accounted f
or by the single f; i
actor increases

g
from 33.9% (for n = 30) to a highest of 46.1% (for n = 800)
With two-factor solutions of unidimensional dichotomous scale, th
| - ale, there is
y the incidence of repetition of high loadings on the same indicat
1cator vari-

generall
with exception of sample sizes n = 150 and n = 800

able of the two factors,
which can distract interpretation. However, for n = 150, the first f
s ’ actor loads

s many as 15 indicators and explains 42.7% of variation. Th
. € sec-

highly on &

ond factor loads highly on only one indicator (Variable 5) and is a cont
ntrast to its

resentation in IRT. In addition, amount of variance e ;
xplained by the
second

rep
s to be negligible. The sample size of n = 150 thus giv
s a more

factor appear

plausible factor soluti

mulative variation.
f three-factor solutions of unidimensi .
onal dichoto
mous scale

on than all other samples. The n = 150 also explains th
ins the

highest cu

In the case ©
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the re
N sult b.ecomes less meaningful and even unrealistic for sample si
. There is generally the incidence of repeating indicators o - szes o
:lere is also the incidence of unrealistic loadings that are glrlemtultlple o
. a i
gher factor numbers, particularly for Factor 3. This incidence i: ra:h o
a result of

an extractio i
n of higher factor structure from a lesser dimensional
sional dataset

With two-fa i
ctor solutions of two-dimensional dichotomou 1
s scale, the n =

un

der lyin the d 1
y g ataset. The CumUIatlve variation is also 1 iol t
gnes for this Sample

size.

Three-facto i ;
¢ solutions of three-dimensional dichotomous scale indi
e indicates

s inconsistent with the expected dimension of the scale. H
. However, for n =150

variables. T

as high as 78.9% cumulative variation. Th
. The fitness of the thr
ee-factor model i
s

for all sample sizes.

e'

almost perfect

The study shows that,

point scale, there is increased number of indicators that influ
ence the factor
S

highest of 15 (in two
not appear to be converging number of the influential ind
indi-

i s
om point scale) to 18 (under three-point scale). E
. Even

though there does

e dominant number is
s is also 17. The proportion of variation accounted fi
or by

cators, th 17. Incidentally, for n = 150, the numb
, num

influential indicator er of

s increased from 50.7%

rwards. There is 2 high level of fit of the model for all

sample

the factor (for n = 30) to a high of 59.6% (for n =20
. — O)

then fluctuates afte

sizes.
o-factor solutions of unidimensional three-point scal
cale, there

In regard of tw
ber of indicator variables on the factor
s, particularly for th
e first

is higher num
rt under the two-point scal
e. The proporti
portion of variati
tion

factor than its counterpa
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explained also inc
rea

1 ses up to n = 150, and decreases thereafter. Th
general repetition of indi o
p n of indicators on factors at all samples, with N
150. Unlike S

. - ' ption of n =

her sample sizes, the results for n = 150 i
= is more plausibl
e

as the first fac
tor accounts for almost all cumulative variatio
n explained by th
e

solution. Th i
e fitness of the two-factor model is almost perfect f
or all sample

sizes.
Three-factor soluti idi i W
Jutions of unidimensional three-point scale sh
ows that there

is increased n indi
umber of indicators on factors, particularly for th fi
r the first factor,
, OVer

of multiple factors for all sample si
ple sizes. The sample si
ple size of n = 150
appears to

rod
produce a more reasonable result as the last factor (i.e., Factor 3)
.e., Factor 3) accounts fo
ra

negligible proportion of the cumulative variation. The fitness of th
: s of the three-fact
or

model increases as sample size increase

We note that for two-factor solutions of two-dimensional th
ree-point scale

there is increased num ber of indicators on factors partlcularl fo
’ y 10r Factor 1, ow:
, OVer

that of two-point scale. The amounts of variation explained 1
are almost the sam
e

e two factors for sample
n explained by the two-factor model generally fluctuat
es with

for th .
] sizes 30, 150, 500, and 800. The amount of
0

cumulative variatio

increasing sample size but highest at n = 100. At thi
. At this point, th

, the fitness of th

e

model is also highest.
For two-factor solutions of two-dimensi
sional three-point
scale, there is i
’ in-

number of indicators that influence th
e formation of f
actors, Factor 1

- Oin i

in particular, over that of two

yariation is quite high
t with our expectation as th i

e first is domi

inant with 18 in-

mulative in favour of three-point scale. The solution f
. . ’ 10n
n=15018 consisten or
tors and the others are influenced by a si
y a single indic
ator each. The

fluential indica
of cumulative variation largely oscillates with i
with increasi
sing sample si
ze,

amount
150 with highest model fitness.

but peaks atn=
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. Considering one-factor solutions of unidimensional five-poi
is increased number of indicators that influence the factor fr(,-p omt. scale, there
(on three-point scale) to 20 (under five-point scale). Even thoumha e ot
?PPeaI to be converging number of influential indicators, the dgorr‘:::e o
is 20. Incidentally, the dominant number of influential indicators o
1 = 150. The proportion of variation accounted increases from 58% (::rt S v::)h

n=30)

factor model for all sample sizes.

With regar - i
gards to two factor solutions of unidimensional five-poi
. . o -point scale
there is a higher number of indicator variables on the two f |
actors for the fiv
c-

point scale than those of the three-point scale. The cumulati
ve variations ac-

counted for by the two-factor model are i
consistently higher for
a five-point scale

I . l . l l :
n d

increases remarkably from 64.5% (for n =30) u
= pto 73.2% (forn =15 .
= 150), slight

ment to 73.9% (for n =200 and 500), then fluctuates thereafter. Th
. e two-

arly perfectly fits the five-point scale dataset for all sample si
e sizes.

incre

factor model ne

On the basis of three-factor solution i
s of unidimensi
onal five-point
scale,

there 1s increased number of influential indicator variables, especiall
, especially on Fact
or

1, over that of thre

e-factor model aré higher
several repeating indicators on multi
ple factors for all
sample sizes

e-pOillt Scale. AISO CUIllU]at.Ve variati
’ 1 ations ex i t
p]alrled by he

thre for five-point than a three-point scale. There is th
. is the

incidence of
150 which has few.

except for n =
o-factor solutions of tw i
o-dimensional fi i
ve-point scale

We notice that for tw

ased number of influential indicator.
s on factors, n
, notably Factor 1

over that of 2 thre
r a five-point scale th
ced by comparable sets of indicator vari
ables for n = 150
= 150, 200,

higher fo E t point scale. The two factors ar b-
€ su
stantially influen

800. This occurrence is consistent with number 1
of ability di :
imensions un-

and
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derlying the scal
ale. For these samples, n = 150 has highest 83.9%
.9% of cumulative

variation i
, and as such gives most plausible result

For three-dimensi er of indicato
-dimensi
onal datasets, there is comparable numb
variables that infl I n ver po in icale
uence formation of factors on both three and fi o
for all sample si v v N oun
ple sizes. I o
However, there is a moderate improvement in th

in the amount

T

Z S.

On the contrary, for n=
150 and 200, only Factor 1 considerably domi
1nates

the other two. Th = i
e result for n = 150 is most desirable as it possesses h
ses highest

9 . ...
0% cumulative variation. The fitness of the three-factor mod
- model on the thr
ee-

dimensional five-point scale is almost perfect for all sample si
e sizes, and peaks at

n = 150.

One- . . 1 .
factor solutions of unidimensional seven-point scale sh
e show that ther
e

is increased number of indicators that influence the factor even for 1
size. For all n 2 150, all twenty indicator variables are influential (’)I:er e
tion of variation accounted for increases from 61.6% (for n = 30) t.o ;. propor-
79.4% (for n = 1000). It is also relevant to note that the amount of ;flghest. of
explained remains as high (77.6%) for n = 200 as for n = 1000. Genera(::)r'n :w“

, tnere

is almost a e-factor model for all sample sizes

An observation 0
shows that although the number of influential indi
indicators on F
actor 1 have not i
in-

e-point scale, those of Factor 2 have shot up for all
sample

ased over that of fiv
t n = 100. Generally, un
ables that largely contribute t
o the formation
of both fac-

cre
der seven-poi
point scale, there are comparabl
e

sizes, €XCeP

sets of indicator vari
g not in line with dim

n for the seven-point scale i
ale is the cas
e where n = 100

tors, which i ensionality of underlying ability. Th
. The only

able factor solutio:

Counting fOI‘ as high as 64’ 7% Of cum
° ulativc vari 3
ation Ihel‘e 1
* S

with Factor 1 ac

d amount of cumulative variation explained over five-poi
-point scales for all

increaseé
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sample sizes. The fit
ness of the two-factor model is almost perfect fi
ct for all sample

sizes.

.I n respect of three-factor solutions of unidimensional se .
there is equivalent number of influential indicators on factors fven-pomt e
seven-point scales for all sample sizes. Also, there is no im or both five and
proportion of variation explained by the first factor over that imveme.n e
Lower sample sizes show two dominant factors, which con:r five-point scale.
ing ability dimension. However, for n = 150 and 200 asts the underly-
substantially influenced by indicator variables. The res'u;nzrthe first factor is

n = 150 is most

reasonable as Factor 1 explains hi
ghest (46.3%) i
. proportion of cumulativ i
e varia-

tion.
The fitness of the three-factor model is almost perfect, b
, but as sample siz
e

SS.

With respect to two-factor solutions of two-dimensional
seven-point scal
e,

there is a similar number of indicator variables that highly infl
uence the forma-

tiOIl Of faCtOI'S especially Factor 1 fOl' bo Vi
’ ? th five and seven-point
P sca.les. Fur-

ther, there 1s nO substantial increase in the proportion of variati
ation explained b
y

the first factor. In this system, the two fa
s ctors are highly domi
inated by simi-

lar sets of influential indicators for n = 150
= 150, 200 and 500. F
. For these sam
ples,

n=150 provides most desirable result as it accounts for largest
cumulative vari
ation (87.5%)- The two-factor model is nearl ]
y perfectly signific
ant, and remains

the same at all sample sizes except for n = 30.

Considering three-
parable sets of indicator variables that signi
significantly contri
ntribute to

factor solutions of thr i
ee-dimension
al seven-poi
int scale
’

there are com
or 1 for both five and s i
even-point scales. E
. Even though

the formation of Fact
ased number of indicators on other two factors, the ¢
’ orresponding

there is incre
lative variation explained have increased onl i
y marginally. Th
. There appears

cumu
nant factors for all sample sizes
. The amount of

to be three domi

tive variation explained increases from 87.8% (f
. 0rn=30)upt0916
6%

cumula
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(for n =15
0), and decreases afterwards. Thus, n = 150 off
) ers most credible
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CHAPTER FIVE

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Overview

This
chapter presents a summary of the entire thesis. It highlights th i
obiccti e main
jectives of the study and research methods that have been taken to ach
0 achieve

them. The e ects of nu i
. ff mber of points on reé
sponse scales and sa i
mple size on

item response theory and factor analysis results are highlighted in this ch
1s chapter.

From the summmary, conclusions based on the findings of the study h:
ave been

drawn and recommendations made.

Summary

The study investigates the effects of
measurement scales on
results of item

e theory models and multivariate techniques. It is base on simul
imulated

respons
s conditions such as item response format number of d
) (9) i_

datasets under variou

underlying response scales, and sam i
ple size. Two mai i
. ain statistical

mensions
esponse Theory (IRT) models and Factor Analysis
— are

techniques — Item R

n analysing the simul
ated literature Shows that overwhelming number of stud
stud-

employed i ated datasets.

The review of rel

d factor analyses of item responses are based on simulation stud
studies

jes on IRT an
ing one Of combinations Of various conditions. An issue that h
as engaged the

attention of researchers has to do with investigating the i
relationship betw
een
ategorics employed and internal-consistency reliability of
y O

number of response ¢

uestionnaires. Th
is achieved with a small number of categories, reliabil
’ abDll-

Likert-type g ¢ literature showed that in situations where 1
e low
core variability

ased through incre
n is widely divided toward the content being me d
asured,

total §
asing the number of categories employed I
. 1n

ity can be incre
situations where opinio
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reliabili i
ty appeared to be independent of the number of response cat
categories
A great ¢ i i i o
g oncern in the literature is about the effect of item pa
on item-fit isti I o
ness statistics. The literature establishes that item discriminati
e ' ation and
g ut not difficulty level parameters affected item-fitness. That i
e > ey X . That is, as the
item discrimination or guess parameter increased, item-fitness val
increased. o
One of the problems in IRT that has been studied has to do with th
| e com-
parison of the performances of one-parameter and two- parameter partial
ial credit
(1PPC and 2PPC) models It has bee
. n shown that the 2PPC
model alone or in
del provided uniformly better fitness than did the

combination with the 3PL mo

1PPC model used alone or in combination with the 1PL model. It wa d
. s noted that

the poorer fit performance by th
s likely produced by the considerable variability in item discrimi
rimina-

e IPPC model alone or in combination with the

1PL model i

tion, as well as guessing on th
ood fitness tended to be larger when the 3PL-2PPC model
com-

e multiple-choice items. Further, the percentag
’ es

of items with g
bination was used. Also, this model combination tended to produce bett
etter item

asets with dissimilar properties.

fitness across dat
ed how violations of the normality assumptio
n

The literature also assess
impact the item discrimination and difficulty parameter estimates. It was re-
hat when the Jatent variabl
cult items, estimates of both parameters were considerably

vealed t e was negatively skewed, for the most discrim

inating easy oOr diffi
pled with Jarge standard errors.

The review O
or analysis 18 the characteristics of the sample from which the m
easure-

ing fact
ator variables are taken. Obviously, an aspect of the sampl
ample

ments of the indic

rth considering is ho
s been found that correlations — whi
as 1nput

that is WO w large the sample should be in order to perform

factor analysis- It ha

r analysis — ar€ Jess reliable when estimated from small 1
samples.

data in facto
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analysis. ith regards toev i uacy o
W aluatmg the ade
q Yy f the sample size i
, the litera-

’ 1

good, 500 is very good, and 1000 or greater is excellent

The comparison of the
performance of two a i
pproaches in analysi
ysing four-

point Likert rating scales — the cl i
assical factor analysi
ysis (FA) and the ite
m factor

analysis (IFA) — has been advanced in the literature. The FA employs P
' ' ' oys Pearson
correlation matrices among items, whe
) reas IFA considers i
polychoric correlati
ion

matrices. The literature confirms that classical estimation procedures i
in ordi-

nal data with four-point scales is inappropriate. For factor analysis of ord
ordered

polytomous data, it is recommended to use polychoric correlati
ons.
The thesis has discussed key conce
pts and methods used i
in IRT and facto
T

ented various IRT models and their graphical repre

analyses. It has also pres
ns. It was established that there is 2 theoretical connection betw:
een the

sentatio
tor analysis and item response models under item response f
se for-

parameters of fac
y of the underlying ability. Two measures of correlati
ion

mat and dimensionalit

achoric and polychoric coefficients — were presented

(Nkansah, Zakaria,
sets under various conditions. It shows that estimated val
val-

— tetr
The study

& Howard, 2018) described the simulation

and analyses of data
f discrimination (6) an

ple size- There is a m

d difficulty (9) parameters generally fluctuates with

ues O
arked difference between the specified and

increasing sam
arameter values at lower samples (n = 30 and 100), b
’ ut the

estimated item P
difference tends tO reduce at sample sizes of 150 and beyond. In addition, the
differences become negligible at Jarger samples (n = 500,800, 1000). Further.
elationship between parameters of IRT anc;

the study show$ that there is & direct 1
particularly 1term discrimination and factor loadi
ings.

se of factor models,

tho
esponse theory analyses of unidimensional dichot
oto-

We performed jitem T
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mous r Sp ns t
(§) esponse da asets. Ihe I‘eSU]tS indicate that itemS ﬁt th .d
1’ i € uni imenSiona
2,P| ,1|||()(le since the p-ValueS are genelally mUCh highel thall 0 05 ()]l y al
n= 50, 200 it i ; ’leS' e()“Vle
= and 1000 1t 1S detected that three items (6 12 al]d |
’ ] ’ p i 1
Y)

do not fit the m
odel. The 2PL model significantly fits the unidi
mensional di-

c .
hotomous item response data for all sample sizes

We observe that almo i
st all items signi
gnificantly fit two-di i
-dimensional IRT

model. The o ion i
1 nly exception is when n = 30 where the fitne
ss of majority of

jtems have not b i
ave not been possible to evaluate due to sparseness in th
in the data. Corr
. e-

spondingly, the overall model fitne
8 ss could not be determin
ed due to low de
grees

f f‘ T] 3 . .

chotomous response data for all other sample sizes
T .3 . ..
he study indicates that items significantly fit the three-di

-dimensional 2PL

m

odel. However, for smaller samples the fitness of items is 1
. appalling. Th

fitness of items tO the model get better as sample size increases. W ”
. We observe that

the thrce-dimensional 2P
30 where the fitness of the model ¢
ould not be determi
ned due low

I model significantly fits the data for all sample si
sizes,

exceptatn =

degrees of freedom.

We notice that in migrating from dichotomous to three-point scal

. . B scale, the sig-
nificance of fitness of items to the model generally fluctuates for all sig
all sample sizes

p-values of fitness of some items i
riorate. The overall fitness of GPC
model to unidimensi
ensional

p p
?

of other items dete
a is significant at sample sizes of 100 and ov
er.

three-point response dat

observe that, generally,
-point scale. However, on the sa
’ me three-point
scale, the

. . H
items Slgnlﬁcantly ﬁt the two*dimenSio ]
t na

n three

GPC model 0
ues differ from unidimensional to two-dimensional
al case. There

magnitude of p-val

appears to be two groups of items: (1) items whose p-value decr

eases with an

ility dimension, and (2) items whose ;
p-value increases wi

s with addi-

additional ab
nsion. Ttems of the first group will require just o
ne person-

tional ability dime
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the model to the two-di i
two-dimensional three-point response data is signifi
ificant at all

sample sizes, except forn = 30.

On three-dimensional
response datasets most it
) ems fit the model i
, particu-

larly for larger sample sizes (n > 150). For smaller sample sizes (n < 100
- ) ) —= )9 the
p-values of items worsened on high dimensions, especially for item th

s that may
get a response in higher categories. The results

require only one person-ability to

indicates that items whose fitness is quite high or almost perfect m
ay require up
to three person—ablhtles to get a response in higher categories. At n =30
) = o\, even

h items misfit the model, the overall fitness of the model is significant. T
ant. The

s that the [RT model yield

thoug
s better results on high response scal
es

plausibility i

with large number of dimensions.

nsional five-point scale, we detect that overwhelmi
ng

Considering unidime
majority of items signiﬁcantly fit the unidimensional GPC model at all
sam-

n=230 where the p-values of some items could not be det
eter-

ple sizes, CXCCPt
a the overall GPC model signiﬁcantly fits the five i
y -point

d. Not unexpected!

aset, with the exce

mine
ption of n =30. As sample size increase from

response dat
m response model fluctuates, but highest at

100 up to 1000, the fitness of the ite

n = 1000.

On tw

point scale, it indicates that most items signif:
nif-

o-dimensional five-
icantly fit the two-dimensional GPC model at sample size of 100 and beyond
ost all items could not be evaluated at n = 30 due to 1 |

o low

The fitnesses of alm
the IRT model significantly fits the data at

rprisingly;

¢ freedom. SU
he IRT model generally fluctuates with increasin
g

degrees ©
rall fitness of t

n = 30. The ove

sample size-
n the case of thfee-dimensional five-point scale, it shows that the fitness of
SO

determined T 30 due to sparseness in the data

r all itemS atn =
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data- Su isi y i y

of the IRT model fluctuates with increasing sample size

I » g .

items generally fit the unidimensional G
PC model, exce
) pt for n = 30 whe
re the

f items could not be determined d

ntly fits the unidimensional seven-point response dataset fi
et for

l'a

GPC model significa

le sizes from 150 to 1000.

On the seven-point response scal i
e, there is reduced fi
tness of most i
st items

to the two-dimensional GPC model as com
pared to the unidimensi
ensional case
erall GPC model to the two-dimensional seve
n-

However, the fitness of the oV

ata have become much significant.

point response d
The IRT analysi

there i further deterioration of t

s of three—dlmenswnal seven-point scale indicates that
a

he fitness of items to the three-dimensional GPC

d to the two-dimensional case. Meanwhile, the IRT
) model

model as compare

cantly fits the thre -point response data for all sample

e-dimensional seven

signifi
sizes. The fitness of the IRT model largely fluctuates with increasing sample
size.

that the fitness of items to the IRT model largely vary

The study indicates

jonality of the underlying ability changes. As the number of
r OI un-

as the dimens
g increases, the overall fitness of the IRT
model generall
y

derlying dimension

oscillates-
nalyses of unidimensional di
ichotomou
§ response

cted one factor a

We condu
umber of influential indicators appear t
o

reveal that the n

The results
. sample SiZ€ starting at n = 150. The indicat
ors are

¢ 15) for highe

datasets.

converge (2
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the same at poi
e single f:::ti :::;onvergence. The proportion of variance accounted for by
ases from 33.9% (for n = 30) to a highest of 46.1%
n = 800). .1% (for
With two-factor solutions of unidimensional dichotomous scale, there i

generally the incidence of repetition of high loadings on the same indi - TS
able of the two factors, with exception of sample sizes n = 150ln (licator o
which can distract interpretation. However, for n = 150, the ﬁrs:1 Ifl'ac:2 =l 800,
highly on as many as 15 indicators and explains 42.7% of variation ;;e oads
ond factor loads highly on only one indicator (Variable 5) and is a cor;trast t:e’(t:-
representation in IRT. In addition, amount of variance explained by the seco;j
factor appears to be negligible. The sample size of n = 150 thus gives a more

plausible factor solution than all other samples. The n = 150 also explains th
ains the
highest cumulative variation.
In the case of three-factor solutions of unidimensional dichotomous scal
c,

the result becomes Jess meaningful and even unrealistic for sample sizes beyond
ere is generally the incidence of repeating indicators on multiple factors

30. Th
There is also the incidence of unrealistic loadings that are greater than one in

ctor numbers, particularly
r factor structure from a lesser dimensional dataset.

higher fa for Factor 3. This incidence is as a result of

an extraction of highe

With two-factor solutions of tw
g factor consistent with two repeating dimensions un-

o-dimensional dichotomous scale, the n =

150 generates a repeatin

set. The cumulative variation is also highest for this sample

derlying the data

size.
r solutions of three-dimensional dichotomous scale indicates
w two dominant fact

sion of the scale. However, fo

influenced by the indicator

ors in the result. This pattern

rn=150

Three-facto

that lower sample siz€$ sho

is inconsistent with the
s more conceivable as it accounts for

= 150i



as high as 78.9% cumulative variation. The fitness of the three-factor model is

almost perfect for all sample sizes.

The study shows that, for one-factor solutions of unidimensional three-

point scale, there 18 increased number of indicators that influence the factors

from a highest of 15 (in two-point scale) to 18 (under three-point scale). Even

though there does not appear to be converging number of the influential indi-

t number is 17. Incidentally, for n = 150, the number of

ortion of variation accounted for by

cators, the dominan

al indicators is also 17. The prop

influenti
(forn=30)t0a high of 59.6% (for n = 200)

the factors increased from 50.7%

There is a high level of fit of the model for all sample

then fluctuates afterwards.

sizes.

ons of unidimensional three-point scale, there

In regard of two-factor soluti
ator variables on the fa

-point scale. The proportion of variation

is higher number of indic ctors, particularly for the first

factor than its counterpart under the two
_ 150, and decrease

samples, with exception of n =

explained also increases up t0 7 s thereafter. There is a

general repetition of indicators o1 factors at all
150. Unlike all other sample sizeS, the results for n = 150 is more plausible

almost all cumulative variation explained by the

| is almost perfect

as the first factor accounts for
for all sample

solution. The fitness of the two-factor mode

sizes.
point scale show that there

Three-factor solutions of unidimensional three-

tors, particularly for the first factor, over

ncreased number of indicators on fac
ce of repeating indicators

is i
that of two-point scale. There is, however, the inciden

¢ for all sample si
result as the last factor
ion. The fitness of the three-factor

ses. The sample size of n = 150 appears

of multiple factor
(Factor 3) accounts for a

more reasonable

to produce &
negligible proportion of the cumulative variat
f=laal =
model increases as sample gize increase- |
¢ two-factor solutions of two—dimensmnal three-point
n - .

Taking 1nt0 accou
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1 ov -poi
er that of two-point scale. The amounts of variation explained are almost

the same for the tWO factors for sample $izes 30, 150, 500, and 800. The amount

of cumulative variation explained by the two-factor model generally fluctuates

e size, but highest at 7 = 100. At this point, the fitness of

with increasing sampl

the model is also highest.

For two-factor solutions of two—dimensional three-point scale, there is in-
creased number of indicators that influence the formation of factors, Factor 1
in particular, over that of two-point scale. In a like manner, the amount of cu-
in favour of three-point scale. The solution for

mulative yariation 18 quite high 1
as the first is dominant with 18 in-

ith our expectation

=150 is consistent W1
a single indicator each. The

ors and the others aré influenced by

ﬂuential indicat
ariation largely

amount of cumulative v
— 150 with highest model fitness:
of unidimensional five-point scale, there

e the factor from a highest of 18

oscillates with increasing sample size,

put peaks at =

Considering one-factor solutions

is increased nu
Even though there does not

(on three-point scale) t0 20 (under fiv

onverging numb

the dominant number

appear t0 bec
ential indicators starts with

is 20. Incidentally,
om 58% (for n=30)

n=150. The proportion of vari
:oh level of fitness of the one-

to highest of 72.9% (for n = 1000). There 15 2 hig

factor model for all sample sizes:
nidimensional five-point scale,

With regards to two-factor solutions of u
he two factors for the five-

or yariables oD t

pumber of indicat
The cumulative yariations ac-

of the three-point scale.

del are consistently higher for a five-point scale

e variation explained

to 73.2% (forn= 150), slight



in
crement to 73.9% (for n = 200 and 500), then fluctuates thereafter. The two

fact
or model nearly perfectly fits the five-point scale dataset for all sample sizes

On i i
the basis of three-factor solutions of unidimensional five-point scale

there is i . s e
re is increased number of influential indicator variables, especially on Factor

1, over that of three-point scale. Also, cumulative variations explained by the

three-factor model are higher for five-point than a three-point scale. There is the

incidence of several repeating indicators on multiple factors for all sample sizes

except forn = 150 which has few.

We notice that, for two-factor solutions of two-dimensional five-point scale

there is increased number of influential indicators on factors, notably Factor 1

over that of a three-point scale. Further, cumulative variations explained are

e than a three-point scale. The two factors are sub-

higher for a five-point scal

stantially influenced by comparable sets of indicator variables for n = 150, 200

and i ; ; i
800. This occurrence 18 consistent with number of ability dimensions un

derlying the scale. For these samples, 2 = 150 has highest 83.9% of cumulative

variation, and as such gives most plausible result.

For three-dimensional datasets, there i8 comparable number of indicato
r

influence formation of factors on both three and five-point scales

variables that

r, there 1S a moderate improvement in the amount

for all sample sizes. Howeve

of variation explained over 2 three-point scale. Itis worthy of note that indicator

greatly influence the formation of two factors for lower sample sizes
n = 150 and 200, only Factor

0 is most desirable as it possesses highest

variables
1 considerably dominates

On the contrary for

the other two. The result forn=15
n. The fitness of the three-factor model on the three-

90% cumulative yariatio
erfect for all sample sizes, and peaks at

dimensional five-point scale is almost P

n = 150.

One-factor solutions O
indicators that in

f unjdimensional seven-point scale show that there

fluence the factor even for lower sample

is increased number of
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size. For all n > 150, all twenty indicator variables are influential. The propor

tion of variation accounted for increases from 61.6% (forn=30)toa highest of
0

79.4% (for n = 1000). It is als
s as high (77.6%) for n =200 as forn= 1000. Generally, there

explained remat
one-factor model for all sample sizes.

o relevant to note that the amount of information

is almost a perfect fit of the

Two-factor solutions of unidimensional seven-point scale reveal that al-
though the number of influential indicators on Factor 1 have not increased over

that of five-point scale, those of Factor 2 have shot up for all sample sizes, €X-
ceptn = 100. Generally, under seven-point scale, there are comparable sets of
ntribute to the formation of both factors, which

ying ability. The only reasonable

t in line with dimensionality of underl

indicator variables that Jargely cO

is no
where n = 100, with Factor

n for the seven-point scale is the cas®
umulative yariation.

1 accounting for as high as 64.7% of €
ion explained over five-point scales for all sample

amount of cumulative variaft

factor solutio
There is increased

the two-factor model 18 almost perfect for all sample sizes.

sizes. The fitness of
en-point scale,

In respect of three-factor solutions of unidimensional sev
t number of inﬂuential indicators on factors for both five and

there is equivalen
o improvement in the

Also, there is n

| sample sizes:
tor over that of five-point scale.

seven-point scales for al
d by the first fac

f variation explaine
:ch contrasts the underly-

proportion o
show two dominant factors, whi
=150 and 200, only the first factor is

wever, for 7=

Lower sample sizes

ing ability dimension. HO
y influenced by indicator variables- The result for n = 150 is most

substantiall
jon of cumulative varia-

(46.3%) proport
ut as sample size

or 1 explains highest
is almost perfect, b

reasonable as Fact
hree-factor model

e increase in the amount of fitness.

s of tWO-dlmenswnal seven-point scale,

at highly influenc

en-point scales. Fur-

e the forma-



d b

l

lar sets of influential indicators for n = 150, 200 and 500 For thes 1
. e samples,

n= 1 : .
150 provides most desirable result as it accounts for largest cumulative vari

ation (87.5%). The two-factor model is nearly perfectly significant, and remai
g ns

the same at all sample sizes except for n = 30.

Considering three-factor solutions of three-dimensional seven-point scale

s of indicator variables that significantly contribute to

there are comparable set

the formation of Factor 1 for both five and seven-point scales. Even though
r of indicators on other two factors, the corresponding

there is increased numbe
reased only marginally. There appears

ation explained have inc

cumulative vari
t n = 200. The amount of

s for all sample sizes, eXcep

to be three dominant factor:
es from 87.8% (forn = 30) up to 91.6%

tion explained increas

cumulative varia
n = 150 offers most credible

ses afterwards. Thus,

(for n = 150), and decrea

result.

Conclusions

gates the offects of response scales of items on

The study primarily investi
nd multivariate techni

ponse theory models a

ed under yarious €O

ques. A number

results of item res
nditions such as item response

of datasets have been simulat
and sample size to

ing response scales,

umber of dimensions underly
ical techniques — Item Response

format, n
the study. Two main statist

address the issues in
or Analysis — were emp

IRT) models and Fact
nse scales of items.

important methods 1

Theory ( loyed to analyse datasets

from various respo
udy made us® of
g statistics in orde
ality of the under!

n item response theory such

s of response

The st
and model fitnes
and dimension

r to appreciate the effect

as item
ying person ability on re-

scales, sample size,
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sults of IRT models. Further, the effects of the conditions highlighted on the

results of factor analysis were examined by the plausibility of the factor solu

n order to understand the reasonableness of the factor solution, we made

ation of the dimensionality of the datasets, the amount

tion. I

use of the correct represent

e variation explained, and the fitness of the factor model.

of cumulativ
A significant observation in the study is that there is a direct relationship

eters of IRT and those of fact
In this regard, items with high discrimination

between the param or models, particularly item

nation and factor loadings.

factors. Such items possess

discrimi

values load highly on

a discriminatory power with

greater than one.

As the number of points on the scale increase
ases, the fitness of items improves with

absolute value
s, the fitness of items to the

IRT model Jargely fluctuates. In some €

g number of point
in most cases th

s on the scale, but in other cases the fits of items

increasin
deteriorates. Further, e overall fitness of IRT models increases

ing points o0 the scale.

with increas
e determinable

IRT models may not b

tness of items to
e size increases, the fitness

arsity. AS sampl

s. This incidence ist

In general, the fi
ple sizes due to SP

enerally fluctuate

at smaller sam
he same for the

of items to IRT models g
s of the IRT model.
and number of fit ite

There does not appear to be any relationship

ms as sample size i
mulative variation explained

overall fitnes
ncreases.

between model fitness

The results also show that the amount of cu

-points. It fol

lows that, the number of influential

increases with increasing scale
ale-points. This means that,

es with increasing SC€

tors on factors increas

indica
uld be most interpretable on larger scale-

factors are more well defined and €O
me on higher scale-points of five

The results arc, however, almost the sa

points-
and seven
The study reveals that for smaller sample size, panicularly below 100,
ors may not generate the desired dataset. That is, the data generated

items/indicat
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ma i
y not follow the desired model. We may, therefore, not be able to obtain

fac ion i i
tor solution if we attempt to extract higher factor solution than the underlying

dimensionality on few scale-points. This particularly shows that extracting more

factors than necessary could run into difficulties, especially for low scale points

uces a more consistent factor solution based

Generally, a sample size of 150 prod

on the underlying dimensionality of the data. Howevel in some cases of the
factor structure (particularly, high dimensional datasets), 2 sample size of 100

gives a more consistent result.

Recommendations

ults appear reasonable on higher scale

In factor analysis, generally, res
.o even though @ sample size of 150 stands out.

od for small sample size

be important t0 examine the IRT

del, results are particularly not go

t will therefor€

ctor models on Likert gcale data. This has the potential to

model, along with fa
ations of factors.

help obtain the right interpret
at the true dimensionality of data be deter-

be suggestcd th

Again, it can
. Further research in the

e appropriate fac

mined in order to extract th
ms on results IRT and multi-

f number of ite

area would investigate the effect O

variate statistical techniques-
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APPENDIX

R CODES FOR DATA SIMULATION AND ANALYSIS

library (mirt )

library(psych)

#Item parameter values

._...—__._._.._—.—.—.—_...—.—._-__

4,2.2,1.5,2.7,1.8,1.6,2,2.9,3,

a=c(0.5,0.7,0.8,0.6,0.
211'3l209)

2.1,2.8,1.4,1.9,1.
.4,2.2,1.5,2.7,1.8,1.6,

a2=matrix(c(0.5,0.7,0.8,0.6,0

2,2.9,3,2.1,2.8,1.4,1.9,1.2,1.3,2.9,0.5,

0.7,0.8,0.6,0.4,2.2,1.5,2.7,1.8,1.6,2,

2.9,3,2.1,2.8,1.4,1.9,1.2,1.3,2.9),20,2)

7,0.8,0.6,0.4,2.2,1
2.1,2.8,1.4,1.9,1.2,1.3,

a3<-matrix(c(0.5,0. -5:2-7,1.8,

1-6,212-9I3l
5,0.7,0.8,0.6,0.4,2.2,1.5,2.7,

2.9,0.
1,8,1,6,2,2.9,3,2.1,2.8,1.4,1.9,1.2,

1.3,2.9,0.5,
.8,1.6,2,2.9,3,2.

0.7,0.8,0.6,0.4,2.2,1.5,

1,2.8,1.4[1.9,

-3,2'9)12013)

1,2.0,—2.5,—2,—1.5,—2.2,2.5,2.3,

,0.12[‘2'3I0’
5,0.4,0.42,0.5

d=c (0
6'0-2)

1.5,2.2,0.3,0.5,0.2
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d3=matrix(c(0,0.12,
2.5,2.3,1.5,2.2,0.3,0.

0.56,0.2,0,0.12,

-1.5,
0.4,0

-2.5,

0.5,0.25,0.4,0.4

d5=matrix(c(0,0.12,

2.5,2

0.56,0.2,0,0.12,

-1.5,
0.4,0
-2.5,
0.5,0

—2.3,0.1,2.0,—2.5,—2,—1.5,—2.2,

5,0.25,0.4,0.42,
-2.3,0.1,2.0,—2.5,-2,

_2u2,2'5’203,105[202,0-3,005,0025,

.42,0.56,0.2,0,0.12,-2.3,0.1,2.0,

—2,-1.5,-2.2,2.5,2.3,1.5,2.2,0.3,

2,0.56,0.2),20,3)

—2¢3,0-1’2'0,-2'5'—2’_105,—2.2'

0.3,0.5,0.25,0.4,0.42,
24

.3,1.5,2.2,
—2.3,0.1,2.0,—2.5,—

—2.2,2.5,2.3,1.5,2.2,0.3,0.5,0.25,

0.2,0,0-12,'2.3,0.1,2.0’

5,2.3,1.5,2.2,0.3,

.42,0.56,

'2,'1.5,—2-2,2.
4,0.42,0.56[0-2,0,0-12,—2.3,

—2.2f2o5,203'1-5,

.25,0.

"'2-5,"2,"1.5,
.4,0.42,0.56,0.2,



#Simulating Dich

0.1,2.0,-2.5,—2,-1.5,-2.2,2.5,2.3,1.5,

2.2,0.3,0.5,0.25,0.4,0.42,0.56,0.2,
0,0.12,—2.3,0.1,2.0,—2.5,-2,—1.5,—2.2,
2.5,2.3,1.5,2.2,0.3,0.5,0.25,0.4,0.42,
0.56,0.2,0,0.12,—2.3,0.1,2.0,—2.5,—2,
-1.5,-2.2,2.5,2.3,1.5,2.2,0.3,0.5,0.25,
0.4,0.42,0.56,0.2,0,0.12,—2.3,0.1,2.0,
—2.5,-2,-1.5,—2.2,2.5,2.3,1.5,2.2,0.3,

0-5,0-25,0-4,0.42,0.56,0.2),20,7)

otomous Data

#Unidimensional;

set.seed(201)

set.

set.

set.

set.

set .

set .

;Dichot30=simdata(a=a,d=d,N=3o'
itemtype = "2PL")

seed(ZOl);Dichot100=simdata(a=a,d=d,N=100,

itemtype ="2PL")

seed(201);Dichot150=simdata(a=a,d=d,N=150,

itemtype ="2PL")

seed(201);Dichot200=simdata(a=a,d=d,N=zoo,

itemtype ="2PL")

01);Dichot500=simdata(a=a,d=d,N=5oo,

seed (2
itemtype ="2PL")
seed(ZOl);Dichot800=simdata(a=a,d=d,N=800,
itemtype ="2PL")
seed(201);Dichot1000=simdata(a=a,d=d,N=1000,
itemtype ="2PL")
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#Two-dimensional;
set.seed(201);Dichot30=simdata(a=a2,d=d N=30
4 - ’
itemtype = "2PL")

set.seed(201);Dichot100=simdata(a=a2,d=d N=100

itemtype ="2PL")

set.seed(201);Dichot150=simdata(a=a2,d=d,N=150
14

itemtype ="2PL")

set.seed(ZOl);Dichot200=simdata(a=az,d=d,N=200,

itemtype ="2PL")

set.seed(ZOl);Dichot500=simdata(a=az,d=d,N=500,

itemtype ="2PL")

ichot800=simdata(a=a2,d=d,N=800,

set.seed(ZOl);D
itemtype ="2PL")

set.seed(ZOl);Dichot1000=simdata(a=a2,d=d,N=1ooo,

itemtype ="2PL")

#IRT Analyses of Dichotomous Data

#Unidimensional;

Dichot30,model =1,

Modell=mirt(data=
IRT .param = TRUE, itemtype ="2PL")

nt(coef(Modell),digits = 3)

pri
#Item fitness

odell)

itemfit(M
#Overall model £

itness

MZ(Modell)
#trace lines

plot(Modell,type _rtrace’)



print(coef(ModelZ),digits = 3)

itemfit(ModelZ) #Item fitness

M2(Mode12) #overall model fitness

plot(ModelZ,type ='trace’) #trace lines

#Unidimensional TRT models for other samples

#are evaluated by changing the corresponding

#dataset.

#Two—dimensional;

Modell=mirt(data=Dichot30,model = 2

IRT .param = TRUE , itemtyYP® ="2PL")
print(coef(Modell),digits = 3)
itemfit(Modell) #Item fitness
M2 (Modell) #Overall model fitness
PIOt(Modell,type _rtrace’) strace lines
Mod‘312=mirt(dai:a=Dichot100,model = 24

="2PL")

IRT.param = TRUE,itemtype

Print(COef(ModelZ),digits = 3)

em fitness

model fitn

itemfit (Model2) #IT

#Overall

ess

_rtrace’) #trace 1ines

=

P1°t(Mode12,type
T models for otherl samples

#TWO‘dimensional IR
ted bY chan

ging the corresponding

#are evalua

#dataset-
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#Fa
ctor Analyses of Dichotomous Data

———====EEE

p========
FA1<—fa(r=Dichot30,nfactors = 1,n.0bs=30
rotate = nyarimax",scores = “regression"
fm="pa",cor = "tet") |
print(FA1$r,digits = 3)
digits = 3)

print(FA1$Structure,

print(FAl$fit)

<—fa(r=Dichot100,nfactors = 1,n.obs=100,

FAZ2
rotate 7 "varimax",scores = "regression",
fm="pa"rcoF = "tet")
Print(FA2$r,digits 3)
Structure,digits = 3)

print(FA2$

print(FA2$fit)
r solution

s for other samples are

#0One-facto
ponding

#obtained bY substituting the corres

#Two-factor solu

#changing s practors’ t° 2

#simulating three~point scale Daté

#===============================s=

#Unidimensional;

set.seed(ZOI);poly3,30=51mdata(a=a,d=d3,
N=30,itemtype = "gpcm“)

poly3,100=simdata(a=a,d=d3,N=100,
ngpem")
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# o
Three—point response datasets for other samples

#can be generated by changing the value of 'N’

#Two—dimensional;

;poly3_30=simdata(a=a2,d=d3,N=30,

set.seed(201)
itemtype = ngpcm")

set.seed(ZOl);poly3_100=simdata(a=a2,d=d3,N=100,

itemtype < ngpcm")

#Two—dimensional Three-point response datasets
#for other samplescan pe generated py changing

#the value of ’'N’.

#IRT Analyses of Three—-point Scale Dbata

#Unidimensional;

<-mirt(data=poly3,30,model=l,

Modell
IRT .param = TRUE,

itemtype="gpcm")

odell),digits = 3)

#Item fitnessS
odel fitness

rint(coef(M

(Modell)
#0verall m

P

itemfit

#trace lines



M2 (ModelZ2) #overall model fitness

plot(ModelZ,type =’/trace’) #trace lines

#Unidimensional rgpcm" models for other
#samples are evaluated by changing the

#corresponding dataset.

#Two—dimensional;

Modell<—mirt(data=poly3_30,mode1=2,

IRT.param = TRUE,

itemtype="gpcm")

odell),digits = 3)

print(coef(M
#Item fitness

itemfit(Modell)
1 model fitness

MZ(Modell) #Overal
—’trace’) #trace jines

=

plot(ModellltYPe

Mode12=mirt(data=poly3,1oo,mode1 = 2
IRT .param = TRUE,itemtype =ngpcm”)
Print(coef(ModelZ),digits )
itemfit (Model2) #Item f£itness
M2 (Model2) #Overall model fFitness
PlOt(Modelz,type ='trace’) #trace jines
ngpcm" models for other

#Two—dimensional
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#Factor Analyses of Three-Point Scale Data

__-_.__-___—.—_...-_-——__—_.—_—_
—_——

——

FA1<—fa(r=poly3_}0,nfactors = 1,n.0bs=30,

rotate = "varimax“,scores

= “regression“,

fm="pa",cor = npolyn)

(FA1$r,digitS = 3)

print
re,digits = 3)

print(FA1$Structu
print(FAl$fit)

= 1,n.0b5=1001

"regression",

print(FA2$fit)
r solution

s for otherl samplées are

#One-facto :
bstituting the correspon ing

#obtained by SY

#dataset and numbe

#Two-factor solutions

#changing 'nfactors' to 2

——
——==
.——-,—;:’_—-——-—

===
,f—-g”._"—-—



#Five—-point response datasets for ot

#samples can be generated by changing the

#value of IN’.

#Two—dimensional;

set.seed(ZOl);poly5,30=simdata(a=a2,d=d5,

N=30, itemtype = "gpcm")

set.seed(ZOl);poly5_100=simdata(a=a2,d=d5,

N=100, itemtypPe = ngpem")

#Two—dimensional Five—point responseé datasets
#for other samplescan be generated by changing

#the value of ’N’.

#IRT Analyses of Five

=, = =

S =
p====

#Unidimensional;

Modell<-mirt(data=poly5_30,model=1,

IRT.param = TRUE,

itemtype=“gpcm")

rint(coef(M

P
itemfit(Modell) #Item fitness
MZ(Modell) #Overall model fitness
plot(Modell,type _rtrace’) #trace 1ines
Mode12=mirt(data=poly5,100,mode1 = 1,
IRT.param = TRUE,
jtemtyP® _ngpem")
print(coef(Modelz),diqits = 3)
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itemfit(ModelZ) #Item fitness

M2(Mode12) #overall model fitness

plot(ModelZ,type —rtrace’) #trace lines

#Unidimensional ngpcm” models for other

4samples are evaluated bY changing the

#corresponding dataset-

#Two—dimensional;
Modell<—mirt(data=poly3,30,model=2,
IRT.param = TRUE,

itemtype=“gpcm")

(Modell),digits = 3)
11) #Item f

#Overall mode

print(coef
jitness

itemfit(Mode
1 fitness

M2(Modell)
plot(Modell,type =’trace’) #trace 1ines

_poly3’100,model = 2y

MOde12=mirt(dat3’
TRUE,itemtype =ngpem”)

= 3)

-
=

IRT.param
e12),digits

MZ(ModelZ) model fitness

plot(ModelZ,type

#Twoﬂdimensional

are €

#samples
g dataset.

#correspondln

256



#Factor A
n
alyses of Five-Point Scal
e Data

== EEET —_——
———=====
———-—————.
———=====

#======
Fal<—fa(r=

( poly5_30,nfactors = 1,n.0bs=3

,h.obs= 0
rotate = vyarimax", |
sCO =
res “regression",fm=“pa" cor n
’ = pOlY")

print(FAl$r,digits = 3)

print(FA1$Structure,digits = 3)

Print (FAl$fit )
paz<-fa (r=poly5-10
_ 100, =
y nfactors = L n.obs=100,
I'Otate = "varimaX“,
scores - " . ; o
regre351on',fm_ pa",cor = "poly")
ri o
P 1nt(FA2$r:dlg1ts _ 3)
ri
P 1nt(FA2$Structure,digits = 3)
print(FA2$fit)
#0one—factor solutions fFor other samples are
4obtained bY substituting the corresponding
#dataset and number of opservations
#Two—factor solution® are optained PY changing
#’nfactors to
#Simulat1 g Sevenfpoint scale pat
#:”‘5‘;55::’5:5.‘:5;55::;5555:—‘:::5:::_—;
#Unldlmensional;
set seed(201);pOly _ O=51mdata(a=a,d=d7,
N=30 jtemtyP “gpcm')
~qi = =d7
set seed(201),poly7,100~51mdata(a a,d=d’s
N’lOO,ltemtyp ngpch )



#Three-point response datasets for other samples

#can be generated by changing the value of 'N’.

#Two—dimensional;

set.seed(201);poly7_30=simdata(a=a2,d=d7,

N=30, itemtyp®€ = "gpcm“)

y7_100=simdata(a=a2,d=d7,

set.seed(ZOl);Pol

N=100,itemtype = "gpcm")

#Two-dimensional Three-point response datasets
#for other samples can be generated by changing

#the value of 'N’.

#IRT AnalysesS of Sevenfpoint Scale Data

—_—==

__._._-_.-_—__..—___.-_—-———"__,.—'__—’.-—"——' ==
——=== =

pommmm=mm===T

#Unidimensional;

Modell<—mirt(data=poly7ﬂ30,model~1,
IRT.param = TRUE,

itemtype="gpcm")

print(coef(Modell),digits = 3)
Modell) #Item fitness

itemfit(
MZ(Modell) #overall model fitness
lOt(MOdell'tYP _rtrace’) #trace lines
P
ModelZ‘mlrt(data=poly7,100,model _ 1,
IRT.para -~ TRUE/,
itemtype =“gpcm")
. _ 3)
ts
print(coef(ModelZ),dlgl
ijtness
itemfit(ModelZ) grtem f
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M2 (Model2) #0overall model fitness

plot(ModelZ,type ='trace’) #trace lines

#Unldlmensional ngpcm” models for other

#samples are evaluated by changing the

#corresponding dataset.

#Two—dimensional;

data=poly7_30,mode1=2,

ram = TRUE,

Modell<—mirt(
IRT.p2a

itemtype="gpcm")

(coef(Modell),digitS = 3)

print
#Item fitness

odell)

itemfit(M
#Overall mode

MZ(Modell) ] fitnesSs

odell,type

_rtrace’) #trace lines

plot (M

Mode12=mirt(data=poly7_100,model = 2,

IRT.parad

m = TRUE,itemtype ="gpcm")

print(coef(ModelZ),digits = 3)
itemfit(ModelZ) #Item fitness
MZ(ModelZ) #Overall model fitness
plot(ModeIZ,typ _rtrace’) #trace lines
#Two—dimen51on 1 "gpcm" models for other
#sample are luated by changing the
#correspond'”g dataset
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#Factor An
alyses of Se
ven-Point Scal
e Data

e e o
— === _—‘_——-‘__————-____
—-——-__——-——-.__.__
-'—'-——-.—.—-—_—_—‘——-_

#========_
FAl<— =
fa(r poly7_30,nfactors = 1,n.0bs=30
° - ]
rotate = nyarimax",
scores = “regression“,fm="pa",cor = "poly"
| = y")
print(FA1$r,digits = 3)
digits = 3)

print(FAl$Structure,

print(FAlsfit)

FA2<‘fa(I=p01y7_100,nfactors = 1,n.obs=100,
rotate = wyarimax"s

gscores < "regression",fm="pa",c°r - vpoly")
print(FA2$r,digits = 3)
print(FA2$Structure,digits = 3)
print(FA2$fit)
#One—factor solutions for other sampleés are
#obtained by substituting the corresponding

f observationS-

#dataset nd pumber ©
solutions are obtained by

#Two—factor

’nfactors’ ro 2

#changing

Py



