
Information and Software Technology 53 (2011) 1319–1336
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
A comparative study of challenges in integrating Open Source Software
and Inner Source Software

Klaas-Jan Stol a,⇑, Muhammad Ali Babar b, Paris Avgeriou c, Brian Fitzgerald a

a Lero—The Irish Software Engineering Research Centre, University of Limerick, Ireland
b IT University of Copenhagen,Rued Langgaards Vej 7, 2300, Copenhagen, Denmark Denmark
c University of Groningen, Department of Mathematics and Computing Science, Nijenborgh 9, 9747 AG, Groningen, The Netherlands

a r t i c l e i n f o
Article history:
Received 25 January 2011
Received in revised form 13 June 2011
Accepted 14 June 2011
Available online 24 June 2011

Keywords:
Open Source Software
Inner Source
Software development
Challenges
Case study
Empirical studies
0950-5849/$ - see front matter � 2011 Elsevier B.V. A
doi:10.1016/j.infsof.2011.06.007

⇑ Corresponding author. Tel.: +353 61 23 3737; fax
E-mail addresses: klaas-jan.stol@lero.ie (K. Stol), m

paris@cs.rug.nl (P. Avgeriou), brian.fitzgerald@lero.ie
a b s t r a c t

Context: Several large software-developing organizations have adopted Open Source Software develop-
ment (OSSD) practices to develop in-house components that are subsequently integrated into products.
This phenomenon is also known as ‘‘Inner Source’’. While there have been several reports of successful
cases of this phenomenon, little is known about the challenges that practitioners face when integrating
software that is developed in such a setting.
Objective: The objective of this study was to shed light on challenges related to building products with
components that have been developed within an Inner Source development environment.
Method: Following an initial systematic literature review to generate seed category data constructs, we
performed an in-depth exploratory case study in an organization that has a significant track record in the
implementation of Inner Source. Data was gathered through semi-structured interviews with partici-
pants from a range of divisions across the organization. Interviews were transcribed and analyzed using
qualitative data analysis techniques.
Results: We have identified a number of challenges and approaches to address them, and compared the
findings to challenges related to development with OSS products reported in the literature. We found that
many challenges identified in the case study could be mapped to challenges related to integration of OSS.
Conclusion: The results provide important insights into common challenges of developing with OSS and
Inner Source and may help organizations to understand how to improve their software development
practices by adopting certain OSSD practices. The findings also identify the areas that need further
research.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Software-developing organizations continuously need to
improve their software development processes in order to decrease
costs and stay competitive. As a result, methods that have been
shown to be successful tend to be imitated in order to reproduce
that success within the organization [1]. One such software devel-
opment approach that has gained much attention over the last dec-
ade is Open Source Software (OSS) development. While there is no
‘‘standard’’ set of practices with OSS development (OSSD), some
common practices include universal, immediate access to all pro-
ject artefacts (e.g., source code), release early and often [2], and
making local changes to the software (which may lead to a sepa-
ll rights reserved.

: +353 61 21 3036.
alibaba@itu.dk (M. Ali Babar),
(B. Fitzgerald).
rate ‘‘fork’’).1 This phenomenon of adopting OSSD practices within
a corporate setting is known as Inner Source [4], though other
terms are in use as well, such as Corporate Open Source [5] and
Progressive Open Source [6]. In this paper, we will use the term
‘‘Inner Source’’. Converting a product’s users into its co-developers
may improve quality and gain specialized new features that may
turn out to be important to a wider audience [7]. Mockus and
Herbsleb also suggest that commercial software development can
benefit from certain OSS practices [8], while other researchers have
suggested that lessons can be learned from OSS communities
[9,10]. Several success stories and lessons learned have been re-
ported based on case studies in a number of large organizations
that have adopted Inner Source, such as Alcatel-Lucent [5], HP
1 Forking the development of an OSS project into a new, separate project is
typically frowned upon [3], as a fork splits a community into two smaller, competing
communities. It is only used as an extreme measure if the splitters have strong
disagreement about the direction of the OSS project’s development. A recent example
is LibreOffice, which is a fork of the OpenOffice.org project started by several
members of the OpenOffice.org community.

http://dx.doi.org/10.1016/j.infsof.2011.06.007
mailto:klaas-jan.stol@lero.ie
mailto:malibaba@itu.dk
mailto:paris@cs.rug.nl
mailto:brian.fitzgerald@lero.ie
http://dx.doi.org/10.1016/j.infsof.2011.06.007
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

1320 K. Stol et al. / Information and Software Technology 53 (2011) 1319–1336
[6], Nokia [11], Philips [4] and SAP [12]. Though OSSD practices are
more applicable to large organizations (due to geographic distribu-
tion inherent in large organizations), smaller organizations can
also benefit from OSS development practices [13]. While each of
the abovementioned organizations have adopted a certain set of
OSSD practices, it is worth noting that each implementation of In-
ner Source is uniquely tailored to the organization, which implies
that the choice of which practices are adopted, and how, varies
per organization. This is further discussed in Section 3.

While these reports of successful adoption of OSS practices are
promising, there has been no report on what challenges practitio-
ners can face when using an internal ‘‘Open Source’’ project. How-
ever, there is quite a large body of research on the challenges of
using OSS components in developing products, and in previous
research, we identified 21 unique challenges as part of a systematic
literature review [14]. This apparent lack of research on the chal-
lenges of product development in Inner Source motivated us to
undertake a research effort aimed at identifying the challenges
being faced by an organization that builds products that include
in-house developed software components using OSS development
practices (within the organization).

The goal of this research was twofold: first, our intention was to
empirically gain an understanding of the adoption of Inner Source
and its associated challenges within an organization. Second, we
intended to comparatively analyze the challenges of integrating
OSS within an industrial environment with the challenges of inte-
grating Inner Source Software. Given the goal of our research, we
used the case study research method [15]. This paper reports on
design, logistics, and findings from the case study carried out at a
large organization, which had adopted Inner Source. The main con-
tributions of this work are to:

� Illustrate one way of implementing Inner Source by identifying
adopted OSS practices (addressed in Sections 6 and 7.6).
� Increase our understanding of challenges related to integrating

Inner Source Software (addressed in Sections 7.1 to 7.4).
� Compare findings to challenges reported in the literature on

product development with OSS components to identify how
these manifest in a corporate setting (addressed in Section
7.5).
Background and related work
(Section 3)

Challenges in integrating OSS
products (Section 4)

Research design
(Section 5)

Terminology
(Section 2)

Description of inne
comparison of open

inner sourc

Context, data col
analysis

Definitions of term
this paper

Challenges in inte
Inner Source So

The SoftCom Organization
(Section 6)

Outcome

Challenges in Inner Source
(Section 7)

Challenges in integr
reported in the lit

OSS practices use
the case study org

Mapping of chal
between OSS (litera

ISS (case stu

Section

Fig. 1. Structure o
The results presented in this paper can be helpful to other orga-
nizations that have adopted, or are planning to adopt OSS practices
when they wish to compare their approach. Furthermore, the iden-
tified challenges and approaches can help to form a research agen-
da for the software engineering research community in general,
and the OSS research community in particular.

This paper’s structure is based on a study by Petersen and
Wohlin presented in [16], in which they present a comparison of
issues and advantages in agile and incremental development
between the literature and an empirical case study. We present a
similar structure: we draw a comparison between challenges in
integration of OSS as reported in the literature on the one hand,
and challenges related to integration of software developed in an
Inner Source environment that were identified through an empiri-
cal study on the other hand. We therefore use Petersen and
Wohlin’s diagrammatic approach to outline the structure of this
paper, which is presented in Fig. 1.

In Section 2 we discuss the terminology used in the remainder
of this paper. Section 3 presents background information, outlining
the context of this study and related work. Section 4 presents the
results of a systematic literature review, through which we identi-
fied 21 challenges that have been reported in the literature relating
to product development using OSS. Section 5 presents the research
design of the case study. Section 6 outlines the implementation of
Inner Source in the studied organization (which we refer to as
‘‘SoftCom’’), which gives insight into the context of our study. Sec-
tion 7 presents the results of the case study, and a comparison to
the findings of the literature review. We discuss implications of
the results in Section 8. Section 9 concludes this paper and pre-
sents an outlook to future work.
2. Terminology

As noted above, there is no commonly accepted term for the
concept of adopting OSS development practices within a corporate
context. Different organizations have used different terms: at
Philips Healthcare, it is called ‘‘Inner Source’’ or ‘‘Inner Source Soft-
ware’’ [4], while at Alcatel-Lucent it is called ‘‘Corporate Open
Source’’ [5]. At Hewlett–Packard Corp. this phenomenon is referred
r source,
 source to
e

lection,

s used in

grating
ftware

Discussion
(Section 8)

Conclusions and future work
(Section 9)

Implications

ating OSS
erature

d within
anization

lenges
ture) and
dy)

f this paper.

2 We acknowledge there are ideological differences between ‘‘Free Software’’ and
‘‘Open Source Software’’, as outlined by Eric Raymond in his seminal work ‘‘The
Cathedral and the Bazaar’’. In the context of our research, however, these ideological
differences are not relevant.

K. Stol et al. / Information and Software Technology 53 (2011) 1319–1336 1321
to with the umbrella term ‘‘Progressive Open Source’’ (POS) [6].
Within POS, three different levels are distinguished: ‘‘Inner
Source’’, ‘‘Controlled Source’’ and ‘‘Open Source’’. Within the con-
text of POS, ‘‘Inner Source refers to the application of the Open Source
approach and benefits to developers within the corporate environ-
ment—i.e., ‘open’ to all developers behind the firewall’’ [6]. The second
tier within POS is Controlled Source, which is the same concept,
but access is extended to specific corporate partners. The third tier
is Open Source as defined by the Open Source Initiative (OSI), and
therefore the source code is open to anyone with an Internet
connection.

While we do not claim there is no room for different terms, a
common vocabulary is desirable for researchers and practitioners
to be able to deliberate and discuss research in this area. Further-
more, confusion may arise when using different terms; for
instance, the terms ‘‘Inner Source’’ and ‘‘Inner Source Software’’
are very similar, and have been used as synonyms. However, the
additional word ‘‘software’’ may tend to imply a product, in the
same way that Open Source Software refers to a software product.
Both terms have been used to refer to the development practices;
that is, a process, rather than a product. Moreover, ‘‘Inner Source’’
within the context of POS is slightly different from the term Inner
Source as used for instance by Wesselius, who defines it as a ‘‘lim-
ited environment that has a closed border (such as a company, a divi-
sion or a consortium)’’ [4]. In POS, on the other hand, an
environment that limits access to a consortium (i.e., partners) is
called ‘‘Controlled Source’’; in POS there is an explicit distinction
with respect to the openness of the source code within one organi-
zation and a consortium of organizations (partners).

For these reasons, we provide definitions of a number of terms
that we use throughout the rest of this article. We base our defini-
tions on an earlier definition by Gaughan et al. of Inner Source [17]
and the common understanding of the terms Open Source, Open
Source Software, and Open Source Software development (OSSD).
We define the following terms:

2.1. Inner Source

The leveraging of Open Source Software development practices
within the confines of a corporate environment. As such, it refers to
the process of developing software at an organization that has
adopted OSS development practices.

Synonyms for this are the terms ‘‘Corporate Open Source’’ and
‘‘Progressive Open Source’’, as used by other authors. This defini-
tion subsumes the meaning of ‘‘Controlled Source’’ in POS; that
is, Inner Source may occur within the context of a single organiza-
tion, or a consortium of organizations.

2.2. Inner Source Software (ISS)

The software product that is developed within an Inner Source
context. That is, the product that is developed at an organization
that has adopted OSS development practices.

This definition differs in meaning to that used by other authors,
where it would be a synonym for ‘‘Inner Source’’. We note that the
source code is still closed, and is therefore different from OSS.

2.3. Inner Source Software Development (ISSD)

The development of a specific software product (namely, Inner
Source Software) within an Inner Source environment; that is, an
organization that has adopted OSS development practices.

This is similar to the term OSSD, which refers to the develop-
ment of Open Source Software. Therefore, ISSD refers to a process
as well, just as Inner Source, but whereas Inner Source refers to
the phenomenon of adopting OSSD practices within a corporate
environment, ISSD refers to the more concrete notion of develop-
ment of a specific Inner Source Software product.
3. Background and related work

In this section we review the work related to our study to
discuss relevant concepts that will be used for interpreting and
discussing the findings from this study.
3.1. Developing with Open Source Software

Organizations may exploit OSS in different ways in the context
of software development. Both Van der Linden [18] and Hauge
et al. [19] identified five different options:

1. adopting development practices (‘‘Inner Source’’);
2. using OSS development tools;
3. integrating OSS components;
4. publishing in-house developed components as OSS;
5. establishing a symbiotic relationship with an OSS community.

In this research we focus on the first option; that is, the adop-
tion of OSS practices. We note that these five options to adopt
OSS are not mutually exclusive. For instance, the first option (and
studies reporting on it) often (but not necessarily) includes option
two [2] (the adoption of OSSD tools) while the reverse is not true.
Furthermore, in Section 3.4 we compare integration of OSS compo-
nents to integration of Inner Source Software, thereby linking
options one and three.
3.2. Open Source Software development practices

OSS is often characterized as software developed by geograph-
ically distributed volunteers, lacking work assignments and project
planning, and rapid release-and-fix development cycles. However,
as Østerlie and Jaccheri argue, there is no empirical evidence that
supports the assertion that OSS development (OSSD) is such a
homogeneous phenomenon [20]. Feller and Fitzgerald argue that
there is no single OSSD process, and note that ‘just a handful of
projects’ (i.e., Mozilla Firefox, Apache, Linux kernel) keep recurring
in OSSD research [21]. Similar results were reported in [22]. Each
OSS project may follow different practices, but all OSS projects
share a common philosophy2 [23]. A number of common practices
that can be found in many projects are listed in [2]. These observa-
tions raise the question what it means for an organization to ‘adopt
OSS practices’. This is reflected by the fact that there is no commonly
accepted definition of Inner Source, let alone agreement on the term
itself, as discussed in Section 2. However, our literature review has
identified a number of recurring aspects in Inner Source: distributed
development [18], ‘open’ development practices (within an organi-
zation’s boundaries [4,17]) such as peer-review (code inspection),
option to contribute by anyone within the organization and avail-
ability of the source code [6]. Gaughan et al. [17] attempted to char-
acterize the Inner Source phenomenon by studying seven cases of
Inner Source adoption. They conclude that each case was a ‘unique’
implementation of Inner Source. Their study produced a list of vari-
ous motivating factors for implementing Inner Source, as well as
benefits that have been reported after the fact. These include: code
quality, community debugging and faster development.

Table 1
Key differences between infrastructure-based and project-based Inner Source models.

Characteristic Infrastructure-basel Project-based

Reuse Opportunistic, ad hoc. Maximize the number of projects to be
shared within the organization

Strategically planned. Optimizing reuse of critical assets

Support Optional, differs per project, and dependent on owner/maintainer
and ‘‘community’’ activity

Essential for success of Inner Source initiative

Owner/maintainer Individual project creator/owner(s) Central core team
Type of software

packages
Discrete software packages (e.g., utilities, tools, compilers, shells) Critical assets (e.g., platform of a Software Product Line). Primary technology,

rather than tools and utilities

1322 K. Stol et al. / Information and Software Technology 53 (2011) 1319–1336
3.3. Inner Source models

Gurbani et al. [24] describe two different models to implement
an Inner Source program: infrastructure-based and project-based.
We discuss both models below.

3.3.1. Infrastructure-based Inner Source model
In an infrastructure-based Inner Source model, an organization

provides the required infrastructure (e.g., mailing lists, code repos-
itories, tools) to allow developers host individual software devel-
opment projects. There have been several reports on what can be
considered infrastructure-based Inner Source initiatives. Riehle
et al. discuss this model in more detail and how it was applied at
SAP [12]. Lindman et al. [11] describe the ‘‘iSource’’ initiative at
Nokia, which is also an infrastructure-based program. Dinkelacker
et al. [6] named the leveraging of OSS methods and tools within HP
Corporation ‘‘Progressive Open Source’’ (POS) (see Section 2). POS
has been applied within HP Corporation through two programs:
(1) Corporate Source initiative (CSI, POS’ first tier, which is called
‘‘Inner Source’’), and (2) Collaborative Development Program
(CPD, POS’ second tier, which is called ‘‘controlled source’’). Both
CSI and CDP are infrastructure-based programs. The translation
process of OSSD into practices within HP (within its POS program)
and its partners has been further reported in [1,25].

3.3.2. Project-based Inner Source model
In the project-based Inner Source model, there is one division

(called the ‘‘core team’’) within the organization funded by other
divisions that take over the responsibility of a critical resource
(shared asset) and makes it available to the other divisions as a
shared asset [24]. Gurbani et al. have reported on a project-based
Inner Source model applied at Alcatel-Lucent [5,24], where the
shared asset was a telecommunications signaling server used in a
Software Product Line (SPL) [26]. Wesselius reports on a project-
based Inner Source model as applied at Philips Healthcare and dis-
cusses business model aspects [4]. At Philips Healthcare the shared
asset is a platform for product lines in the medical domain.

3.3.3. Comparison of infrastructure-based and project-based Inner
Source models

The previous two sub-sections briefly discussed some typical
characteristics of the two Inner Source models. It is important to
note that these are typical characteristics, based on observations
from the literature and our case study.3 Table 1 provides an over-
view of the key differences between the two Inner Source models.
We briefly discuss them below.

3.3.3.1. Reuse. Inner Source facilitates reuse of software, but the
way this is done in the two models is different. Reuse in the infra-
structure-based model is typically opportunistic and ad hoc, since
the main goal is to maximize the number of projects to be shared
3 The authors gratefully acknowledge Vijay K. Gurbani for useful advice as to the
differences between the two inner source models (personal communication).
within the organization. Project-based Inner Source, on the other
hand, is typically strategically planned, and its main goal is to
optimize the reuse of critical assets within the organization. The
project-based Inner Source cases that have been reported in the
literature so far, both consider a single shared asset. Therefore,
evaluation, selection and adoption of ISS components are relevant
in the infrastructure-based Inner Source model, but not so much in
the project-based model.

3.3.3.2. Support. As a result of the reuse focus, there is a difference
in the level of support that is provided. In the infrastructure-based
model, where projects are shared as the project’s initiator/creator
sees fit, the level of support is dependent on the ‘‘community’’ that
the project attracts. Support is therefore optional and very depen-
dent on the project. Some projects may attract a lot of interest,
whereas others do not. The project-based model on the other hand
requires that there is support for the shared asset, since it is part of
the organization’s strategy. Without support, business units/pro-
jects that use the shared asset may run into too many difficulties.
Without sufficient support, the business strategy may be
jeopardized.

3.3.3.3. Owner/maintainer. Software projects in the infrastructure-
based model are owned and maintained by the individual project’s
creators/owners. Maintenance is therefore dependent on the main-
tainer of the project and the community that the project attracts
(similar to support), who may be busy with his/her normal devel-
opment activities. In the project-based approach, there is typically
a separate core team, which has been established in the organiza-
tion as an independently funded group, that has formal ownership
of the shared asset.

3.3.3.4. Type of software packages. The types of software packages
that are made available in the infrastructure-based model are typ-
ically packages such as tools and utilities, including compilers and
shells. Such tools or other utilities are shared throughout the com-
pany in order to allow others reuse it and save efforts of having to
recreate such tools. In the project-based model, on the other hand,
the types of software are typically business-critical assets that are
essential to the products being developed. Such an asset could be
for instance the platform in a Software Product Line (SPL).

3.4. Comparing integration of Open Source Software and Inner Source
Software

In Inner Source, software is developed in-house, using practices
borrowed from the OSSD philosophy. When building systems using
ISS components, these need to be integrated, in a similar way to
building systems with OSS components. The difference between
these scenarios is that in the one case (Inner Source), the develop-
ment community is established within the boundaries of the soft-
ware-development organization, and in the other case (Open
Source) the community is outside the organization. However, dur-
ing the integration of such components, the interaction dynamics

K. Stol et al. / Information and Software Technology 53 (2011) 1319–1336 1323
between the integrator and supplier (that is, ‘‘the community’’) are
comparable.

In this study, we argue that ‘‘Inner Source’’ (option 1 in Section
3.1 above) and ‘‘integrating OSS components’’ (option 3 in Section
3.1 above) are comparable from the integrator’s perspective. In
the one case, the software-developing organization has an ‘‘inter-
nal’’ OSS project (limited within the boundaries of the organiza-
tion) that is integrated into a final product, while in the other
case the OSS project is external. In both cases, products are built
with these components. This is illustrated in Fig. 2 and further
explained in the following paragraphs.

The diagram on the left-hand side in Fig. 2 shows two software-
developing organizations (A and B) that integrate an OSS product.
The OSS is developed by contributors dispersed all over the world,
who communicate through the Internet (e.g., through mailing lists,
defect trackers and IRC channels). In other words, the OSS commu-
nity is external to the organization. Sometimes, organizations that
integrate OSS products can be active members of such a commu-
nity by contributing (e.g., bug reports and feedback, feature
requests and source code) or sponsoring.

The middle diagram in Fig. 2 shows a software-developing orga-
nization with two divisions (A and B) that integrate Inner Source
Software (ISS). The software is developed within an organization
that has adopted Inner Source, and therefore uses certain develop-
ment practices common in OSSD. In other words, the organization
integrates software that is developed using similar practices as
used in OSSD, and has effectively an internal ‘‘community’’, or
‘‘market place’’ [4]. Wesselius called this ‘‘creating the bazaar within
the cathedral’’ [4], using Raymond’s metaphors [3]. In both OSSD
and ISSD, developers may choose voluntarily to contribute to the
ISS product (shared asset).

The diagram on the right-hand side in Fig. 2 is included to
emphasize the difference with a ‘‘traditional’’ (non-inner source)
software development organization. We acknowledge that there
is no single type of ‘‘traditional’’ software organization. However,
it has become common practice to integrate Commercial Off-
The-Shelf (COTS) components in final products [27]. The focus of
all the diagrams in Fig. 2 is on the integration of components,
and to illustrate by whom these are developed. Furthermore, the
Software-developing organization A

Developer / OSS Integrator

OSS Developers

Contribute

May contribute to
Integrated

in

Works on

Open Source
Software

Software
product

Software-developing organization (inner so

Developer / ISS Integrator

Developer / ISS Integrator

May choose to
contribute to

May choose to
contribute to

Works on

Software-developing organization B

Software
product

Developer / OSS Integrator

Works on

Integrated
inMay contribute to

Division A

Division B

Works on

Core team

Core Team

Works on

Integration of OSS components Integration of ISS com

Key

Actor

action
Final productComponent

Organization
boundary

Fig. 2. Integration of OSS components (left), ISS components (middle), and COTS compone
ISS components are developed and owned by an organization. COTS components are pu
issue of ownership is highlighted here: OSS products are ‘‘owned’’
by the community (protected by an OSS license, such as the GNU
General Public License (GPL)). ISS components, on the other hand
are still closed-source (but ‘‘Open Source’’ within the organiza-
tion’s boundaries). COTS components are typically closed-source,
and are owned by the third-party component supplier.

Integrating OSS and ISS components is similar, because in both
cases integration is done in a similar fashion. For instance, the inte-
grator has direct access to the component (as opposed to ordering
a commercial component, which may be more time-consuming),
and has the option to customize the component to the specific
needs of the business division. Furthermore, the integrator may
be faced with similar challenges, for instance, challenges in han-
dling extensions and modifications [28]. We therefore argue that
it is informative to compare these two cases, as research on OSSD
is much more mature than on ISSD and important lessons can be
transferred from the former to the latter.
4. Challenges in integrating Open Source Software products

In [14] Stol and Ali Babar present a review of the literature of
challenges in using Open Source Software in product development.
Papers were partly identified through a search of the literature fol-
lowing rigorous guidelines for conducting a systematic literature
review in [29], to ensure that as many relevant studies as possible
were included.

Table 2 lists the challenges that have been identified in the
review of the literature. We use the challenges’ identifiers as in
[14] (C1 to C21), which are used throughout discussion of the
results in this paper. The identified challenges have been classified
into six different categories. Three challenges are related to prod-
uct selection, two challenges were reported relating to documen-
tation. Six challenges were classified in the category ‘‘Community,
support and maintenance’’. These are connected to the relation of
the organization using the OSS product and the OSS product’s com-
munity. Since maintenance is closely related to support (and usu-
ally provided by the community), these challenges are closely
related and therefore classified into one category. Five challenges
urce)

Integrated
in

Inner Source
Software

Software
product

Software
product

Integrated
in

Traditional software-developing organization

Developer / COTS Integrator

Developer / COTS Integrator

Works on Software
product

Division A

Division B

Software
product

Works on

COTS
component

Integrated
in

Integrated
in

Third-party component
supplier

ponents Integration of COTS components

nts (right). OSS components are developed and ‘‘owned’’ by its community, whereas
rchased from third-party suppliers.

Table 2
Challenges in integrating OSS in product development.

Category ID Challenge Reported in

Product selection C1 Identifying quality products among the large supply is difficult due to uncertainty about quality
(e.g. usability, stability, reliability)

[30–36]

C2 Lack of time to evaluate components [31]
C3 Decide what ‘‘fork’’ of the project should be chosen [37]

Documentation C4 Lack of, or low quality documentation [31,32,38,39]
C5 Several descriptions of the same component [40]

Community, support
and maintenance

C6 Dependency on the community for further support and upgrades; possible need to hire additional talent
for maintenance; difficult to control the quality of the support; lack of helpdesk and technical support

[32–36]

C7 Custom changes need to be maintained, which is time-consuming and may cause problems
with future versions/community may take a different, incompatible approach

[28,30,37,41–43]

C8 Convincing OSS community to accept changes (modifications may be too specific); contributions
can be difficult or costly. Difficult to control the architecture if not a core member

[28,30,32,37,43]

C9 Uncertainty about product future and consequences for company product [37]
C10 Community members would like to have a bigger say in features and integrating final product with company [41]
C11 Contributing and investing in OSS project costs resources [41]

Integration and Architecture C12 Backward compatibility concerns [36,41]
C13 Modifications needed to implement missing functionality or fit into architecture [28,36]
C14 Incompatibility between components or existing systems [34,36]
C15 Horizontal integration [32]
C16 Vertical integration/mismatch of platform/programming language [32]

Migration and usage C17 Complexity of configuration [36]
C18 User training/learning costs [34,36]

Legal and Business C19 Complex licensing situation [36,39,41,44,45]
C20 Concerns about, or no clear strategy on Intellectual Property & Rights issues [36,44,45]
C21 Lack of clear business models that are appealing to industry [34,45]

1324 K. Stol et al. / Information and Software Technology 53 (2011) 1319–1336
are classified into the category ‘‘Integration and Architecture’’.
These are challenges related to integration of products and are typ-
ically related to the product’s architecture. Two challenges were
related to migration and usage. These challenges are encountered
as a result of migrating to (replacing other products with) OSS
products, and using and configuring products. The last three chal-
lenges are classified in the category ‘‘Legal and Business’’ and are
related to licensing issues and business models. The challenges
listed in Table 2 are used in the comparative analysis, discussed
in Section 7, of the findings from the case study reported in this
paper.

Studies reporting case studies of Inner Source so far focus on
experienced challenges and outline ‘‘lessons learned’’. Most
notable are the studies of Inner Source at HP [1,6,25], Alcatel-
Lucent [5,24], and Philips Healthcare [4,18]. These studies all
report on how OSS principles have been applied within these orga-
nizations, and focus on what works and what does not work within
a corporate environment. However, none of these studies take an
explicit integrator’s point of view: what are concrete challenges
of integrating software developed using OSS principles?

In order to shed light on this, we decided to conduct an empir-
ical study. Furthermore, we argue that integrating OSS and ISS is
similar in certain aspects, and make a comparison with challenges
that have been reported in the literature.
5. Research design

This study aims at increasing our understanding of Inner Source
adoption and challenges within an Inner Source Software develop-
ment setting. We assert that each implementation of Inner Source
is tailored to a particular organization; hence, it is imperative to
first understand what OSS development practices an organization
has adopted. We address this in Section 6.

After outlining the Inner Source development practices in this
case study, we were interested in identifying the challenges that
arise when integrating software components developed in-house
through applying OSSD practices. Hence, our first research ques-
tion is (addressed in Sections 7.1–7.4):

RQ1: What are the challenges in developing and using software
that is developed as a shared asset?

We then intended to compare these results to the findings of
the literature review that had identified challenges in using OSS
components in product development. Hence, our second research
question is (addressed in Section 7.5):

RQ2: What are the similarities between challenges in integrating
OSS and challenges in integrating ISS?

We were also interested in identifying the approaches that the
studied organization had adopted to address these challenges.
Therefore, our third research question is (addressed in Section 7.6):

RQ3: What are the approaches used to address challenges related
to integrating a shared asset?

5.1. Research method

Edmondson and McManus suggest that the research design
should be based on the state of prior research and theory [46].
Research on Inner Source has been limited and is still in its nascent
phase with little theory available that explores the challenges that
organizations may face. Hence, we used case study as our research
strategy. Case study approach is considered suitable to investigate
a contemporary phenomenon within its real-life context, espe-
cially when the boundaries between phenomenon and context
are not clearly evident [15]. In this research, case study approach
is justified since the implementation of Inner Source is tailored
to the specific characteristics of an organization [17]. As Verner
et al. [47] point out, case studies may be descriptive, explanatory,
exploratory or evaluatory. Given the nascent phase of research in
Inner Source, we conducted an exploratory case study.

The unit of analysis in this case study is an organization that has
adopted an Inner Source approach as a whole. We conducted this
study at one of the locations of a large (globally distributed) orga-
nization, which has been involved in several OSS related projects
and has adopted a project-based Inner Source program. The

K. Stol et al. / Information and Software Technology 53 (2011) 1319–1336 1325
organization was approached through our professional contact.
The organization develops both hardware and software for
safety–critical systems. For confidentiality reasons, we cannot re-
port the studied organization’s specific domain. In the remainder
of this paper, we will refer to the organization by the name
‘‘SoftCom’’.

5.2. Data collection

We collected data through eleven in-depth face-to-face inter-
views. Table 3 lists the participants, their division in SoftCom,
and their work experience in years. We refer to the participants
by numbers P1 to P11 in order to protect their privacy. Participants
had various positions in different divisions within SoftCom, such as
business division manager, product manager, technology officer,
software architect, software designer and product coordinator,
providing us with a rounded perspective from different points of
view. A number of them were members of the core team that is
responsible for developing the shared asset (see Section 3.3). Most
managers also had prior technical experience as a software archi-
tect. All participants had extensive experience and knowledge
about SoftCom as they had worked there from 10 to more than
25 years.

Prior to conducting the case study, we developed an interview
guide [48]. We chose to conduct semi-structured interviews, as
these are expected to give a researcher the flexibility to go deeper
into unforeseen types of information that can emerge during inter-
views [49]. All interviews were conducted at SoftCom’s location by
the first author. Our contact at SoftCom made local arrangements
and scheduled the interviews. After receiving the contact informa-
tion of all scheduled participants, we sent them an introductory
letter in which we outlined the aim and procedure of the research.
All interviews lasted between 40 and 60 min, and were digitally
recorded with the participants’ consent. The recordings were tran-
scribed verbatim, in order to record as many details as possible.
This resulted in approximately 150 (A4 size) pages of text.

Finally, all recordings were played back once more and cross-
checked with the transcriptions in order to make sure that no
information was lost during the transcription.

5.3. Data analysis

Data analysis is an iterative process, in particular when the
researcher is confronted with a large amount of data (in our case
150 pages of transcripts). Though the research questions are clearly
defined, in order to be able to manage the large amount of data
collected, we decided it was important to reconstruct the ‘‘story
line’’ for each participant, and identify common themes and topics
in order to be able to compare these topics. Since different partic-
ipants sometimes used different descriptions for their experiences
Table 3
Participants in our study.

ID Division Experience (years)

P1 Division A 20
P2 Core team 10
P3 Division B 15
P4 Core team 17
P5 Technology office 26
P6 Core team 25
P7 Division C 10
P8 Core team 10
P9 Technology office 25
P10 Core team 13
P11 Division D 12
and insights, it is important to identify these common themes. This
is a form of triangulation (across data sources, namely the partici-
pants of our study), which is a common procedure to establish
validity in qualitative studies [54].

We analyzed the data as follows. All interview transcripts were
thoroughly read, and phrases of interest were coded with labels to
reflect the topic of that phrase, following the approach described
by Seaman in [49]. The coding was performed by the researcher
who had conducted the interviews. In order to ensure reliability
of our findings, we applied another form of triangulation, namely
among different investigators [54]; two researchers have discussed
the findings in several face-to-face meetings.

Using specialized software for qualitative data analysis (NVivo),
we constructed a small set of preformed labels referring to topics
that we expected to arise from the data, and which were also of
interest to us. During data analysis, this set of labels evolved; labels
were merged, added and deleted. After the initial coding, we
looked at groups of coded phrases and merged them into catego-
ries. This structuring of the data helped us to understand and man-
age the large amount of information. Per category, the labeled text
was exported to a Microsoft Word document, thereby grouping all
related paragraphs on a particular topic in one document. This
allowed us to further read and analyze the data per topic.

After we had acquired an initial overview and understanding of
the data, the first author created memos in the form of visualiza-
tions of the transcripts. These were simple box-and-line diagrams;
part of such a memo is shown in Fig. 3.

Boxes represent the main topics, whereas each box may have a
number of ‘‘attributes’’, or sub-topics, which are short phrases con-
nected by lines. Boxes can also be related to other boxes. The first
author created such visualizing memos for each interview, which
were ‘‘maps’’ of the transcripts’ contents, and could quickly com-
municate the contents of the interviews to the other three
researchers.

After identifying the main topics of each interview and recog-
nizing common themes among the different interviews, the first
author re-read the coded transcripts, to identify the challenges
and approaches that participants had reported. In some cases it
was necessary to refer back to the original transcripts to refresh
the researcher’s mind of the context. The participants often men-
tioned an approach to address a certain challenge after reporting
that challenge. Sometimes this was clearly indicated by key
phrases, such as: ‘‘So what we do now, is [. . .]’’ or ‘‘In order to
address this [. . .]’’. The challenges and approaches were listed in a
spreadsheet, together with source information to easily back trace
the original phrasing in the transcripts. Similar entries were
merged.

We had noticed that many challenges reported by different par-
ticipants were related (causing or exacerbating other challenges).
In order to explore and visualize these relationships, we drew more
box-and-line diagrams (separate from those shown in Fig. 3). In
these diagrams, boxes represented challenges and approaches,
and lines represented relationships (such as ‘‘addresses’’, ‘‘exacer-
bates’’, etc.). These visualizations finally evolved into a complete
diagram, shown in Fig. 3. This procedure of establishing a trace-
able, documented justification of the analysis process (transcrip-
tion of the interviews, coding, memoing) by which conclusions
are reached is called an audit trail. This is a recommended practice
to establish validity in qualitative studies [55].

Each challenge was identified by at least one participant, while
10 (out of 13) were identified by two or more participants. We did
not use results from earlier interviews in interviews conducted
later; this means we did not let participants comment or confirm
on reports from other participants. Therefore, we argue it is not
appropriate to perform a frequency analysis of the challenges
and approaches, as this may misrepresent the truth. Each

Fig. 3. Example of ‘‘box-and-line’’ visualization.

1326 K. Stol et al. / Information and Software Technology 53 (2011) 1319–1336
participant told his/her story (following our questions from the
interview guide), highlighting his/her view on the studied topic.
6. The SoftCom organization

In this section, we describe details of SoftCom that are relevant
to this study. We also report the key OSS practices that have been
adopted as part of the Inner Source initiative in SoftCom. This sets
the context in which the findings reported in Section 7 should be
interpreted as each implementation of Inner Source is tailored to
the organization’s specific context and needs (as we asserted in
Section 3.2).

SoftCom’s products are developed as members of a SPL. Initially,
a common platform used by all products in the SPL was provided to
business divisions as a binary deliverable. Besides the general
motive to increase software reuse, another reason for providing a
common platform was that company management had planned a
series of company acquisitions, whose products were to be adopted
and integrated into a common architecture. Prior experience sug-
gested that by providing a common platform, a turf battle about
Investigates for
integration and reuse

Brings in
Designs,
maintains

(becomes)
part of

SoftCom

Becomes
Business
division

Is snapshot of

Acquired company

Actor

Key

Action Organization
boundary

Software
product

Acquired
software

New/enriched
component

Shared asset

Fig. 4. Conceptual model of Inner Source in the SoftCom organization. Arrows between
Participates in Collaborative development.
whose technology to use in such acquisition could be avoided. Over
the last decade, SoftCom has acquired a number of companies,
which have become new business divisions. The software product
that a new business division brought in, would be thoroughly scru-
tinized to see how it would fit with the common platform, and what
parts could be adopted in the platform. On the other hand, the new
business division would have access to the platform that provides
common functionality, and could replace parts of their software
by functionality provided by the platform. This results in less code
for the business division to test and maintain.

A number of years ago, SoftCom decided to adopt a project-
based (see Section 3.3) Inner Source approach, in which the com-
mon platform is managed as a shared asset. In the remainder of
this section, we outline how Inner Source has been adopted in Soft-
Com. Fig. 4 shows the conceptual model of the adopted Inner
Source model. This model closely resembles an OSSD approach
reflecting common mechanisms found in OSSD: the Core Team
represents the OSS community’s core developers; the business
division is the OSS integrator that uses the OSS product in product
development, and the shared asset is the OSS product. Other parts
of Fig. 4 are discussed below.
Participates
inParticipates

in

integrates,
customizes

Results in

Sends
contributions to

Releases

Decides on features of

Downloads

Steering committee

Core team

Business division

Collaborative
development

Activity

Version
release

actors, products or processes indicate the order of reading, e.g., a Business division

K. Stol et al. / Information and Software Technology 53 (2011) 1319–1336 1327
6.1. Adopted Open Source Software development practices

As previously mentioned, Inner Source refers to leveraging OSS
practices within a corporate environment [17]. This does not mean
that all OSS practices are suitable to be applied within a corporate
setting. Rather, when an organization is involved in commercial
software development, it only adopts practices that can help
improve process and product quality in such a way that the orga-
nization can control the process and the product release deadlines.
The level to which an organization is ‘going open’ differs from one
organization to another. Each organization will implement Inner
Source in a different way, tailored to the constraints and needs of
the organization [17]. This variety of practices is similar to the vari-
ety of practices in OSS projects mentioned earlier in this paper (see
Section 3.2). In the remainder of this section, we discuss the OSS
development practices that have been applied within SoftCom.

6.1.1. Regular releases and frequent integration
As is common in many OSS projects, SoftCom has a core team,

which makes regular ‘stable’ releases of the shared asset [2,21]. A
steering committee consisting of a number of architects decides
what new features will be included in the new version. Business
divisions can integrate these releases into their product, but they
may also choose to follow development of the shared asset more
closely by regularly downloading the latest version; the Inner
Source model enables this option. By staying closer to the latest
version of the shared asset, a business division can reduce its inte-
gration efforts, as it no longer needs to make major revisions when
switching from one version to another.

6.1.2. Collaborative development
One of the key characteristics of OSS development is that any-

body is free to contribute. In OSS development, this typically hap-
pens by sending a patch file that contains the changes made to
the source code. The patch is then peer-reviewed by trusted con-
tributors that have write (‘‘commit’’) access to the source code
repository. Contributors that have a record of submitting high
quality patches may be granted write access. In such a case,
the peer-review is effectively post-commit. In a corporate setting,
contributions must be more restricted in order to control the
quality of contributions, especially in business- or safety-critical
systems. The organization has adopted a mechanism called ‘col-
laborative development’, in which the core team and a business
Table 4
Challenges identified in the case study and references to challenges related to the use of O

Category ID Challenge

Documentation and
knowledge

S1 Lack of documentation

S2 Core team that develops shared asset lack doma
requirements

Community, support and
maintenance

S3 Core team must balance spending resources ove
requirements as requested by business divisions

S4 Business divisions’ contributions do not fit
S5 Core team’s reluctance to adopt business divisio
S6 Business divisions’ reluctance to contribute to th
S7 Business divisions treating core team as a tradit

influence on architecture and interfaces

Integration and architecture S8 Missing interfaces causing usage of private interf
new version

S9 Missing functionality
S10 Integrating acquired software into the shared as
S11 Component-suite model of shared asset allows f

integration efforts
S12 Components are not designed for other use-case

Migration and usage S13 Difficulty in using the shared asset, configuring
unit closely collaborate on the development of a new component,
or on enriching an existing component. This mechanism helps in
making sure that, on the one hand, the component will fit into
the architecture of the shared asset, and on the other hand
implements the required functionality, as required by the busi-
ness division’s domain experts.

6.1.3. Local changes to the source code
Business divisions are free to make local changes to the shared

asset on which they build their product. This may be a solution if a
division finds out about missing functionality shortly before a
product release, and the core team may be unable to make the
required changes on time. This situation can be beneficial to both
the business division and the core team since any such changes
are ‘bought back’ by the core team. This way, a business will no
longer have to reapply (and maintain) patches whenever a new
version of the shared asset is released. The core team may benefit
from the domain expertise that the changes may incorporate.

6.1.4. Tool support
While not exclusive to OSS style development, several tools typ-

ically used in OSS projects are also used within SoftCom. Develop-
ment environments are standardized in SoftCom, and managed
and supported by support engineers, who are members of the core
team. By standardizing the development environment for all busi-
ness divisions (and the core team), it is easier to ensure that a code
check-in does not ‘break the build’. In order to address knowledge
sharing issues, a wiki was set up through which developers and
architects (both from the core team and business divisions) can
share knowledge. Though most information comes from the core
team, a wiki allows anyone to contribute, which is highly encour-
aged by the core team. The adopted wiki implementation allows
for semantic annotation of the knowledge, which allows it to be
reused in different contexts. Besides a wiki, a mailing list was set
up that can be used by developers to ask specific questions. Archi-
tects regularly look through these questions and answer if they
can. An issue tracker is also available to report and communicate
problems.
7. Challenges in Inner Source

We have identified 13 challenges in the case study (numbered
S1 to S13), listed in Table 4. We classified these challenges using
SS products as identified in the literature (if applicable).

Challenge in
using OSS

C4

in knowledge causing lack of attention for non-functional n/a

r required architectural refactoring and implementing C6

C7
ns’ contributions C8
e shared asset C11

ional component supplier; business division does not have n/a

aces, resulting in high integration efforts when switching to a C12

C13
set hindered by architectural mismatch C14
or too much freedom in usage, causing many test and C15

s (not sufficiently generic) n/a

is complex C17

1328 K. Stol et al. / Information and Software Technology 53 (2011) 1319–1336
the same categories identified in the literature review [14] (the
category ‘‘documentation’’ was renamed ‘‘documentation and
knowledge’’, since documentation is a means to share knowledge).
As noted before, there are no issues in the categories ‘‘product
selection’’ and ‘‘legal and business’’.

One of the objectives of our study was to compare the chal-
lenges related to ISS to the challenges related to OSS (as identified
in the literature). We first present the challenges identified in our
case study in Sections 7.1–7.4 (RQ1). We then discuss the mapping
and comparison of challenges related to the use of OSS products
(from the literature review) separately in Section 7.5 (RQ2).
Approaches adopted in SoftCom to address the challenges are pre-
sented in Section 7.6 (RQ3).

7.1. Documentation and knowledge

7.1.1. Lack of documentation
A number of participants indicated a lack of knowledge sharing

and documentation to be a challenge (S1). Though the develop-
ment process followed by SoftCom prescribes that design and test
packs of documentation are written, one participant stated:

‘‘Nobody reads those test packs or even the requirements
packs.’’ —P10, core team.

Participants indicated a strong preference of having ‘‘How-to’’
knowledge, and basic design documentation that is needed to
use the software in a useful way. In particular, information about
interfaces, architectural patterns and tactics were considered to
be useful. The lack of knowledge of how to use the software makes
using the shared asset difficult, an often-heard challenge in this
study. It was felt that, as an integrator, one needs to know too
many details about the internals.

7.1.2. Lack of domain knowledge
The core team designs, develops and maintains the shared asset,

which is used by the business divisions. However, a challenge that
the core team deals with is that they lack specialized domain
knowledge of the various business divisions’ products (S2). As a re-
sult, participants reported a lack of attention paid to the non-func-
tional requirements:

‘‘If a component does what it needs to do with respect to the func-
tionality, then [the core team] thinks they’re done. Non-functional
requirements in particular, in the context of using a product, is an
obstacle. Performance, resource usage, those are often not consid-
ered.’’ —P5, technology office.

‘‘The issue is often with the non-functional requirements. It could
be that the architecture chosen by the supplier performs badly with
our type of data.’’ —P11, business division.
7.2. Community, support and maintenance

7.2.1. Balancing refactoring and requirements
The core team makes regular releases of the shared asset. As the

shared asset evolves, there is a need for refactoring the architecture
and making other improvements. However, since business divi-
sions plan their releases based on a new version and require new
features, the need of spending resources on these maintenance
activities creates difficulties for the core team (S3). One intervie-
wee reported this difficulty as follows:

‘‘If push comes to shove, and the next release is scheduled, and a
part of the budget is reserved for improvements, then customers
say: ‘nice that you want to do that, but we need feature X or Z,
otherwise we can’t deliver our product’.’’ —P10, core team.
7.2.2. Contributions do not fit
The Inner Source model enables and encourages others within

SoftCom to make contributions to the shared asset. However, it
was found that until some years ago, contributions would not fit
the architecture of the shared asset (S4). As one participant
reported:

‘‘People would make additional pieces of software without consul-
tation. And when you try to incorporate that into the platform [. . .]
it turned out to be useless.’’ —P2, core team.
7.2.3. Reluctance to accept contributions
The core team is responsible for the design and maintenance

of the shared asset. The core team may be somewhat reluctant
to adopt contributions of business divisions (S5), since this
implies adoption of the maintenance responsibility for the
contributed software as well. One participant phrased this as
follows:

‘‘I think that if [the core team] would integrate something back into
their platform, then from the other groups’ point of view they
would also assume the responsibility of maintenance. And from
that point on they are responsible for those parts. It’s not well
defined, that if a group gives something back to [the core team],
who is responsible for the maintenance of that part? Everybody
thinks it would be [the core team]. And that restricts that road
back.’’ —P5, technology office.

Several factors may exacerbate this. Firstly, it may be due to the
‘not invented here’ syndrome. Secondly, contributions made by
business divisions may be too specific for the business division that
wrote them, rendering them unusable for other divisions.

7.2.4. Reluctance to contribute
Business divisions are typically not very eager to contribute to

the shared asset (S6). One participant explained this situation as
follows:

‘‘Then the issue of maintenance arises: we wouldn’t mind publish-
ing [the software], but only if the central group wants to do the
maintenance.’’ —P1, business division.

Another reason for this reluctance appeared to be that a busi-
ness division considers development of certain type of software
to be the core team’s responsibility:

‘‘When we’re doing something that’s generic, then we try to have it
made by [the core team]. [. . .] Then we don’t want to make [that
software] ourselves.’’ —P3, business division.
7.2.5. Core team as traditional supplier
A number of business divisions still treat the core team as a tra-

ditional component supplier (S7). Rather than adopting the Inner
Source philosophy, these divisions have a more traditional view
of software development, and do not benefit from the Inner Source
model. One participant described this state of mind in these words:

‘‘If [the shared asset doesn’t provide sufficient functionality], we
send the requirements to [the core team]. They will start working
on it, if all goes well (laughs). [. . .] They start working, developing
and they’re in the basement for a while and then they come up and
go: ’Tadaa! Here you go,’ and in practice we’re not really ready for
integration, so we thank them and tell them we’ll come back to
them. And after a few months you use it, and then all sorts of inte-
gration issues arise. And the supplier is already in maintenance
mode, and is making new things for other customers, and they
don’t really have the resources to fix those problems. That’s really
the biggest issue we have in practice.’’ —P11, business division.

K. Stol et al. / Information and Software Technology 53 (2011) 1319–1336 1329
7.3. Integration and architecture

7.3.1. Changing interfaces
One issue while integrating the shared asset in a product is

changing interfaces (S8). Interfaces of components in the shared
asset are not well specified and documented, or may be private.
One participant said:

‘‘In the past there was this whole range of private interfaces that
you had to use otherwise you wouldn’t get it to work.’’ —P3, busi-
ness division.

Our study revealed that other business divisions were also
experiencing this challenge as another interviewee reported:

‘‘[. . .] So we just use [these private interfaces]. [. . .] Those private
things can change and that will happen, and then everything col-
lapses.’’ —P11, business division.
7.3.2. Missing functionality
A common challenge reported is that functionality is missing in

newly delivered components (S9). One participant explained:

‘‘When we get the component, it’s never been integrated, and when
we do that, you find that things are missing, and without that we
can’t deliver. A car with three wheels is no good. . .’’ —P11, business
division.
7.3.3. Architectural mismatch
As new companies are acquired and integrated into the organi-

zation as business divisions, the core team will investigate which
parts of the acquired software can be adopted in the shared asset.
Incorporating software from new divisions may be troublesome
(S10), as one participant described:

‘‘We’re building a big box of Lego bricks, and they all have the same
interface; Lego on Lego fits perfectly. But our stakeholders have an
architecture based on Meccano, or something else, and then Lego
won’t fit, and then you need to write connectors, we call that glue
code. And as it turns out, the problems are always in the glue code.’’
—P6, core team.
Table 5
Overview of relevance of challenges to OSS, infrastructure-based Inner Source and
project-based Inner Source.

Category (number of
challenges)

Relevant
to OSS

Relevant to
infrastructure-based
Inner Source

Relevant to
project-based
Inner Source

Product selection (3) Yes Yes No
Documentation (2) Yes Yes Yes
Community, support and

maintenance (6)
Yes Yes Yes

Integration and
architecture (5)

Yes Yes Yes

Migration and usage (2) Yes Yes Yes
Legal and business (3) Yes No No
Total number of relevant

challenges
21 18 15
7.3.4. Boundless reuse
Initially, the shared asset was organized as a ‘component suite’,

a collection of components. Divisions could take whatever compo-
nents they needed. However, some (acquired) divisions’ systems
had only been partly adapted to the shared asset’s architecture
to allow them to reuse certain components, since the component
suite model allows for a ‘take what you need’ approach. This
resulted in significant integration and test efforts that the organi-
zation had hoped they could reduce through software reuse, one
of the reasons to set up the shared asset in the first place. Further-
more, if the architectures of the application and the shared asset
are not well aligned, there may be a need to write connectors (or
‘glue code’). Glue code may introduce problems, as described
above.

7.3.5. Use-case mismatch
The shared asset contains functionality that is common to all

business divisions. New components are being added over time,
as new requirements emerge, and new business divisions are
acquired by SoftCom. A challenge is to make components generi-
cally suitable to all business divisions. A common problem is that
components have a use-case mismatch (S12). As one member of
the core team explained:
‘‘People complain about the maturity of the component. We build
them a first time, and they’re used by customers X and Y in certain
products. [. . .] After a year there’s another customer that also
wants to use it, but in a slightly different way. Sometimes they
think they need to use it differently while that’s not the case. They
will consider the component as immature, because it doesn’t do
exactly what they want, or it wasn’t tested in that particular use
case.’’ —P10, core team.

A member of a business division phrased it very similarly:

‘‘The nature [of integration problems] is usually a slightly different
use-case of the component than what [the core team] had tested it
for.’’ —P11, business division.
7.4. Migration and usage

Several participants indicated that it is difficult to use the
shared asset (S13). Since the shared asset is the platform for a Soft-
ware Product Line, it must provide functionality that is usable by
different business divisions in different specialty domains of a
common industrial domain. The core team is well aware of this
issue, which was reported by one of the interviewees in the follow-
ing words:

‘‘We created a platform that is used by all business divisions, and
because you need to keep everybody happy, it has many configura-
tion options. [. . .] And I think that’s one of the reasons that it’s dif-
ficult to configure it correctly.’’ —P8, core team.

Business divisions have difficulty understanding how to use the
shared asset, and how it relates to their product:

‘‘How do we ‘click in’ our specific application? That’s an interface
issue, and well, how to pass in the data.’’ —P11, business division.

Interestingly, after seeing the situation from another business
division’s perspective, people would increase their insights. A
member of the core team described:

‘‘And what we saw was that [at first] many people didn’t under-
stand the abstractions and why we needed them. [. . .] And later
people [after they had moved to a different department] would
come to us and say: ‘now I understand why it was designed like
this’.’’ —P6, core team.
7.5. Comparison of challenges with OSS and ISS

We observed that ten out of 13 challenges identified in the case
study are similar to the challenges when using OSS products, as
identified in the literature review [14].

1330 K. Stol et al. / Information and Software Technology 53 (2011) 1319–1336
Not all challenges listed in Table 2 are relevant to project-based
Inner Source, or Inner Source at all. Section 3.3.3 has discussed a
number of typical differences between the infrastructure-based
and project-based Inner Source models. Table 5 provides an over-
view of the relevance of the different categories to OSS, infrastruc-
ture-based Inner Source and project-based Inner Source. The last
row indicates the total number of challenges that are relevant to
the various cases. Challenges in the category ‘‘Product Selection’’
do not apply to project-based Inner Source, since there is usually
only a single shared asset that is developed. Selection is not an
issue, since the use of the shared asset is strategic and planned.
In infrastructure-based Inner Source, where departments or indi-
viduals make freely available software on an internal repository,
these challenges could occur.

Challenges in the category ‘‘Legal and Business’’ are not relevant
to Inner Source, since the software is closed source (which rules
out any OSS license-related issues) and Intellectual Property &
Rights (IP&R) and business-related concerns would not occur.

Fig. 5 shows a mapping of the challenges identified in this case
study (middle layer) to the challenges identified in the literature
(top layer) indicated; the figure shows only the 10 challenges
(out of 15 relevant to project-based Inner Source, see Table 5)
identified in the literature that have also been identified in the case
study (listed in Table 4). The bottom layer in the figure shows ap-
proaches that the studied organization has taken to address some
of the challenges.

Below we discuss how the challenges related to integrating OSS
identified in the literature manifest themselves in SoftCom; this
mapping is indicated by open (white) arrows between elements
of the middle layer to elements of the top layer of Fig. 5.

During analysis we found that certain challenges cause or exac-
erbate other challenges. These ‘‘root’’ challenges are displayed at
the bottom in the middle layer whereas the challenges they cause
(or exacerbate) are shown at the top of the middle layer. Pointy ar-
rows between elements in the middle layer express a ‘‘cause’’ rela-
tionship, e.g., a lack of documentation may cause (or exacerbate)
Lack of
documentation

(C4)

Dependency
on community

(C6)

Maintaining
custom

changes (C7)

Getting
contributions
accepted (C8)

Contributing
costs resources

(C11)

Bac
comp

conce

Lack of
documentation

(S1)

Core team
supplier (S

Reluctance to
adopt

contributions (S5)

Contributions
don’t fit (S4)

Reluctance
to contribute

(S6)

Balance
requirements and
refactoring (S3)

Changing
interfaces

(S8)

Define API
under change

control

Regular
integration

Wiki +
mailing list

Collabor
developm

Literature review: challenges

Case study: challenges

Case study: approaches

Key

A A challenge or approach (depending
on the group it is located in)

Group
A group of challenges or approaches (to
group approaches or indicate source of
challenges)

B

C

A challenge not identified as relevant for OSS.

A challenge for which no approach to
address it has been identified.

A “causes” rel
Challenge A is
exacerbating

An “addresses
approach A ad
challenge B

A B

A “mapping” r
challenge A is
challenge B

A B

A B

Make local
changes

Fig. 5. Mapping of the challenges identified in the literature, the case study, and SoftCom
approaches to address them. Challenges coloured light gray were identified in the case stu
that contributions do not fit. Note that a challenge could be neither
a ‘‘root’’ challenge nor caused by another (e.g., challenge S3). Fur-
thermore, we cannot claim that the identified ‘‘root’’ challenges
are the only sources that cause certain other challenges; it is possi-
ble that other factors are at play that have not been identified in
this study.

Closed (black) arrows between elements in the bottom layer
(approaches) and the middle layer indicate an ‘‘address’’ relation-
ship, e.g., ‘‘providing training’’ addresses the challenge ‘‘difficulty
in using shared asset’’. There are three challenges that could not
be mapped to any of the challenges identified in the literature
(S2, S7, S12); these are colored light gray. Three challenges are
not addressed by any approach (S3, S5, S6); these are coloured dark
gray in Fig. 5. We discuss the mapping of challenges in the remain-
der of this subsection. (We only discuss those challenges that were
also identified in the case study.)
7.5.1. Lack of documentation (C4)
Lack of documentation is a common complaint in OSS, and in

software in general. It was no surprise to us that in this study a lack
of documentation was raised as a challenge. A lack of documenta-
tion (on how to use the particular product) was considered to be an
issue, and it also exacerbated the challenge of using the shared
asset.
7.5.2. Dependency on community (C6)
Business divisions that base their product development on the

shared asset have a dependency on the core team in a similar
way to an organization using an OSS component that becomes
dependent on the community for new updates. In Inner Source,
the core team must balance its resources spent on providing imple-
mentation of new features on the one hand, and performing archi-
tectural refactoring on the other.
kwards
atibility

rns (C12)

Modifications
needed (C13)

Incompatibility
between

systems (C14)

Horizontal
integration

issues (C15)

Configuration
complexity

(C17)

Lack of domain
knowl and attn.

for QAs (S2)

 as
7)

Missing
funct. or QAs

(S9)

Architectural
mismatch

(S10)

Component suite
integration

issues (S11)

Wrong use-case
for components

(S12)

Difficulty in
using shared
asset (S13)

Component
assemblies

Merge
organizations

Send
delivery

advocate

Provide
training

ative
ent Make demos

ationship;
 causing or

challenge B

” relationship;
dresses

elationship;
 mapped to

’s approaches to address them. Challenges coloured dark gray do not have associated
dy but were not previously identified in the literature as a challenge with using OSS.

K. Stol et al. / Information and Software Technology 53 (2011) 1319–1336 1331
7.5.3. Maintaining custom changes (C7)
In both OSSD and ISSD, an integrator may choose to make cus-

tom changes. However, in both cases, it is preferred to give back
those changes to the community/core team, in order to prevent
additional efforts needed to maintain those custom changes.
(Depending on whether an OSS integrator redistributes the chan-
ged software, it is in fact required to give back those changes, as
is prescribed in OSS licenses.) In both cases, the integrator may
take a different approach that is incompatible with the vision of
the core team, resulting in contributions that do not fit.

7.5.4. Getting contributions accepted (C8)
OSS integrators have experienced issues in getting contribu-

tions to the OSS products that are integrated. This issue was also
experienced in SoftCom. Various business divisions may want to
make changes to the shared asset, but experience obstacles in get-
ting their contributions accepted.

7.5.5. Contributing costs resources (C11)
An issue reported in relation to integrating OSS products is that

contributing to an OSS project costs resources. In the case of OSS,
organizations may not see the benefit, or just decide that it costs
too many resources. In SoftCom, we also found that business divi-
sions may be reluctant to contribute to the shared asset.

7.5.6. Backwards compatibility concerns (C12)
As OSS evolves, new versions are released. The speed with

which an OSS product evolves depends on the OSS project’s matu-
rity and the liveliness of the community. Such changes could be
product features, bug fixes and architectural changes. In SoftCom
this challenge was manifested as changing interfaces of the shared
asset. In development of products, business divisions need to
choose for a certain version of the shared asset to use. Whenever
there is a need to migrate to a newer version, interfaces may have
changed, which results in additional cost to fix.

7.5.7. Modifications needed (C13)
When an organization integrates an OSS component into a

product, it may have to make modifications by implementing miss-
ing functionality, or to make it fit within the architecture of the
product [28]. A similar challenge was identified in the case study;
a business division may find during integration that functionality is
missing, or that quality requirements are not adequately addressed
resulting in, for instance, poor performance.

7.5.8. System incompatibility (C14)
When integrating OSS products, each having been developed

independently in a different context, incompatibility issues are
bound to arise. The same challenge arises when software devel-
oped at other organizations (acquired through company acquisi-
tions) is attempted to be integrated. Such software was
developed in a certain business context, with certain requirements
and restrictions. As a result, architectural mismatch [50] may oc-
cur, which is a common challenge for architects.

7.5.9. Horizontal integration issues (C15)
When integrating software components, different integration

issues may arise. Horizontal integration, as opposed to vertical
integration, refers to the integration of components on the same
‘‘level’’. (In vertical integration, software components would be
built on top of each other, such as integrating an application
on a particular runtime platform.) Horizontal integration issues
could be as simple as syntactic mismatch (i.e., different imple-
mentation languages). In SoftCom, horizontal integration issues
were manifested as integration issues of the component suite.
Initially, the shared asset was a collection of components, and
since there were no bounds in the ways these components could
be integrated, integrators experienced significant integration
issues.

7.5.10. Configuration complexity (C17)
The complexity of configuring OSS products can become a prob-

lem when using OSS products. We identified a similar challenge in
SoftCom. Since the shared asset is to be used in different products,
it needs to provide sufficiently abstract interfaces and use-case
scenarios that fit different types of applications. This need for gen-
eric behavior causes that the shared asset becomes very difficult to
use for the integrators.

7.6. Adopted approaches

SoftCom has adopted a number of approaches to address the
identified challenges, as shown in the bottom layer in Fig. 5.

A number of these approaches are OSS practices that have been
adopted, described in Section 6.1. Besides these practices, SoftCom
has adopted a number of other approaches to address those chal-
lenges. We speculate that other organizations that have imple-
mented (or plan to implement) an Inner Source model, as well as
OSS projects, could benefit from such approaches. We address
them next.

7.6.1. Wiki and mailing lists
In order to address a lack of documentation, SoftCom has set up

an internal wiki and mailing list. The wiki facilitates knowledge
sharing between the core team, which supplies the shared asset,
and the business divisions that integrate the shared asset. A mem-
ber of the core team described:

‘‘What we’ve been working on for the last 2–3 years is setting up a
wiki around everything we do and have in [our platform]. Our
developers write articles on how to use the products, and that’s
really appreciated.’’ —P10, core team.

While the wiki has proven to be an improvement in sharing
knowledge, this is still a challenge. It is difficult to transfer knowl-
edge, and there remains to be a ‘‘gap’’, according to one member of
a business division:

‘‘The core team has tried to solve that by setting up a wiki, and that
does help us, but it’s only one step. It was significant, because there
was a huge gap, but there is still a gap.’’ —P11, business division.

Besides a wiki, there are also mailing lists, which facilitate di-
rect communication between customers (of the shared asset) and
developers of the core team. In particular, developers can ask con-
crete questions regarding particular issues. A member of the core
team described this as follows:

‘‘[. . .] and we also set up mailing lists for concrete questions, like,
‘hey, this is my problem’. We have set up a community to answer
those types of questions, and our developers and architects follow
these lists, and if they recognize a question they’ll answer it, and
that works quite well.’’ —P4, core team.
7.6.2. Define API under change control
By more explicitly defining and managing a public API under

change control, the interfaces of the shared asset will be more sta-
ble, which will reduce integration efforts when a business division
migrates to a newly released version of the shared asset. One par-
ticipant explained:

‘‘In the past there was an extensive collection of private interfaces
that you had to use to get things working, and the [business divi-
sions] have been urging [the core team], like, guys, that drives us

1332 K. Stol et al. / Information and Software Technology 53 (2011) 1319–1336
nuts, we need to define a public interface and put it under change
control.’’ —P3, business division.
7.6.3. Regular integration
The core team is also making demos with the shared asset, so

that it is forced to play the role of integrator. As such, it is likely
to encounter integration issues that can be subsequently ad-
dressed. This will help to overcome a lack of attention for both
functional and non-functional requirements, since integration is-
sues will be detected earlier and can be overcome in a more timely
manner. One participant describes how his development team
stays close to the latest version of the shared asset:

‘‘What [our development team] does, much more than other teams,
is to integrate with work-in-progress versions of the platform. We
are very close on the latest development, close to the [core] team,
and collaborate well together. Every three weeks we take their
build.’’ —P3, business division.
7.6.4. Make local changes
The Inner Source model allows business divisions to make cus-

tom, ‘‘local’’ changes to their copy of the shared asset, if necessary.
In certain cases, it may be desirable that a business division has
this option, as one participant explained:

‘‘In the ideal case you’re sure that it works, and if you’re not, then
you hope you’ll know soon enough, so you can test it and show that
it doesn’t work what you had agreed. That way, we get the chance
to solve and repair it. That’s how you’d like to do it in the normal
case. But, sometimes that doesn’t work because a week before
the release you find out that it might take two weeks to solve the
problem. Well, then you don’t have that time because the compo-
nent happens to be developed in Bangalore [India], and this week
turns out to be a celebration week. So, if you give the option to
the business division to solve the problem themselves at such a late
stage, in their own repository, then they’ll need to have access to
our source code, and then you’ll have to go to an open source
way of working.’’ —P6, core team.
7.6.5. Collaborative development
Collaborative development is a project-based collaboration

between the core team and a business division to develop new
(or enhance existing) components. This is SoftCom’s approach
to ‘‘Open Source’’ style development. Rather than letting any-
body contribute to the source code immediately, there must be
a certain level of control. In collaborative development, the busi-
ness division provides the expertise to make sure that the com-
ponent implements the right functionality (and with sufficient
attention for quality requirements), while the core team can en-
sure that the component adheres to the general architecture of
the shared asset. One participant explained this interaction as
follows:

‘‘What we do lately is, if we really need new functionality, we’re
doing some kind of collaborative development. We send someone
to [the core team], who helps with the design and the development
of the requirements that we set for the component. That person
that is lend out to the [core team] really has knowledge of [our
field], and by doing so we basically secure that the decisions that
are made are the right ones.’’ —P11, business division.
7.6.6. Make demos
The core team that develops the shared asset does not integrate

its own product. This means that they have little experience with
the ease of use of the shared asset’s integration. Business divisions
must find out how to best use the shared asset, and may encounter
a variety of issues that were not anticipated. In order to address
this, the core team now makes regular demo programs, which uses
the shared asset. This way, the core team can experience first hand
what potential issues may arise during integration. One participant
described this as follows:

‘‘The core team often thinks they’re done if the software just works.
But precisely those extra things, such as the ease of use [of the
shared asset] in a product development, receives limited attention.
And what they introduced, a bit under our pressure [of the technol-
ogy office], is that [the core team is] making regular demo versions
to show what they’ve done.’’ —P5, technology office.
7.6.7. Merge organizations
In order to speed up the architectural changes that are neces-

sary to integrate newly acquired software into the shared asset,
the new division was integrated with the core team on an organi-
zational level. One participant who was closely involved in this
described:

‘‘We acquired a company that delivers an information and commu-
nication system, which was sold on a pay-per-use contract. The
software was specially developed to support that business model.
That was a very different architecture than we were using. In order
to speed up the adaptation of our architecture, we merged the two
different organizations. We said, the way that information and
communication system works is fundamentally so different, but it
would be good to adopt that into our platform. And you can only
do that by having the development done in one organization.’’ —
P6, core team.
7.6.8. Component assemblies
To address integration problems with the component-suite

based model of the shared asset, the core team has started to offer
the shared asset as sets of half-products, called ‘assemblies’. These
are pre-constructed sets of components that are already integrated
and tested, thereby reducing integration and test efforts. A busi-
ness division may deconstruct such an assembly and replace a
component with a different one, if necessary. One participant
described this as follows:

‘‘Take the LEGO� instruction booklet, and on page 8 there is half of
the product that you need to build. That’s what we deliver. . . we
ruined the fun for you as a kid, we just pre-assembled it but we
didn’t glue it together, so you can still disassemble it if you want.
And the advantage is that you don’t have to assemble it anymore,
which saves time, you don’t have to test it anymore. That’s more or
less the parallel.’’ —P6, core team.
7.6.9. Send delivery advocate
The core team can send a ‘delivery advocate’ to a business divi-

sion. Delivery advocate is one of a few roles identified in [24] and is
a member of the core team that assists a business division to inte-
grate the shared asset. By being physically present as a local help-
desk, it becomes easier to help business divisions to integrate the
shared asset. Naturally, this works better for business divisions
that are located near the core team than for those located in differ-
ent countries. One participant explained:

‘‘I think that certainly we, but also the business divisions, underes-
timated the importance of early feedback. And with the current
projects that’s going better. We send our people with the platform
delivery, and they set up an integration desk at the customer, and if
they start using the platform, then you’ll know quickly whether it
works or not. And then you’re physically present to see whether

K. Stol et al. / Information and Software Technology 53 (2011) 1319–1336 1333
it’s really an issue, or whether the misconfigured the product.’’ —P6,
core team.
7.6.10. Provide training
The core team can provide training. Architects from the core

team explain the principles and rationale behind the architecture.
Training is provided to business divisions in order to give them
insights into the design of the shared asset, which will make it
easier to understand how the shared asset can be used in a prod-
uct. One participant of the core team explains:

‘‘We also give training in the area of, what is [the shared asset], and
how its architecture was designed; how was it constructed, and
why. Usually, our lead architect gives an introduction during the
morning, followed by training focused on various subparts of the
[shared asset].’’ —P6, core team.

This is quite a traditional way of transferring knowledge, and is
also provided by so-called commercial OSS providers, such as Red
Hat, which sells support for Linux distributions and JBoss Enter-
prise Middleware software.

8. Discussion

In this section, we discuss the main findings from this research
and compare some findings to related work (Section 8.1). Based on
our findings, we draw the key implications of the reported work for
the research and practice of developing software-intensive systems
with OSS and ISS. This discussion is focused on the challenges and
the approaches used, and which challenges have not been
addressed.

8.1. Comparison of findings to related work

This paper reports on one organization (‘‘SoftCom’’) that has
adopted a project-based Inner Source initiative. One of the main
objectives of this study was to identify the key challenges related
to integration of a shared asset (the Inner Source Software). While
our study is the first to focus on identifying such kinds of chal-
lenges, some other studies have also reported experiences. In this
section, we compare our findings to these experience reports as
far as they reflect on integration of the shared asset.

8.1.1. Comparison of challenges
In [5], Gurbani et al. report on their experiences with the Inner

Source initiative at Alcatel-Lucent (which they refer to as ‘‘Corpo-
rate Open Source’’), as well as lessons learned from these experi-
ences. We observed a few commonalities and differences
between their lessons and our results. We discuss these next.

8.1.1.1. Balancing refactoring and requirements (S3). We identified a
challenge of keeping a balance between refactoring of the shared
asset and fulfilling requirements (Section 7.2). Gurbani et al.
reported on a similar lesson learned; they noted that: ‘‘it is essential
to recognize and accommodate the tension between cultivating a gen-
eral, common resource on the one hand, and the pressure to get spe-
cific releases of specific products out on time.’’ [5]. The core team is
responsible for delivering the shared asset (the common resource)
and maintaining the conceptual and architectural integrity (which
includes refactoring). In both cases, the core teams seem to be
under pressure to deliver new features on the one hand, and main-
tain the shared asset’s quality on the other hand.

8.1.1.2. Contributions don’t fit (S4). SoftCom is a relatively large
organization with many business divisions, all of which use the
shared asset. A problem that was quite prevalent until a few years
ago was that business divisions would develop contributions,
which did not adhere to the architectural design principles of the
shared asset, resulting in a misfit. The software may be quite useful
for the business division involved, but would not be suitable for
other customers as it was too specific. A similar problem also
was reported by Gurbani et al. [5]: ‘‘One of the most basic problems
that many interviewees experienced was that developers were unac-
customed to thinking and designing solutions that were more general
than their own product line.’’

8.1.1.3. Reluctance to adopt contributions (S5). We found that the
core team (at SoftCom) was somewhat reluctant to accept contri-
butions. The core team is responsible for the design and mainte-
nance of the shared asset; therefore, this reluctance may be fed
by a ‘‘not-invented here’’ feeling as well as the obligation for fur-
ther maintenance of code written by others. The interaction in
the Inner Source project at Alcatel-Lucent seems to have been more
open, and closer to the ‘‘Open Source’’ paradigm; Gurbani et al. [5]
report that ‘‘It is very unlikely for a developer in the [core team] to be
cognizant of a feature being put into the code by another organiza-
tion.’’ This implies that it is easier for other developers (not mem-
bers of the core team) to make changes to the shared asset directly.
This is an essential difference with the situation at SoftCom, where
it is explicitly not the case that non-core team members can make
changes to the shared asset’s code directly. Instead, contributions
are much more controlled through the collaborative development
mechanism.

There are a number of possible explanations for this difference.
Firstly, the Inner Source project at Alcatel-Lucent was a new prod-
uct and implementing a rapidly evolving technology, whereas the
shared asset at SoftCom started as a well-established component
suite with well-defined interfaces and functionality. Secondly,
there is a significant difference in the size of the shared assets at
Alcatel-Lucent and SoftCom. The former was reported to count
approximately 48 thousand lines of code (in 2005 [5]), whereas
the latter consisted of several millions lines of code, and is there-
fore much more complex and serving a larger variety of business
needs. Therefore, contributing to such a large shared asset is natu-
rally more complex.

8.2. Challenges lead to other challenges

We observe that certain challenges have led to other chal-
lenges; these are shown at the bottom in the middle layer (titled
‘case study: challenges’) in Fig. 5. Each of these ‘‘root’’ challenges
cause or exacerbate other challenges (indicated by pointy arrows
between challenges in the middle layer). We suggest that giving
priority to these challenges while defining strategies to address
them will have a positive, cascading effect. By addressing these
root challenges, defined strategies may also indirectly address
non-root challenges. We note that a challenge is not necessarily
either a root challenge or ‘‘caused’’ (or exacerbated) by a root chal-
lenge; challenge S3, the tension of balancing implementing
requirements and performing architectural refactoring, is neither
caused by any other challenge, nor causing (or exacerbating) other
challenges.

8.3. Unaddressed challenges

The three dark-gray colored challenges (S3, S5, S6) in Fig. 5 do
not have associated approaches. We note that two of them are re-
lated to contributing (S5: core team’s reluctance to adopt contribu-
tions, and S6: business divisions’ reluctance to contribute). These
challenges are two sides (sending and receiving) of the same me-
dal, namely contribution, one of the core practices in OSSD. Both
these challenges exacerbate the problem of missing functionality

1334 K. Stol et al. / Information and Software Technology 53 (2011) 1319–1336
or insufficiently achieved quality requirements (S9). We assert that
by improving the contribution mechanism, these two challenges
can be addressed. As a result, this will also improve the level of
mutual knowledge sharing within the organization, thereby
addressing the lack of domain knowledge in the core team.

By improving the contribution mechanism in Inner Source, the
pressure on the core team to fulfill all requested requirements
may also be decreased (challenge S3: balance requirements and
refactoring), which will allow them to allocate more time to per-
form maintenance and architectural refactoring.

8.4. Open research questions

Our research results have resulted in new insights but at the
same time, it has identified a number of open research questions.
We discuss them next.

8.4.1. Improving interaction and contributions
In Inner Source, business divisions have the right and means to

make local changes to the software that is managed as an OSS as-
set, if so required. This partly addresses the problem that the core
team, which manages the shared asset, lacks domain knowledge
about certain requirements that a business division may have. This
is especially useful if a business division is working towards a
product release, and functionality turns out to be missing. Such
changes should be given back to the core team, so as to take advan-
tage of the Open Source paradigm. However, our findings suggest
that this rarely happens. The core team heavily guards the shared
asset’s architecture, and is reluctant to accept the maintenance
responsibility of code that was ‘not developed here’. One common
concern is that contributions may not respect the architectural
principles of the shared asset. This challenge may also arise in
OSS development: a case study reported in [51] showed that after
two years of development, the actual architecture differed signifi-
cantly from the conceptual (designed) architecture. This phenom-
enon is also referred to as ‘architectural drift’. Linus Torvalds,
creator and chief architect of the Linux kernel project, recently ex-
pressed that he was not pleased with the current state of the
implementation [52].

One approach SoftCom is taking to address this challenge is to
do collaborative development. However, our results suggest that
the organization would benefit if the contribution mechanism
would be improved and better exploited. It would be valuable to
improve our understanding of how business divisions can make
higher quality contributions that can be more easily accepted by
the core team.

8.4.2. Requirements versus refactoring
Since various business divisions use the shared asset, the num-

ber of requests to the core team for functionality and improve-
ments can be quite high. Furthermore, besides the need to
prioritize the business divisions’ requests, the core team also needs
to maintain the soundness of the shared asset’s architecture.
Therefore, there is a continuous need to balance the tension be-
tween fulfilling business divisions’ requirements on the one hand,
and performing architectural refactoring on the other. We assert
that it would be very valuable to gain a deeper insight into what
lessons can be learned here from the OSS paradigm.

8.4.3. Improving knowledge sharing
One of the most recurring challenges we have identified is that

business divisions found it difficult to use the shared asset. That is,
business divisions have great difficulty in building an application
based on the shared asset. Developers and architects have a strong
need for ‘how-to’ knowledge, how to use the component. Though
this challenge has been partly addressed by the set up of a wiki
and a mailing list through which knowledge can be shared that
has increased the liveliness of the community. These measures
may not to be sufficient. Hence, transferring knowledge effectively
among different development teams remains to be a challenge.

8.5. Limitations of this study

We are aware of a few limitations of this study that we discuss
in this section. They are classified in limitations regarding con-
struct validity, external validity and reliability. Since this case
study has an exploratory nature, internal validity is not a concern,
as there are no claims about causal relationships [15]. (We note
that the ‘‘causal’’ relationships between the ‘‘root’’ challenges
(see Sections 7.5 and 8.1) that cause or exacerbate other challenges
are not a matter of internal validity, but rather of reliability; the
relationships were part of the findings, rather than being tested
in this research. Threats to reliability are discussed below.)

8.5.1. Construct validity
Construct validity is concerned with the question whether the

researcher measures what he or she intends to measure. This study
is limited since we have gathered data from only one source (inter-
views). The number of interviews is limited to 11. However, we
found that all participants informed us with more or less the same
description of their experiences, which hinted at data saturation
[53]. We interviewed people from different divisions, each express-
ing their experiences and views, thereby providing us with a
rounded view of the topic at hand. We found that results of all
interviews were consistent, which increases our confidence in
the trustworthiness of the data. The consistency of our data gives
us confidence that we have identified real challenges that practi-
tioners experience. All challenges can be traced back to at least
one participant, and 10 out of 13 challenges were mentioned by
two or more participants.

8.5.2. External validity
A commonly expressed concern of case study methodology is

that no statistical generalization can be achieved [53]. However,
the goal of case study research is not to achieve statistical general-
ization, but rather an analytical generalization. This is of particular
importance for studying a phenomenon such as Inner Source, since
each case of it is tailored to the organization in which it is imple-
mented. Another organization that has adopted different OSS prac-
tices is likely to encounter different challenges. This study is a first
attempt to bring clarity about a relatively unexplored area. In Sec-
tion 6 we presented a high-level overview of the Inner Source
implementation in SoftCom, which provide context to interpret
our findings presented in Section 7. Also, our case study was per-
formed at an organization that has adopted a project-based Inner
Source initiative. Different challenges may occur in an infrastruc-
ture-based Inner Source initiative.

8.5.3. Reliability
Reliability is the level to which the operational aspects of the

study, such as data collection and analysis procedures, are repeat-
able with the same results. Given that the first author conducted
the primary initial interpretation of the data, the issue of interpre-
tive validity and trustworthiness of the analysis bears consider-
ation. This issue was addressed by following three common
procedures to establish validity in qualitative projects [54], which
have been briefly discussed in Section 5.3. We describe these in
more detail below.

8.5.3.1. Triangulation. The first procedure is triangulation, which is
validity procedure to search for convergence among multiple and
different sources of information [54]. There are four types of

K. Stol et al. / Information and Software Technology 53 (2011) 1319–1336 1335
triangulation: across data sources (such as participants), theories,
methods (such as data collection methods), and among different
investigators [54]. In this research, we have applied triangulation
across data sources, as we interviewed 11 participants and
analyzed and cross-compared their ‘‘story lines’’. Through this
procedure, we found that challenges and approaches were consis-
tently described. A second form of triangulation that we performed
is among different investigators. In several face-to-face meetings,
two researchers have extensively discussed the study context,
findings and conclusions.

8.5.3.2. Audit trail. Secondly, we provide a traceable, documented
justification of the process by which research conclusions were
reached, thus providing an audit trail of the process, as recom-
mended by Guba [55]. All interviews were recorded and tran-
scribed verbatim in order to make sure that no data reduction
occurred prematurely. The transcription of the interviews was
done by a single researcher, and was not crosschecked by others.
This could potentially have resulted in information loss. However,
we believe this risk was minimized, as all transcripts were com-
pared once more to the audio recordings, in order to make sure
that nothing was lost during transcription. A sample of the memo-
ing and coding process is provided in Section 5.3 above.

8.5.3.3. Member checking. The third validity procedure is member
checking, whereby data and interpretations are taken back to the
participants to allow them to confirm the credibility [54]. We used
a form of member checking whereby interviewees were subse-
quently provided with an initial draft of this paper. Furthermore,
after analyzing our data, we became aware of a number of delive-
rables of a research project that SoftCom had been involved in, that
we had access to. Some of the participants of our study had been
involved in authoring these deliverables, which is why this is a
form of member checking. These deliverables contained descrip-
tions of a few of the challenges and approaches that we have iden-
tified and presented in Section 7 and therefore further confirmed
our findings.
9. Conclusion and future work

A number of large organizations have recognized the successful
mode of software development that occurs within Open Source
Software development, and have adopted OSSD practices within
their organization’s boundaries. While different terms have been
used to describe this phenomenon, in this paper we use the term
‘‘Inner Source’’, and have termed the produced software in such
an environment ‘‘Inner Source Software’’ (ISS).

There have been various experience reports of organizations
that have adopted an Inner Source approach. These studies typi-
cally report on experiences of adopting OSSD practices as well as
encountered challenges and lessons learned, and as such, present
rather general accounts of adopting OSSD practices (i.e., Inner
Source).

In this paper, we have focused on challenges in Inner Source
from a software integrator’s perspective. We report on an in-depth
exploratory case study at a large organization that has adopted a
number of OSSD practices for its in-house software development.
In this paper we have explicitly linked development of products
with OSS (which has been studied extensively) and development
of products with ISS (which is a relatively new field of research).
One significant difference is that, in the one case (OSS), the soft-
ware was developed by an external, unknown workforce, whereas
in the other (ISS), the software was developed by an internal,
known workforce. This means that in the one case, development
of components is out of the organization’s control, whereas in
ISS, the ‘‘OSS community’’ is grown within the organization. De-
spite this difference we have observed that there are many com-
mon challenges.

The findings of this study provide valuable insights to organiza-
tions that may wish to adopt Inner Source by informing them
about challenges that have been experienced by a large organiza-
tion. This paper has also identified some approaches that an orga-
nization can use to address the challenges identified by this case
study. Other organizations that are experiencing similar challenges
may learn from these approaches. Furthermore, this paper has also
identified a number of open research questions that can help
researchers to form a research agenda.

Organizations can benefit greatly from adopting OSS develop-
ment practices, however, more research is needed to fully under-
stand how to address the challenges involved in OSSD. We
believe that Inner Source can provide opportunities for an organi-
zation to improve its software development processes. In particu-
lar, it would be quite valuable to increase our understanding of
how Inner Source can facilitate a higher degree of interaction
among business divisions within an organization, in terms of con-
tributions both to the shared asset and architectural and sharing
knowledge.

This paper contributes to the literature by documenting the
challenges involved in developing and using ISS and approaches
to address those challenges. This can be of interest to organizations
that wish to adopt OSSD practices. These new insights can be com-
bined with the insights reported so far in other studies (e.g., [4–6]).
In particular, we are planning to continue our research efforts to
provide practical, empirical-based guidelines that will give organi-
zations insight into what practices are appropriate, and how par-
ticular challenges can be addressed by an Inner Source approach.
Acknowledgements

This work is partially funded by IRCSET under grant no. RS/
2008/134 and by Science Foundation Ireland grant 03/CE2/I303_1
to Lero (www.lero.ie). We are grateful to the participants of our
study for their time and enthusiasm. We thank the anonymous
reviewers for their useful comments and suggestions to improve
this paper, particularly Sections 5–8. The first author is grateful
to Sarah Beecham for her valuable feedback on earlier drafts of
Fig. 2.
References

[1] C. Melian, Progressive Open Source: The construction of a development project
at Hewlett-Packard, PhD dissertation, Stockholm School of Economics, 2007.

[2] J. Robbins, Adopting Open Source Software Engineering (OSSE) practices by
adopting OSSE tools, in: J. Feller, B. Fitzgerald, S.A. Hissam, K.R. Lakhani (Eds.),
Perspectives on Free and Open Source Software, MIT Press, 2005, pp. 245–264.

[3] E.S. Raymond, The Cathedral & the Bazaar: Musings on Linux and Open Source
by an Accidental Revolutionary, O’Reilly Media, 2001.

[4] J. Wesselius, The bazaar inside the cathedral: business models for internal
markets, IEEE Software 25 (2008) 60–66, doi:10.1109/MS.2008.79.

[5] V.K. Gurbani, G. Anita, J.D. Herbsleb, A case study of a corporate open source
development model, in: Proceedings of the 28th International Conference on
Software Engineering, Shanghai, China, 2006, pp. 472–481, 10.1145/
1134285.1134352.

[6] J. Dinkelacker, P.K. Garg, R. Miller, D. Nelson, Progressive open source, in:
Proceedings of the 24th International Conference on Software Engineering,
Orlando, FL, USA, 2002, pp. 177–184, 10.1145/581339.581363.

[7] T. O’Reilly, Lessons from open source software development, Communications
of the ACM 42 (1999) 33–37, doi:10.1145/299157.299164.

[8] A. Mockus, J.D. Herbsleb, Why not improve coordination in distributed
software development by stealing good ideas from open source?, in:
Proceedings of the 2nd Workshop on Open Source Software Engineering,
Orlando, FL, USA, 2002, pp. 35–37.

[9] J. Erenkrantz, R.N. Taylor, Supporting distributed and decentralized projects:
drawing lessons from the open source community, in: Proceedings of the 1st
Workshop on Open Source in an Industrial Context, Anaheim, California, 2003.

http://www.lero.ie
http://dx.doi.org/10.1109/MS.2008.79
http://dx.doi.org/10.1145/1134285.1134352
http://dx.doi.org/10.1145/1134285.1134352
http://dx.doi.org/10.1145/581339.581363
http://dx.doi.org/10.1145/299157.299164

1336 K. Stol et al. / Information and Software Technology 53 (2011) 1319–1336
[10] J. Asundi, Software engineering lessons from open source projects, in: J. Feller,
B. Fitzgerald, A. van der Hoek (Eds.), Proceedings of the 1st Workshop on Open
Source Software Engineering, Toronto, ON, Canada, 2001.

[11] J. Lindman, M. Rossi, P. Marttiin, Applying open source development practices
inside a company, in: B. Russo, E. Damiani, S. Hissam, B. Lundell, G. Succi
(Eds.), Open Source Development, Communities and Quality, Springer, 2008,
pp. 381–387, doi:10.1007/978-0-387-09684-1_36.

[12] D. Riehle, J. Ellenberger, T. Menahem, B. Mikhailovski, Y. Natchetoi, B. Naveh, T.
Odenwald, Open collaboration within corporations using software forges, IEEE
Software 26 (2009) 52–58, doi:10.1109/MS.2009.44.

[13] K. Martin, B. Hoffman, An open source approach to developing software in a
small organization, IEEE Software 24 (2007) 46–53, doi:10.1109/MS.2007.5.

[14] K. Stol, M. Ali Babar, Challenges in using open source software in product
development: a review of the literature, in: Proceedings of the 3rd Workshop
on Emerging Trends in FLOSS Research and Development, ACM, Cape Town,
South Africa, 2010, pp. 17–22, 10.1145/1833272.1833276.

[15] R.K. Yin, Case Study Research: Design and Methods, 3rd ed., Sage Publications,
Thousand Oaks, CA, 2003.

[16] K. Petersen, C. Wohlin, A comparison of issues and advantages in agile and
incremental development between state of the art and an industrial case,
Journal of Systems and Software 82 (2009) 1479–1490, doi:10.1016/
j.jss.2009.03.036.

[17] G. Gaughan, B. Fitzgerald, M. Shaikh, An examination of the use of open source
software processes as a global software development solution for commercial
software engineering, in: Proceedings of the 35th Euromicro Conference on
Software Engineering and Advanced Applications Patras, Greece, 2009, pp. 20–
27, 10.1109/SEAA.2009.86.

[18] F. Van der Linden, Applying open source software principles in product lines,
UPGRADE 10 (2009) 32–41.

[19] Ø. Hauge, C. Ayala, R. Conradi, Adoption of open source software in
software-intensive organizations – a systematic literature review,
Information and Software Technology 52 (2010) 1133–1154, doi:10.1016/
j.infsof.2010.05.008.

[20] T. Østerlie, L. Jaccheri, A critical review of software engineering research on
open source software development, in: Proceedings of the 2nd European
Symposium on Systems Analysis and Design, Gdansk, Poland, 2007, pp. 12–20.

[21] J. Feller, B. Fitzgerald, Understanding Open Source Software Development,
Pearson Education Ltd., 2002.

[22] K. Stol, M. Ali Babar, B. Russo, B. Fitzgerald, the use of empirical methods in
open source software research: facts, trends and future directions in:
Proceedings of the 2nd Workshop on Emerging Trends in FLOSS Research
and Development, IEEE, Vancouver, Canada, 2009, pp. 19–24, 10.1109/
FLOSS.2009.5071355.

[23] M. Theunissen, D. Kourie, A. Boake, Corporate-, agile- and open source
software development: a witch’s brew or an elixir of life?, in: B. Meyer, J.R.
Nawrocki, B. Walter (Eds.), Balancing Agility and Formalism in Software
Engineering, Springer-Verlag, 2008, pp. 84–95, doi:10.1007/978-3-540-85279-
7_7.

[24] V.K. Gurbani, A. Garvert, J.D. Herbsleb, Managing a corporate open source
software asset, Communications of the ACM 53 (2010) 155–159, doi:10.1145/
1646353.1646392.

[25] C. Melian, M. Mähring, Lost and gained in translation: adoption of open source
software development at Hewlett–Packard, in: B. Russo, E. Damiani, S.
Hissam, B. Lundell, G. Succi (Eds.), Open Source Development, Communities
and Quality, Springer, 2008, pp. 93–104, doi:10.1007/978-0-387-09684-1_8.

[26] P. Clements, L. Northrop, Software Product Lines: Practices and Patterns,
Addison-Wesley, 2002.

[27] K.C. Wallnau, S.A. Hissam, R.C. Seacord, Building Systems from Commercial
Components, Addison-Wesley, 2002.

[28] K. Ven, H. Mannaert, Challenges and strategies in the use of open source
software by independent software vendors, Information and Software
Technology 50 (2008) 991–1002, doi:10.1016/j.infsof.2007.09.001.

[29] B. Kitchenham, S. Charters, Guidelines for performing systematic literature
reviews in software engineering, Technical report No. EBSE 2007-001,
2007.

[30] Ø. Hauge, C.-F. Sørensen, A. Røsdal, Surveying industrial roles in open source
software development, in: J. Feller, B. Fitzgerald, W. Scacchi, A. Sillitti (Eds.),
Open Source Development, Adoption and Innovation, Springer, 2007, pp. 259–
264, doi:10.1007/978-0-387-72486-7_25.

[31] C. Ayala, Ø. Hauge, R. Conradi, X. Franch, J. Li, K.S. Velle, Challenges of the open
source component marketplace in the industry, in: C. Boldyreff, K. Crowston,
B. Lundell, A.I. Wasserman (Eds.), Open Source Ecosystems: Diverse
Communities Interacting, Springer, 2009, pp. 265–271, doi:10.1007/978-3-
642-02032-2_19.

[32] J. Merilinna, M. Matinlassi, State of the art and practice of open source
component integration, in: Proceedings of the 32nd Euromicro Conference on
Software Engineering and Advanced Applications, IEEE Computer Society,
2006, pp. 170–177, 10.1109/EUROMICRO.2006.61.

[33] W. Chen, J. Li, J. Ma, R. Conradi, J. Ji, C. Liu, An empirical study on software
development with open source components in the chinese software industry,
Software Process: Improvement and Practice 13 (2008) 98–100, doi:10.1002/
spip.361.

[34] P. Conlon, P. Carew, A risk driven framework for open source information
systems development, in: M. Scotto, G. Succi (Eds.) Proceedings of the 1st
International Conference on Open Source Systems, Genova, Italy, 2005, pp.
200–203.

[35] J. Krivoruchko, The use of open source software in enterprise distributed
computing environments, in: J. Feller, B. Fitzgerald, W. Scacchi, A. Sillitti
(Eds.), Open Source Development, Adoption and Innovation, Springer, 2007,
pp. 277–282, doi:10.1007/978-0-387-72486-7_28.

[36] F. Tiangco, A. Stockwell, J. Sapsford, A. Rainer, E. Swanton, Open-source
software in an occupational health application: the case of Heales Medical Ltd.,
in: Proceedings of the 1st International Conference on Open Source Systems,
2005, pp. 130–134.

[37] C. Bac, O. Berger, V. Deborde, B. Hamet, Why and how to contribute to libre
software when you integrate them into an in-house application? in: M. Scotto,
G. Succi (Eds.) Proceedings of the 1st International Conference on Open Source
Systems, Genova, Italy, 2005, pp. 113–118.

[38] J. Akkanen, H. Demeter, T. Eppel, Z. Ivánfi, J. Nurminen, P. Stenman, Reusing an
open source application — practical experiences with a mobile CRM pilot, in: J.
Feller, B. Fitzgerald, W. Scacchi, A. Sillitti (Eds.), Open Source Development,
Adoption and Innovation, Springer, 2007, pp. 217–222, doi:10.1007/978-0-
387-72486-7_18.

[39] T.R. Madanmohan, R. De’, Open source reuse in commercial firms, IEEE
Software 21 (2004) 62–69, doi:10.1109/MS.2004.45.

[40] C. Ayala, C. Sørensen, R. Conradi, X. Franch, J. Li, Open source collaboration for
fostering off-the-shelf components selection, in: J. Feller, B. Fitzgerald, W.
Scacchi, A. Sillitti (Eds.), Open Source Development, Adoption, Innovation,
Springer, 2007, pp. 17–30, doi:10.1007/978-0-387-72486-7_2.

[41] A. Jaaksi, Experiences on Product Development with Open Source Software, in:
Open Source Development, Adoption and Innovation, Springer, 2007, pp. 85–
96, doi:10.1007/978-0-387-72486-7_7.

[42] K. Ven, J. Verelst, The importance of external support in the adoption of open
source server software, in: C. Boldyreff, K. Crowston, B. Lundell, A.I.
Wasserman (Eds.), Open Source Ecosystems: Diverse Communities
Interacting, Springer, 2009, pp. 116–128, doi:10.1007/978-3-642-02032-2_12.

[43] H. Mannaert, K. Ven, The use of open source software platforms by
independent software vendors: issues and opportunities, in: Proceedings of
the 5th Workshop on Open Source Software Engineering, ACM, 2005,
doi:10.1145/1082983.1083266.

[44] C. Ruffin, C. Ebert, Using open source software in product development: a
primer, IEEE Software 21 (2004) 82–86, doi:10.1109/MS.2004.1259227.

[45] P.J. Ågerfalk, A. Deverell, B. Fitzgerald, L. Morgan, Assessing the role of open
source software in the European secondary software sector: a voice from
industry, in: M. Scotto, G. Succi (Eds.) Proceedings of the 1st International
Conference on Open Source Systems, Genova, Italy, 2005, pp. 82–87.

[46] A.C. Edmondson, S.E. McManus, Methodological fit in management field
research, Academy of Management Review 32 (2007) 1155–1179.

[47] J.M. Verner, J. Sampson, V. Tosic, N.A. Abu Bakar, B.A. Kitchenham, Guidelines
for industrially-based multiple case studies in software engineering, in:
Proceedings of the Third International Conference on Research Challenges in
Information Science, 2009, pp. 313–324, 10.1109/RCIS.2009.5089295.

[48] S.J. Taylor, R. Bogdan, Introduction to Qualitative Research, John Wiley & Sons,
New York, 1984.

[49] C.B. Seaman, Qualitative methods in empirical studies of software engineering,
IEEE Transactions on Software Engineering 25 (1999) 557–572, doi:10.1109/
32.799955.

[50] D. Garlan, R. Allen, J. Ockerbloom, Architectural mismatch: why reuse is so
hard, IEEE Software 12 (1995) 17–26, doi:10.1109/52.469757.

[51] E. Nakagawa, E. de Sousa, K. de Brito Murata, G. de Faria Andery, L. Morelli, J.
Maldonado, Software architecture relevance in open source software
evolution: a case study, in: Proceedings of the 32nd International Computer
Software and Applications Conference, IEEE Computer Society Washington,
DC, USA, 2008, pp. 1234–1239, 10.1109/COMPSAC.2008.171.

[52] A. Modine, Linus calls Linux ‘bloated and huge’, in: The Register, 2009.
[53] P. Runeson, M. Höst, Guidelines for conducting and reporting case study

research in software engineering, Empirical Software Engineering 14 (2009)
131–164, doi:10.1007/s10664-008-9102-8.

[54] J.W. Creswell, D.L. Miller, Determining validity in qualitative inquiry, Theory
into Practice 39 (2000) 124–130.

[55] E. Guba, Criteria for assessing the trustworthiness of naturalistic inquiries,
Educational Communication and Technology 29 (1981) 75–92.

http://dx.doi.org/10.1007/978-0-387-09684-1_36
http://dx.doi.org/10.1109/MS.2009.44
http://dx.doi.org/10.1109/MS.2007.5
http://dx.doi.org/10.1145/1833272.1833276
http://dx.doi.org/10.1016/j.jss.2009.03.036
http://dx.doi.org/10.1016/j.jss.2009.03.036
http://dx.doi.org/10.1109/SEAA.2009.86
http://dx.doi.org/10.1016/j.infsof.2010.05.008
http://dx.doi.org/10.1016/j.infsof.2010.05.008
http://dx.doi.org/10.1109/FLOSS.2009.5071355
http://dx.doi.org/10.1109/FLOSS.2009.5071355
http://dx.doi.org/10.1007/978-3-540-85279-7_7
http://dx.doi.org/10.1007/978-3-540-85279-7_7
http://dx.doi.org/10.1145/1646353.1646392
http://dx.doi.org/10.1145/1646353.1646392
http://dx.doi.org/10.1007/978-0-387-09684-1_8
http://dx.doi.org/10.1016/j.infsof.2007.09.001
http://dx.doi.org/10.1007/978-0-387-72486-7_25
http://dx.doi.org/10.1007/978-3-642-02032-2_19
http://dx.doi.org/10.1007/978-3-642-02032-2_19
http://dx.doi.org/10.1109/EUROMICRO.2006.61
http://dx.doi.org/10.1002/spip.361
http://dx.doi.org/10.1002/spip.361
http://dx.doi.org/10.1007/978-0-387-72486-7_28
http://dx.doi.org/10.1007/978-0-387-72486-7_18
http://dx.doi.org/10.1007/978-0-387-72486-7_18
http://dx.doi.org/10.1109/MS.2004.45
http://dx.doi.org/10.1007/978-0-387-72486-7_2
http://dx.doi.org/10.1007/978-0-387-72486-7_7
http://dx.doi.org/10.1007/978-3-642-02032-2_12
http://dx.doi.org/10.1145/1082983.1083266
http://dx.doi.org/10.1109/MS.2004.1259227
http://dx.doi.org/10.1109/RCIS.2009.5089295
http://dx.doi.org/10.1109/32.799955
http://dx.doi.org/10.1109/32.799955
http://dx.doi.org/10.1109/52.469757
http://dx.doi.org/10.1109/COMPSAC.2008.171
http://dx.doi.org/10.1007/s10664-008-9102-8

	A comparative study of challenges in integrating Open Source Software and Inner Source Software
	1 Introduction
	2 Terminology
	2.1 Inner Source
	2.2 Inner Source Software (ISS)
	2.3 Inner Source Software Development (ISSD)

	3 Background and related work
	3.1 Developing with Open Source Software
	3.2 Open Source Software development practices
	3.3 Inner Source models
	3.3.1 Infrastructure-based Inner Source model
	3.3.2 Project-based Inner Source model
	3.3.3 Comparison of infrastructure-based and project-based Inner Source models
	3.3.3.1 Reuse
	3.3.3.2 Support
	3.3.3.3 Owner/maintainer
	3.3.3.4 Type of software packages

	3.4 Comparing integration of Open Source Software and Inner Source Software

	4 Challenges in integrating Open Source Software products
	5 Research design
	5.1 Research method
	5.2 Data collection
	5.3 Data analysis

	6 The SoftCom organization
	6.1 Adopted Open Source Software development practices
	6.1.1 Regular releases and frequent integration
	6.1.2 Collaborative development
	6.1.3 Local changes to the source code
	6.1.4 Tool support

	7 Challenges in Inner Source
	7.1 Documentation and knowledge
	7.1.1 Lack of documentation
	7.1.2 Lack of domain knowledge

	7.2 Community, support and maintenance
	7.2.1 Balancing refactoring and requirements
	7.2.2 Contributions do not fit
	7.2.3 Reluctance to accept contributions
	7.2.4 Reluctance to contribute
	7.2.5 Core team as traditional supplier

	7.3 Integration and architecture
	7.3.1 Changing interfaces
	7.3.2 Missing functionality
	7.3.3 Architectural mismatch
	7.3.4 Boundless reuse
	7.3.5 Use-case mismatch

	7.4 Migration and usage
	7.5 Comparison of challenges with OSS and ISS
	7.5.1 Lack of documentation (C4)
	7.5.2 Dependency on community (C6)
	7.5.3 Maintaining custom changes (C7)
	7.5.4 Getting contributions accepted (C8)
	7.5.5 Contributing costs resources (C11)
	7.5.6 Backwards compatibility concerns (C12)
	7.5.7 Modifications needed (C13)
	7.5.8 System incompatibility (C14)
	7.5.9 Horizontal integration issues (C15)
	7.5.10 Configuration complexity (C17)

	7.6 Adopted approaches
	7.6.1 Wiki and mailing lists
	7.6.2 Define API under change control
	7.6.3 Regular integration
	7.6.4 Make local changes
	7.6.5 Collaborative development
	7.6.6 Make demos
	7.6.7 Merge organizations
	7.6.8 Component assemblies
	7.6.9 Send delivery advocate
	7.6.10 Provide training

	8 Discussion
	8.1 Comparison of findings to related work
	8.1.1 Comparison of challenges
	8.1.1.1 Balancing refactoring and requirements (S3)
	8.1.1.2 Contributions don’t fit (S4)
	8.1.1.3 Reluctance to adopt contributions (S5)

	8.2 Challenges lead to other challenges
	8.3 Unaddressed challenges
	8.4 Open research questions
	8.4.1 Improving interaction and contributions
	8.4.2 Requirements versus refactoring
	8.4.3 Improving knowledge sharing

	8.5 Limitations of this study
	8.5.1 Construct validity
	8.5.2 External validity
	8.5.3 Reliability
	8.5.3.1 Triangulation
	8.5.3.2 Audit trail
	8.5.3.3 Member checking

	9 Conclusion and future work
	Acknowledgements
	References

