Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/5700
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Adokoh, Christian K. | - |
dc.contributor.author | Keter, Frankline K. | - |
dc.contributor.author | Kinfe, Henok H. | - |
dc.contributor.author | Tshikhudo, Robert | - |
dc.contributor.author | Darkwa, James | - |
dc.contributor.author | Keter, Frankline K. | - |
dc.contributor.author | Kinfe, Henok H. | - |
dc.contributor.author | Tshikhudo, Robert | - |
dc.contributor.author | Darkwa, James | - |
dc.date.accessioned | 2021-07-22T14:48:01Z | - |
dc.date.available | 2021-07-22T14:48:01Z | - |
dc.date.issued | 2019 | - |
dc.identifier.issn | 23105496 | - |
dc.identifier.uri | http://hdl.handle.net/123456789/5700 | - |
dc.description | 10p;, ill. | en_US |
dc.description.abstract | Glyco-gold nanoparticles (AuNPs) in aqueous dispersions were prepared by two approaches, namely direct reduction and ligand substitution methods. In the direct method, potassium salts of glyco thiols, with the general formula (C6H11O6)NHIJCH2)nCH2SK (where L1,n = 1;L2,n = 2;L3,n = 3,L4,n = 4;L5,n = 5), were used as reducing and capping agents to give the glyco thiolate capped gold nanoparticles (AuNPs G1–G5); meanwhile in the ligand exchange experiments,L1–L5 and their acetylated forms (L6–L8) replaced citrateions in citrate-capped gold nanoparticles to give additional AuNPs G6–G11. UV-visible spectroscopy, surface charge (ζ-potential,) measurements and transmission electron microscopy (TEM) were used for physical and chemical characterization of all the resultant AuNPs. The ζ-potential studies of AuNPs prepared through the direct method revealed that the surface charge is dependent on the length of the alkyl unit of (C6H11O6)NHIJCH2)nCH2S − ligands. TEM images of the acetylated and non-acetylated glyco thiolate capped gold nanoparticles (AuNPs G6–G11) prepared via the ligand exchange method indicate that the size and shape of the gold nanoparticles remained the same as those of the citrate-capped gold nanoparticles used to prepare them. Selected AuNPs were tested on peripheral blood mononuclear cells (PBMCs) and the A549 cancer cell line to investigate their respective toxicity and cytotoxicity profiles. All AuNPs showed in discriminate activity against both PBMCs and A4549 cells, although the gold nanoparticles having an acetylated glyco moiety with an amino propyl thiol linker as the ligand (G10) prepared via the citrate exchange method had better selectivity (PBMCs >59 mg mL−1 and for A549 ∼7 μg mL−1 | en_US |
dc.language.iso | en | en_US |
dc.publisher | University of Cape Coast | en_US |
dc.title | Development and characterization of functionalized glyco thiolate capped gold nanoparticles for biological applications | en_US |
dc.type | Article | en_US |
Appears in Collections: | Department of Chemistry |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Development and characterization of functionalized glyco thiolate capped gold nanoparticles for biological applications.pdf | Article | 3.36 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.