Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/5960
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhang, John-
dc.contributor.authorMahmud, Ibrahim-
dc.date.accessioned2021-08-26T09:47:02Z-
dc.date.available2021-08-26T09:47:02Z-
dc.date.issued2005-
dc.identifier.issn23105496-
dc.identifier.urihttp://hdl.handle.net/123456789/5960-
dc.description19p:, ill.en_US
dc.description.abstractThis study compares the SPSS ordinary least squares (OLS) regression and ridge regression procedures in dealing with multicollinearity data. The S regression method is one of the most frequently applied statistical procedures in application. It is well documented that the LS method is extremely unreliable in parameter estimation while the independent variables are dependent (multicollinearity roblem). The Ridge Regression procedure deals with the multicollinearity problem by introducing a small bias in the parameter estimation. The application of ridge egression involves the selection of a bias parameter and it is not clear if it works better in applications. This study uses a monte Carlo method to compare the results of OLS Procedure with the Ridge egression procedure in SPSSen_US
dc.language.isoenen_US
dc.publisherUniversity of Cape Coasten_US
dc.subjectRidge regressionen_US
dc.subjectLeast squares regressionen_US
dc.subjectEigenvaluesen_US
dc.subjectEigenvectorsen_US
dc.subjectSimulationen_US
dc.titleA simulation study on spss ridge regression and ordinary least squares regression procedures for multicollinearity dataen_US
dc.typeArticleen_US
Appears in Collections:Department of Mathematics & Statistics



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.