Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/5961
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMoore, Stephen Edward-
dc.date.accessioned2021-08-26T10:02:08Z-
dc.date.available2021-08-26T10:02:08Z-
dc.date.issued2018-
dc.identifier.issn23105496-
dc.identifier.urihttp://hdl.handle.net/123456789/5961-
dc.description19p:, ill.en_US
dc.description.abstractThis paper is concerned with the analysis of a new stable space-time finite element method (FEM) for the numerical solution of parabolic evolution problems in moving spatial computational domains. The discrete bilinear form is elliptic on the FEM space with respect to a discrete energy norm. This property together with a corresponding boundedness property, consistency and approximation results for the FEM spaces yield an a priori discretization error estimate with respect to the discrete norm. Finally, we confirm the theoretical results with numerical experiments in spatial moving domainsen_US
dc.language.isoenen_US
dc.publisherUniversity of Cape Coasten_US
dc.subjectFinite element methoden_US
dc.subjectSpace-timeen_US
dc.subjectParabolic evolution problemen_US
dc.subjectMoving spatial computational domainsen_US
dc.subjectA priori discretization error estimatesen_US
dc.titleA stable space-time finite element method for parabolic evolution problemsen_US
dc.typeArticleen_US
Appears in Collections:Department of Laboratory Technology

Files in This Item:
File Description SizeFormat 
A Stable Space-Time Finite Element Method for.pdfArticle730.54 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.