Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/5988
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Raffoul, Youssef | - |
dc.contributor.author | Yankson, Ernest | - |
dc.date.accessioned | 2021-08-27T18:45:27Z | - |
dc.date.available | 2021-08-27T18:45:27Z | - |
dc.date.issued | 2014 | - |
dc.identifier.issn | 23105496 | - |
dc.identifier.uri | http://hdl.handle.net/123456789/5988 | - |
dc.description | 13p:, ill. | en_US |
dc.description.abstract | We obtain sufficient conditions for the boundedness of solutions of the almost linear Volterra difference equation n 1 Ax(n) = a(n)h(x(n)) + L c(n,k)g(x(k)) k=0 using Krasnoselskii’s fixed point theorem. Also, we will display a Lyapunov functional that yield boundedness of solution and compare both methods | en_US |
dc.language.iso | en | en_US |
dc.publisher | University of Cape Coast | en_US |
dc.title | Existence of bounded solutions for almost linear Volterra difference equations using fixed point theory and Lyapunov functionals | en_US |
dc.type | Article | en_US |
Appears in Collections: | Department of Mathematics & Statistics |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Existence of bounded solutions for almost linear Volterra.pdf | Article | 3.81 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.