Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/6017
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYankson, Ernest-
dc.date.accessioned2021-08-31T12:09:08Z-
dc.date.available2021-08-31T12:09:08Z-
dc.date.issued2013-
dc.identifier.issn23105496-
dc.identifier.urihttp://hdl.handle.net/123456789/6017-
dc.description11p:, ill.en_US
dc.description.abstractThe existence and uniqueness of a periodic solution of the system of diferential equations ddtx(t) = A(t)x(t − τ ) are proved. In particular the Krasnoselskii’s fxed point theorem and the contraction mapping principle are used in the analysis. In addition, the notion of fundamental matrix solution coupled with Floquet theory is also employeden_US
dc.language.isoenen_US
dc.publisherUniversity of Cape Coasten_US
dc.subjectFixed pointen_US
dc.subjectFloquet theoryen_US
dc.subjectPeriodic solutionen_US
dc.titlePeriodicity in a System of differential equations with finite delayen_US
dc.typeArticleen_US
Appears in Collections:Department of Mathematics & Statistics

Files in This Item:
File Description SizeFormat 
Periodicity in a System of Differential Equations with.pdfArticle240.2 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.