Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/6018
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYankson, E.-
dc.date.accessioned2021-08-31T13:12:50Z-
dc.date.available2021-08-31T13:12:50Z-
dc.date.issued2018-
dc.identifier.issn23105496-
dc.identifier.urihttp://hdl.handle.net/123456789/6018-
dc.description9p:, ill.en_US
dc.description.abstractWe prove the existence and uniqueness of a periodic solution for the multiple delay diference neutral Volterra equation ∆x(n) = −∑Nj=1aj (n)x(n − τj (n)) + ∆Q(n, x(n − τ1(n)), ..., x(n − τN (n))+∑Nj=1∑nn−τj (n) kj (n, s)fj (s, x(s)). The contraction mapping principle and a Krasnoselskii’s fxed point theorem are used in the analysisen_US
dc.language.isoenen_US
dc.publisherUniversity of Cape Coasten_US
dc.titlePeriodicity in multiple delay volterra difference equations of neutral typeen_US
dc.typeArticleen_US
Appears in Collections:Department of Mathematics & Statistics

Files in This Item:
File Description SizeFormat 
PERIODICITY IN MULTIPLE DELAY VOLTERRA DIFFERENCE.pdfArticle95.4 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.