Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/6018
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yankson, E. | - |
dc.date.accessioned | 2021-08-31T13:12:50Z | - |
dc.date.available | 2021-08-31T13:12:50Z | - |
dc.date.issued | 2018 | - |
dc.identifier.issn | 23105496 | - |
dc.identifier.uri | http://hdl.handle.net/123456789/6018 | - |
dc.description | 9p:, ill. | en_US |
dc.description.abstract | We prove the existence and uniqueness of a periodic solution for the multiple delay diference neutral Volterra equation ∆x(n) = −∑Nj=1aj (n)x(n − τj (n)) + ∆Q(n, x(n − τ1(n)), ..., x(n − τN (n))+∑Nj=1∑nn−τj (n) kj (n, s)fj (s, x(s)). The contraction mapping principle and a Krasnoselskii’s fxed point theorem are used in the analysis | en_US |
dc.language.iso | en | en_US |
dc.publisher | University of Cape Coast | en_US |
dc.title | Periodicity in multiple delay volterra difference equations of neutral type | en_US |
dc.type | Article | en_US |
Appears in Collections: | Department of Mathematics & Statistics |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
PERIODICITY IN MULTIPLE DELAY VOLTERRA DIFFERENCE.pdf | Article | 95.4 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.