Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/6031
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yankson, Ernest | - |
dc.date.accessioned | 2021-08-31T15:10:50Z | - |
dc.date.available | 2021-08-31T15:10:50Z | - |
dc.date.issued | 2006 | - |
dc.identifier.issn | 23105496 | - |
dc.identifier.uri | http://hdl.handle.net/123456789/6031 | - |
dc.description | 14p:, ill. | en_US |
dc.description.abstract | We study the asymptotic stability of the zero solution of the Volterra difference delay equation x(n + 1) = a(n)x(n) + c(n)∆x(n − g(n)) +nX−1s=n−g(n)k(n, s)h(x(s)). A Krasnoselskii fxed point theorem is used in the analysis | en_US |
dc.language.iso | en | en_US |
dc.publisher | University of Cape Coast | en_US |
dc.title | Stability of Volterra diference delay equations | en_US |
dc.type | Article | en_US |
Appears in Collections: | Department of Mathematics & Statistics |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Stability of Volterra difference delay equations.pdf | Article | 108.56 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.