Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/9112
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Agamah, Francis E. | - |
dc.contributor.author | Mazandu, Gaston K. | - |
dc.contributor.author | Hassan, Radia | - |
dc.contributor.author | Bope, Christian D. | - |
dc.contributor.author | Thomford, Nicholas E. | - |
dc.contributor.author | Ghansah, Anita | - |
dc.contributor.author | Chimusa, Emile R. | - |
dc.date.accessioned | 2023-10-05T18:28:03Z | - |
dc.date.available | 2023-10-05T18:28:03Z | - |
dc.date.issued | 2020 | - |
dc.identifier.uri | http://hdl.handle.net/123456789/9112 | - |
dc.description.abstract | Drug-like compounds are most of the time denied approval and use owing to the unexpected clinical side effects and cross-reactivity observed during clinical trials. These unexpected outcomes resulting in significant increase in attrition rate centralizes on the selected drug targets. These targets may be disease candidate proteins or genes, biological pathways, disease-associated microRNAs, disease-related biomarkers, abnormal molecular phenotypes, crucial nodes of biological network or molecular functions. This is generally linked to several factors, including incomplete knowledge on the drug targets and unpredicted pharmacokinetic expressions upon target interaction or off-target effects. A method used to identify targets, especially for polygenic diseases, is essential and constitutes a major bottleneck in drug development with the fundamental stage being the identification and validation of drug targets of interest for further downstream processes. Thus, various computational methods have been developed to complement experimental approaches in drug discovery. Here, we present an overview of various computational methods and tools applied in predicting or validating drug targets and drug-like molecules. We provide an overview on their advantages and compare these methods to identify effective methods which likely lead to optimal results. We also explore major sources of drug failure considering the challenges and opportunities involved. This review might guide researchers on selecting the most efficient approach or technique during the computational drug discovery process. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Briefings in Bioinformatics | en_US |
dc.subject | Pharmacogenomics; | en_US |
dc.subject | genomics | en_US |
dc.subject | machine learning | en_US |
dc.subject | docking | en_US |
dc.subject | drug targets | en_US |
dc.title | Computational/in silico methods in drug target and lead prediction | en_US |
dc.type | Article | en_US |
Appears in Collections: | School of Allied Health Sciences |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Computational in silico methods in drug target and.pdf | Main Article | 668.97 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.