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ABSTRACT 

Multivariate methods such as principal component analysis and factor analysis 

have been used to interpret multivariate data. However, these statistical 

applications are not able to determine prior to their application whether a 

dimension exists within the multivariate data set since it is possible to have a 

dimensionless multivariate dataset. In addition, these statistical applications are 

method dependent, it is therefore imperative to propose an independent technique 

for detecting dimensionality using automated threshold settings which are 

thresholds generated based on the structure of the data and not by the judgement 

of the researcher so that these statistical applications will be for purposes of 

interpretation or giving meaning to the data structure. Also, the formation of 

dimensionality in the well-known multivariate techniques is not analytically or 

computationally presented. They therefore offer a leave-or-take result with no 

understanding of the formation of the dimensions. This study therefore filled this 

gap by successfully proposing an independent dimensionality detection method 

using three automated threshold settings that generate data specific thresholds by 

allowing the data structure to generate the optimal threshold for detecting 

dimensionality of the multivariate data set for more accurate results. The study 

also established the robustness of the method using Pearson's correlation which 

hinges on the mean and another correlation profile that does not hinge on a 

statistic which is affected by extreme values, in this case order statistic which 

hinges on the median. The algorithm converged in all cases. Confirmatory factor 

analysis are carried out for confirmation of results. The proposed method 

completely removes the challenge of subjectivity associated with dimensionality 

detection, and hence is highly recommended. 
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CHAPTER ONE 

INTRODUCTION 

This chapter is made up of the background to the study, the statement 

of the problem, objectives of the study, outline of the thesis as well the 

limitation of the thesis. 

Background to the Study 

The dimensionality of a dataset is mostly defined as the minimum 

number of unobserved traits that is needed to describe all statistical 

dependencies in the data (Lord & Novick, 1968; Zhang & Stout, 1999). From 

a practical point of view, the determination of dimensionality helps to 

understand the structure underlying the data. 

A number of statistical applications come in handy to determine the 

number of dimensions underlying a multivariate dataset. However these 

techniques are not designed as preliminary techniques for dimensionality 

detection which is required before the application of these statistical methods 

for purposes of interpretation. 

There is only one attempt (Nkansah, 2018) at determining an 

independent technique for dimensionality detection. However, the procedure is 

quite subjective as a ke)' element of threshold setting is experimenter specific. 

It may be necessary therefore to review the known statistical applications and 

also attempt to propose an objective dimemsionality detection method that can 

be used to determine whether a dimension exists within a multivariate dataset. 

The idea that an instrument's test items all measure the same thina is 
. b 

one ofthe most important assumptions in measurement theory. The underlying 
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latent variable of a composite score must be unidimensional in order to make 

psychological sense whether sorting people on an attribute, characterizing 

individual differences, or grouping them by ability (Hattie, 1985). 

One of the most significant goals of evaluating unidimensionality is to 

summarize the patterns of correlations between the observed variables 

(Tabachnick & Fidell, 2001). To account for the underlying phenomenon, this 

is frequently accomplished by reducing variables to the minimum number 

possible.The underlying phenomena is thought to be the fundamental cause of 

the observed variables' correlation in the first place. One or more dimensions 

may be reflected in the underlying phenomena. The structure of a phenomena 

is referred to as dimensionality (pett, Lackey, & Sullivan, 2003) .One 

dominant latent variable or phenomenon is referred to as unidimensionality. In 

the social and behavioral sciences, composite scale scores are frequently 

employed to make conclusions, and unidimensionality is assumed when 

employing these composite scores. A structural analysis of a set of observable 

variables can be performed using a variety of statistical approaches (e.g., 

factor analysis or multidimensional scaling). Finally, these approaches should 

produce a sufficient number of dimensions to support the usage of composite 

scores and to explain the pattern of correlations between observed variables. 

Dimensions (also known as latent variables) are built variables that appear 

before the observed variables. That example, if two test items are correlated, it 

is considered that they have something unseen in common. 

2 
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Dimensionality Assessment Tools 

There are a number of dimensionality assessment tools that have been 

developed for multivariate data. Popular methods for assessing dimensionality 

of multivariate dataset are principal components analysis (peA) and factor 

analysis (FA). Both methods are linear models that reduce the data on fewer 

components or factors. The first step in either method IS an 

eigenvalue/eigenvector decomposition of a square, symmetric matrix. One 

major difference between peA and FA lies in the type of matrix that is 

decomposed. In peA, the matrix that is traditionally decomposed is a 

correlation matrix, whereas the decomposed matrix in FA is a reduced 

correlation matrix (i.e., it contains communality estimates along the main 

diagonal instead of ones). Because of this difference, the complete set of 

principal components will account for the total amount of variance in the data, 

while the full set of factors will account for the common variance in the data. 

However, both sets (principal components and factors) will correspond to the 

calculated eigenvalues from their respective matrices, and will be in 

decreasing order. The first principal component (or factor) will have a 

corresponding eigenvector that indicates a direction in space that accounts for 

the most variance (or common variance) in the data, the second will account 

for the next largest amount of variance (or common variance), and so on. 

These principal components and factors show the underlying structure of the 

data. However, unlike FA, peA is a mathematical identity, which orients the 

data space such that each dimension corresponds to orthogonal directions that 

account for the largest amount of variation in the data. Therefore, it is not 

3 
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possible to rotate the PCA solution and maintain this identity, whereas rotation 

of the solution is commonly seen in FA. 

After the first step, one needs to decide on the number of dominant 

dimensions to retain by examining eigenvalues that correspond to each 

principal component or factor to reduce the data. The number of dominant 

eigenvalues that underlie a set of data indicates the dominant dimensions 

within the data. The idea is to choose the smallest number of dominant 

dimensions that still account for a significant amount of (total or common) 

variance in the data. Interestingly, determination of the number of dominant 

dimensions has typically been based on a PCA solution regardless of whether 

a FA solution is the ultimate goal. When choosing the dominant eigenvalues 

that underlie a set of data, one must use some decision criteria to justify the 

choice. Consequently, there are several proposed decision criteria used in 

PCA. For example, one could use Cattell's scree test (Cattell, 1996) or 

Kaiser's rule (eigenvalues greater than one; Kaiser, 1960). 

One of the better performing methods is a bootstrapped version of 

Hom's parallel analysis procedure (Horn, 1965; Lambert et aI. , 1990). If only 

one dominant eigenvalue is retained from any. of these decision methods, the 

data are assumed to be unidimensional. Any larger number of dominant 

factors would indicate a multidimensional dataset. Although FA and PCA are 

appropriate in many analytic situations, the two procedures do have their 

limitations. The issues with factor analysis and principal components analysis 

on dichotomous IRT response data have been well-documented (Bernstein & 

Teng, 1989; McDonald, 1981; Reise, 1999). One such problem is the 

existence of what has been called "difficulty factors". These difficulty factors 

4 
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occur because binary IRT data often violate the primary assumption of 

linearity in factor analysis-the assumption that there exists a linear 

relationship between observed variables and the underlying latent trait(s). 

When assumptions of linearity are violated, spurious dominant factors, or 

difficulty factors, can appear because items with similar difficulty tend to form 

additional factors distinct from the true dominant underlying dimension(s), 

thus resulting in overestimation of the true dimensionality of the dataset. 

It is important to remember that Principal Components Analysis (PCA) 

and Factor Analysis (FA) are two independent approaches that are sometimes 

confused. In other words, PCA has been suggested to be a type of FA 

(Fabrigar et ai., 1999). Factor analysis (FA) is a statistical process that is used 

to discover which observable variables constitute individual subsets that 

eventually combine to produce dimensions from a set of latent variables. 

These variables are used to demonstrate the underlying phenomena that causes 

the observed variables to correlate (Tabachnick & Fidell, 2001). Exploratory 

factor analysis (EF A) is a technique for discovering the underlying unobserved 

dimension of a set of test items in order to get a hy.pothetical understanding of 

them (s). When only a minute or no prior knowledge on the data structure is 

provided, EF A's main goal is to explain the correlation between a group of 

observed variables (i.e., test items). As a result, EFA is viewed as a tool for 

developing hypotheses. An EF A is frequently used as a preliminary evaluation 

technique. When constructing or modifying a scale, an EF A is used to 

determine the validity of instruments in typical test development practice. For 

example, researchers might use an EFA to identify an instrument's 

5 
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dimensionality, then utilize that infonnation to create merged scores for 

hypothesis testing or statistical inferences. 

Statement of the Problem 

In order to detennine the number of dimensions underlying a 

multivariate dataset, statistical techniques such as principal component 

analysis, factor analysis and item response theory modelling have been 

utilized. However, these statistical techniques are not able to determine prior 

to their application whether dimensions exist within the multivariate dataset, 

as it is possible to have a dimensionless multivariate data. Thus, available 

techniques are not designed as preliminary techniques for dimensionality 

detection which is required before the application of these statiscal methods. It 

appears therefore that there is no initial justification yet for the application of 

the well-known dimensionality-reduction statistical applications. 

Additionally, for the same dataset, different techniques may yield 

different dimensionality. Even though the relative importance of the 

dimensions may differ from technique to technique, the basic number of 

dimensions should be the same, and the technique for finding this number is 

what appears to be missing. It may be neccesary therefore to review these 

applications and also attempt to propose a dimensionalty detection method that 

can be used to detennine whether dimensionality exists within a multivariate 

dataset. 

Studies on dimensionality detection are almost absent in literature. The 

work which is specific to dimensionality detection is one by Nkansah (2018), 

which observed some drawbacks. In particular, the study uses an exprimenter 

6 
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specific threshold in KMO detennination, a threshold based on the judgemnet 

ofthe experimeter. This approach is quite subjective. The goal ofthjs research 

is to avoid the subjectivity that generally characterizes dimensionality 

detection by proposing a-data specific threshold which is a threshold generated 

from the data structure. It is also observed that the procedure outlined in 

Nkansah (2018) is computationally expensive since the duration involved in 

calculating KMO using the original correlation structure far exceeds the 

duration for the computation based on a much smaller spanning set. This study 

also investigates the sensitivity and robustness of the method based on the 

correlation profile. Unlike the literature, the study would be sensitive to the 

likely presence of extreme values that may affect results by focusing on the 

use of only the highest contributors to homogeneity within a dimension. This 

approach will therefore be expected to save computational time and produce a 

more reliable result. 

Also, the formulation of dimensionality in the well-known multivariate 

techniques is not analytically or computationally presented. They therefore 

offer a leave-or-take result with no understanding of the fonnation of the 

dimensions. 

This study therefore seeks to fill this knowledge gap by proposing a 

dimensionality detection method that could be used to detennine whether a 

dimension exists within a multivariate dataset. 

Purpose of the Study 

The purpose of this study is to propose a robust automated threshold 

dimentionality detection method which is not based on an experimenter 

specific threshold but on the structure of the data for more accurate results. 

7 
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Also, it is anticipated that the robustness of the method to correlation profile 

would lead to a computationally less expensive approach for calculating the 

homogeneity of a dataset. 

Objectives of the Study 

The main objective is to develop an automated threshold method for 

detecting dimensionality in multivariate datasets. To guide the study, the 

specific objectives are as follows: 

1. Assess the standard statistical techniques for detecting the number of 

dimensions underlying a multivariate dataset. 

2. To propose a dimensionality detection method in a multivariate dataset 

that would serve as a justification for the application of a dimensionality-

reduction technique. 

3. To determine a robust dimensionality detection method using the 

correlation profile of the multivariate data structure. 

Significance of the Study 

The study would serve as an independent well-structured methodology 

that comes handy for dimensionality. detection. Taking into consideration the 

level of significance of the correlation coefficients, indicators that influence a 

dimension are identified by a data specific cut-off value for more reliable 

results. By data-specific cut-off value, the approach allows the data itself to 

identify its own threshold suitable for dimensionality detection as opposed to a 

threshold based on the judgment of the experimenter. By this cut-off value, 

variables may be considered to belong together if their pair-wise correlation 

coefficient is equal to or exceeds the cut-off. A data specific cut-off value 

could identify perhaps the exact dimensionality in the dataset prior to analysis 

8 
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by identifying and excluding those subsets variables that are likely to reduce 

the true measure of homogeneity in the data. In determining the sets of 

indicators that constitute the various dimensions, there are some indicators that 

may not influence any of the dimensions. These indicators would constitute 

the non-homogeneous sets. In addition, it is possible to have a number of 

indicators that influence multiple dimensions. It is also observed that 

dimensionality could be affected by prevalence of negative correlations among 

the indicators. Unlike existing procedures that are clearly unstructured, the 

proposed technique takes into consideration all the afore-mentioned cases that 

are likely to influence the detection of the true dimension laity in a given data. 

This way, a good justification could be found for a more focused further 

application of dimensionality-reduction technique of the dataset. 

Delimitation 

The study considers two correlation profiles in developing the 

dimensionality detection technique. The Pearson's correlation which hinges on 

the mean and Order statistics which hinges on the median will be used to 

determine the robustness of the method to other correlation profiles. The 

methods are applied to both simulated and existing datasets. The study also 

compared the results of a correlation profile generated using the k highest 

contributors after controlling for outliers as opposed to the results of a 

correlation profile generated using all the variables in the original dataset. 

Description of Data sets 

A couple of datasets have been employed in this thesis to study 

dimensionality detection. Here, we describe the source of these datasets and 

9 
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comment on the reason for their selection for this research. These datasets 

have been numbered for easy identification in Chapter Four. 

Dataset 1 (performance of Sales Personnel) 

The dataset contains evaluations on the performance of sales people 

employed by a marketing firm. The company seeks to assess the value of its 

sales people by devising a test, or a series of tests, that would reveal whether 

or not they have a productivity for high-quality sales performance.The 

company chose an arbitrary sample of 50 salespeople and evaluated them on 

three performance indicators: sales growth, sales profitability, and new 

account sales. These metrics have been converted to a scale of one to 100, 

with ten representing "average" performance. 

Each of the 50 salespeople would take one of four tests, each of which 

appears to measure creativity, mechanical reasoning, abstract thinking, and 

mathematical abilities. The table contains a sample of 50 observations on p =7 

variables (Johnson & Wichem,.2007). 

Dataset 2 (performance of High School Students in Nine Subjects) 

This encompasses an unpublished data which inclued marks graded out 

of 100% earned by 72 students in a senior high school on nine subjects. These 

modules include Information Communication Technology (lCT), Economics, 

Elective Mathematics, English Language, Geography, Integrated Science, 

Core Mathematics, Physical Education (PE), and Social Science. By design, 

this data is typically suited for principal components, and hence factOr 

analysis. 

10 
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Simulation of Data sets 

The data is simulated on a seven-point polytomous scale with sample 

size of 200 and dimensionality of three on thirty variables. The simulation is 

done using the mirt package in R software under the command: simdata(o, d, 

N, itemtype) (Chalmers, 2012), where argument 0 denotes a vector/matrix of 

discrimination parameter values, d vector/matrix of difficulty parameter 

values, N sample size and itemtype the underlying IRT model. These opinions 

are outlined to produce the anticipated dataset. The response datasets are 

simulated using the generalized partial credit model (gpcm). The generation of 

three-dimensional dataset necessitates a kx3 matrix of discrimination values 

(0). Regarding response format, the seven-point scale made use of k x 7 

matrix of difficulty values (d). The idea of item response theory is reviewed in 

the methodology in Chapter Three. 

Limitation of the Study 

As indicated in the objectives of the study, earlier studies on 

dimensionality detection did not investigate the robustness of the method to 

other correlation profiles as only. Pearson's correlation which hinges on the 

mean was employed. Though our study. considered a correlation profile which 

hinges on a statistic not affected affected by extreme values namely order 

staistics, the researcher desired to consider other additional correlation profles 

but could not do this due to time constraints. 

Definition of Terms 

Correlation: A measure of the strength of the relationship beween two 

variables. 

KMO: A measure of homogeneity among variables. 

11 
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Multivariate Data: Data collected on two or more variables. 

Partial Correlation: Correlation between two variables controlling for the 

effect of other(s). 

Organisation of the Study 

The first chapter covers the general introduction of the study. It first 

considers the background to the study. In the background, the idea of using 

well known statistical applications such factor analysis principal, component 

analysis and IRT for dimensionality detection in multivariate data is 

introduced and the associated challenge with the use of these technique have 

been pointed out. This provides the motivation for the study which is provided 

in the statement of the problem. It is then followed by the objectives of the 

study. Finally in Chapter One, the description of the various datasets used in 

the study have been provided. 

The review of relevant literature is done in Chapter Two. It focuses on 

works done by earlier authors on dimensionality. Chapter Three reviews 

important concepts and methods employed. It reviews the concepts of factor 

analysis, principal component analysis and Item Response Theory modelling 

and KMO. Chapter Four deals with analysis and results. It uses a number of 

datasets to generate results for the proposed dimensionality detection 

technique. In Chapter Five, the summary of the entire work is presented. 

Conclusions based on the results are drawn and relevant recommendations are 

made. 

Chapter Summary 

This chapter focused on issues and preconceptions regarding the area 

of study. It outlined a brief synopsis of the fundamentals of dimensionality and 

12 
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also shed some light on unidimensionality and multidimemsionality. What the 

study sought to achieve was also outlined. The gap identified by the research 

and possible steps for filling this gap were also discussed. It was revealed that 

for a multivariate Dataset, the original number of variables are assumed to 

constitute the number of dimensions underling the dataset. However not all 

indicators may influence the phenomenon under study. It is therefore 

imperative to determine the minimum number of latent constructs 

(dimensionality) that may underlie the data. Consequently, it is expected that a 

dataset may have only one dimension or multiple dimensions underlying it. 

Other areas the research would have considered but for time constraints is also 

captured. 
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Introduction 

CHAPTER TWO 

LITERATURE REVIEW 

This chapter reviews the works of researchers that are relevant to the 

study. It highlights mainly dimensionality studies by several authors and also 

points out the gaps in these studies. 

Review of Studies on Dimensionality 

Mengyao (2016) investigated the dimensionality of mixed-format test 

scores. They discovered that dimensionality assessment improves test 

developers' and consumers' knowledge of how test scores translate human 

talents into numbers. Dimensionality assessment addresses a variety of 

concerns, including (a) whether unidimensionality is true; (b) the number of 

dimensions that influence test scores; and (c) the linkages between items, 

underlying dimensions, and items and dimensions. Test developers and users 

can carefully validate explicit understandings and applications of test scores 

using the results of dimensionality assessments. The widespread use of mixed

format assessments muddles both theoretically and procedurally 

dimensionality assessment. The researchers initially suggested a methodology 

designed specifically for exploratory. dimensionality assessment in mixed

format tests. This dissertation examined the performance of a number of 

widely used and promising dimensionality evaluation methods and approaches 

using data from three large-scale mixed-format examinations. 

Alejandra (2018) investigated factor regression for dimensionality 

reduction and data integration strategies using cancer data. He noted that two 

14 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



major obstacles in modem statistical applications are the vast amount of data 

recorded per individual and the fact that such data are frequently collected in 

batches rather than all at once, resulting in mean and variance distortions. 

They solved these problems by developing a new sparse latent factor 

regression model for integrating heterogeneous data. The model provides a 

tool for data exploration by reducing dimensionality, correcting so-called 

batch effects, and estimating sparse low-rank covariance matrices. They 

looked at how to learn the dimension of latent components using a variety of 

sparse priors, both local and non-local. Our model is fitted in a deterministic 

manner using an EM technique for which closed-form updates are derived; 

this contributes a novel scalable algorithm for non-local priors, which is of 

interest outside the scope of this thesis. They also demonstrated numerous 

applications, with a focus on bioinformatics. The fmdings largely indicated an 

improvement in the accuracy of low-dimensional data reconstructions, with 

non-local priors significantly enhancing factor cardinality and non-zero factor 

loadings inference. Furthermore, the batch effect correction significantly 

improved the recovery of latent variables. OveraI.I, the thesis introduces a 

novel technique to latent factor regression that balances sparsity and 

sensitivity while still being computationally efficient, and it opens up new 

paths for future study on dimension-reduction-based data integration 

Statistical inference in high-dimensional matrix models was 

investigated by (Loffler, 2020). Matrix models suggested, are common in 

current statistics. They're used in finance to analyze asset interdependence, 

genomics to impute missing data, and movie recommender systems to 
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simulate the relationship between users and movie ratings, among other 

applications. High-dimensional models, in which the number of parameters 

exceeds the number of data points by many orders of magnitudes, or 

nonparametric models, in which the quantity of interest is an infinite 

dimensional operator, are common. 

This leads to novel techniques as well as new theoretical phenomena 

that can arise when estimating a parameter of interest or its functionals, or 

when building confidence sets. In this thesis, we will look at three of these 

matrix models as examples and establish statistical theory for them: 

Completion of matrices, Principal Component Analysis (PCA) with Gaussian 

data, and Markov chain transition operators. In the 'Bernoulli' and 'trace

regression' models, studies started with matrix completion and looked for 

adaptive confidence sets. When the variance of the errors is unknown, they 

showed that adaptive confidence sets do not exist in the 'Bernoulli' model, but 

they presented an explicit construction in the 'trace-regression' model. Finally, 

based on a testing argument, they demonstrated that adaptive confidence sets 

exist in the 'Bernoulli' model in the situation of known variance. Then they 

looked at PCA in a Gaussian observation model with complexity assessed by 

the effective rank, which is the reciprocal of the first principal component's 

percentage of variance explained. We look at how to estimate linear 

eigenvector functionals and prove Berry-Essen type constraints. We uncover a 

new phenomenon as a result of the problem's high dimensionality: The sample 

eigenvector-based plug-in estimator may have non-negligible bias and hence 

no longer be n-consistent. They demonstrated how to de-bias this estimator 
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and provide precise matching minimax lower bounds by obtaining n 

convergence rates. Finally, they looked at nonparametric estimate of a Markov 

chain's transition operator and transition density. They expected that the 

transition operator's unique values diminish exponentially. Discrete, low 

frequency observations of periodised, reversible stochastic differential 

equations, for example, satisfy this requirement. We build a new algorithm 

and demonstrate improved convergence rates using penalization techniques 

from low rank matrix estimation. Assessed Distributional Properties of High

Dimensional Data. 

Mansoor (2013), a multivariate statistical analysis of high-dimensional 

data was the subject of this PhD. Hessonite Carlo simulations were used to 

study the increasing dimension asymptotic (IDA) qualities of a number of 

multivariate non-normality tests when the dimension grows proportionately 

with the amount of data. For circumstances when p/n-+ c, a novel non

normality test based on principal components is proposed. Meaning the power 

and size of the test are examined through Monte Carlo Simulations. Monte 

Carlo simulations with various combinations of nand p are performed to 

investigate the test's power and size. The study looked into the relationship 

between a distribution's second central moment and its initial raw moment. To 

infer the systematic relationship between mean and standard deviation, a 

model with a slope parameter is proposed, and three different estimators of 

this parameter are developed, and their consistency demonstrated in the 

context of increasing the number of variables proportionally to the number of 

observations. To model the link between the mean and standard deviation of 
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the excess return and test hypotheses about the parameter, a Bayesian 

regression approach was used. The data from the Stockholm exchange market 

were used in an empirical case. Finally, three novel approaches for testing 

panel co integration of high-dimensional data were incorporated in the error 

correction framework. 

Zupluoglu (2013) used imperfect models to analyze the dimensionality 

of latent structures underlying dichotomous item response data by using both 

real and simulated data. The study explored the impact of model 

misspecification due to minor latent components on a range of dimensionality 

evaluation approaches described in the literature. The study took into account 

a variety of dimensionality evaluation processes based on eigenvalue 

inspection (i.e., parallel analysis), conditional covariances (i.e., DETECT), and 

model selection approaches (e.g., NOHARM and Mplus based chi-square 

statistics, RMSEA, GFI, AlC). Two studies were carried out. Using sample 

datasets chosen from a very large real item response dataset considered as the 

population, the average, standard deviation, and range of the number of 

dimensions indicated by different techniques were explored. Also a full 

simulation study was conducted, and the analytical methods' performances 

were assessed using the number of key dimensions in the true generating 

model as a benchmark. The current research yielded some intriguing and 

thought-provoking findings about the performance of some well-known and 

widely employed procedures under various conditions. The current study's 

findings suggest that most of the methods proposed in the literature and 

available to practitioners are not always useful tools in dimensionality 
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assessment, especially when the goal of dimensionality assessment is to 

identifY latent traits with major influences when the underlying factor structure 

is complex and minor factors are present. When the underlying latent structure 

was factorially complicated, the current investigation gave some insight into 

the performance of alternative dimensionality evaluation methodologies with 

mis specified models. 

Tian (2009) investigated dimensionality reduction for high

dimensional data categorization. The study looked at dimensionality reduction 

issues in classification for both multivariate and functional data with high 

dimensionality. High-dimensional data, according to the study, refers to data 

having a large number of variables, which is often greater than the number of 

observations. Engineering, biometrics, psychometrics, and neuroimaging are 

just a few of the fields that deal with high-dimensional data. ClassifYing these 

data is a tough task due to the large number of variables, which complicates 

traditional classification algorithms and makes many traditional procedures 

unfeasible. Adding a dimensionality reduction step before applying a 

classification approach is a natural solution. Two ways are proposed for 

dealing with multivariate data. The first is based on simulated annealing (SA), 

and the second is based on multivariate adaptive stochastic search (MASS).!n 

each cycle, they both use stochastic search methods to select a small number 

of optimal transformation directions from a huge number of random 

possibilities. The proposed approaches have the advantage of being able to 

accurately project data onto very low-dimensional non-linear as well as linear 

domains. These methods are meant to resemble variable selection methods 
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like the Lasso, or variable combination methods like PCA, or a method that 

combines the two. MASS, in particular, can modify the model complexity 

level adaptively, and so performs well when variable selection or variable 

combination methods fail. We compare the strengths of SA and MASS to 

various classical and modem categorization approaches in a variety of 

simulated and real-world investigations. Problems with classification of 

functional data are also addressed. We present a functional adaptive 

classification (F AC) method that considers the functional response and 

generates extremely accurate and understandable results. F AC is similarly 

based on a stochastic search technique that is directed by the model 

complexity evaluation. This frequently leads to a straightforward link between 

functional variables and the reduced data, making the model more 

understandable. To demonstrate the efficiency of the suggested strategy, 

simulation studies and an fMRI time course study are included. 

Thinesh (2018) used a variety of generalized hyperbolic distributions 

to investigate dimension reduction and grouping of high-dimensional data. 

Model-based clustering, according to the study, is a probabilistic strategy in 

which each cluster is viewed as a component in an appropriate mixture model. 

One of the most extensively used model-based strategies is the Gaussian 

mixture model. However, due to the over-parametrized solutions that develop 

in high-dimensional spaces, this model performs badly when clustering high

dimensional data. Instead, this study looked at how to combine dimension 

reduction approaches with clustering using a variety of generalized hyperbolic 

distributions. The techniques of dimension reduction, principal component 
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analysis, and factor analysis, as well as their extensions, were examined. Then, 

using both simulated and real data sets, the aforementioned dimension 

reduction strategies were separately matched with a mixture of generalized 

hyperbolic distributions to demonstrate the clustering performance attained 

under each strategy. The clustering method based on principal component 

analysis produced superior classification results for the majority of the data 

sets than the clustering method based on extending the factor analysis mode. 

Janecek (2009) investigated efficient feature reduction and 

classification methods, as well as their applicability in drug discovery and E

mail Categorization. They claimed that as the dimensionality of the feature 

space grows, many types of data analysis and classification become 

significantly more difficult, and that data also become increasingly sparse in 

the space it occupies, posing significant challenges for both supervised and 

unsupervised learning. The curse of dimensionality is a phenomenon that 

arises from the fact that high-dimensional data is sometimes difficult to work 

with. When there are few observations (i.e., data samples) relative to the 

number of features, a large number of features can increase the noise in the 

data and hence the error of a learning system. Feature selection and 

dimensionality reduction methods (often referred to as feature reduction 

methods) are two strategies for addressing these issues by reducing the amount 

of features and consequently the data's dimensionality. Several studies have 

been conducted in recent years to improve feature selection and 

dimensionality reduction strategies, and significant progress has been made in 

terms of picking, extracting, and creating effective feature sets. However, due 
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to the significant impact of different feature reduction approaches on 

classification accuracy, there are still a number of unanswered concerns in this 

subject. 

Furthermore, as the number of possible features for diverse application 

areas grows, additional concerns arise. This thesis looked into some of these 

unanswered concerns, such as the relationship between different feature 

reduction techniques and classification accuracy. The goal is to find a set of 

features that best mimic the original data while maintaining a high level of 

classification accuracy. The computational cost of feature reduction 

techniques is the basis for other difficulties. Due to the large amount of data, it 

is necessary to design computationally efficient feature reduction approaches 

that can be used in parallel. To solve this issue, the thesis investigated 

numerous ways for leveraging task and/or data parallelism in NMF, as well as 

introducing computationally efficient adaptations of current NMF algorithms. 

They researched innovative initialization strategies for NMF based on feature 

selection, as well as fast and effective classification methods based on NMF, 

to speed up the runtime ofNMF even further. Furthermore, there are a number 

of issues to consider when evaluating the interpretability of dimension 

reduction strategies. The information about how much an original feature 

contributes is often lost when a linear combination of dimensionality reduction 

algorithms is used. 

In this thesis, we look at how the improved interpretability of NMF 

factors due to non-negativity requirements may be used to keep the original 

data interpretable. Experiments are carried out on datasets from two very 

22 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



distinct application fields, each with its own set of research challenges: email 

categorization and in silico drug discovery screening. 

Timmerman & Lorenzo-Seva (2011) used parallel analysis to measure 

the dimensionality of ordered polytomous elements. They discovered that 

parallel analysis (PA) is an often suggested method for determining the 

dimensionality of a set of variables.PA comes in a variety of forms, each of 

which can produce different dimensionality indicators. To determine the 

number of common components underlying ordered polytomously scored 

variables, the authors used the most applicable PA technique. 

Instead of the currently used principal component analysis (PCA) and 

primary axes factoring, they proposed minimal rank factor analysis (MRF A) 

as an extraction approach. Based on data containing major and minor 

components, simulation research revealed that all processes consistently point 

to the number of major common elements. Although a polychoric-based PA 

outperformed a Pearson-based PA by a small margin, convergence issues may. 

limit its empirical application. 

PA-MRFA with a 95% threshold based on polychoric correlations or, 

in the case of nonconvergence, Pearson correlations with mean thresholds 

appear to be a good choice for identifYing the number of common variables in 

practical applications. The PA-MRFA technique, which is based on common 

factors, fared best in the simulation experiment. Second best is PA based on 

PCA with a 95% threshold, as this method performed well in the simulation 

experiment's empirically applicable conditions. 
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Kim (1994) investigated new methods for detennining the 

dimensionality of standardized test data. The researchers discovered that a 

novel dimensionality index based on the conditional covariance of item scores 

given a latent variable is defined and studied in educational and psychological 

test data. By using cluster analysis, this index accurately detects the test 

dimensionality in tenns of both identifying the number of dimensions present 

in the test and identifying the items contributing to each dimension. 

Furthennore, this index accurately measures the test data's lack of 

unidimensionality, and its asymptotic behavior under unidimensionality gives 

theoretical support. To detect dimensional disagreement of item pairs, a new 

significance test based on a kernel smoothing technique is devised. A 

simulated evaluation of this method demonstrates a reasonable type 1 error 

rate in relation to its nominal level of significance, as well as great power 

perfonnance, when compared to existing procedures. When data is not 

unidimensional, the unidimensional parametric item and ability calibration 

processes BILOG and LOGIST are checked to see what is truly being assessed 

as unidimensional ability. The accuracy of ability estimation is also examined 

in tenns of average standard error. As their claimed unidimensional ability 

estimate, both BILOG and LOGIST appear to present a composite of 

underlying latent qualities. The average standard errors are relatively invariant 

to the degree of lack of unidimensionality as a result of this, but the direction 

of the composite being assessed best changes routinely and by a substantial 

amount with various degrees of multidimensionality. 
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Under nonparametric IRT models, Alexander et al. (2004) conducted a 

comparative evaluation of test data dimensionality assessment methodologies. 

The dimensionality of item response data can be determined using non

parametric item response theory approaches. MSP, DETECT, HCAJCCPROX, 

and DIMTEST were all considered. The methods were first compared on a 

theoretical level. Second, using the default parameters of each program, 

simulation research was conducted to examine the performance of MSP, 

DETECT, and HCAJCCPROX in detecting a simulated dimensional structure 

of a matrix of item response data. The approaches that employ conditional 

covariances on the latent trait (DETECT and HCAJCCPROX) were superior in 

discovering the simulated structure in various design cells versus the method 

that used normed unconditional covariances (MSP). Third, based on the data 

used in DETECT and DIMTEST, the accuracy of the decision to accept or 

deny unidimensionality was examined. This decision did not always reflect the 

item pool's true dimensionality. 

With small sample sizes and short test lengths, (Andre et al., 1998) 

evaluated the dimensionality. of Item Response Matrices. To apply standard 

item response theory models legally, the assumption of unidimensionality 

must be met, according to the researchers. The extent to which it can be 

proven that the dimensional structure underlying a test is consistent with the 

blueprint determines the validity of score-based conclusions. In settings 

similar to those observed in small-volume administrations, little study has 

been done to examine the behavior of dimensionality assessment algorithms. 

The goal of this research was to look into empirical data. With data sets 

25 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



constructed to reflect brief tests and small samples, Type I error rates and 

rejection rates for 3-dimensionality evaluation techniques were calculated. 

With unidimensional data sets, the G2; difference test from TESTF ACT 

(Wilson, Wood, & Gibbons, 1991) and the LISREL8 (Joreskog & Sorbom, 

1993a) chi-square statistic had an inflated Type I error rate, whereas the 

approximate chi-square statistic from a NOHARM (Fraser & McDonald, 

1988) analysis did not. All procedures have significant rejection rates when 

using simulated 2-dimensional data sets. The independent factors changed 

strongly altered the behavior of the G2; difference test, which was not the case 

for the approximation chi-square statistic. These findings are examined m 

terms of their relevance for small-volume administrations. 

Bayesian dimensionality assessment for the multidimensional nominal 

response model was investigated by (Javier et aI., 2017). For the 

multidimensional nominal response model, the work introduced Bayesian 

estimation and assessment methodologies. This paradigm is useful for 

performing nominal factor analysis on items with a [mite number of unordered 

response categories. In contrast to standard factorial models, the key feature of 

this model is that each response category on the latent dimensions has a slope, 

rather than having slopes connected with the items. For estimation, the 

multidimensional nominal response model's extensive parameterization 

necessitates large samples. When the sample size is moderate or small, some 

of these factors may be difficult to empirically identify, causing the estimation 

process to fail. To estimate the parameters and number of dimensions 
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underlying the multidimensional nominal response model, we present a 

Bayesian MCMC inferential approach. 

The standardized generalized discrepancy measure, which needs 

resampling data and is computationally more demanding, was compared to 

two Bayesian techniques to model evaluation: discrepancy statistics (DIC, 

W AICC, and LOO), which provide an indication of the relative value of 

different models. The findings of a simulation research comparing these two 

approaches reveal that the standardized generalized discrepancy measure may 

be used to correctly predict the model's dimensionality, whereas the 

discrepancy statistics are suspect. The study also contains a real-world 

example in which the model is used to perform an exploratory factor analysis 

of nominal data in the context of learning styles. In the disciplines of ability 

measurement, attitude scales, sample surveys, market research, and so on, 

nominal variables are commonly collected from a variety of item response 

formats. Multiple-choice questions, for example, have one correct answer and 

several distractors. When the data comes from multiple-choice items, the 

factorial analysis of nominal variables is frequently carried out by 

dichotomizing the data into correct and incorrect responses and then running 

the dichotomous data matrix through a categorical factor analysis technique. 

In some cases, however, dichotomization is not an option because the focus is 

on the relationship between latent dimensions and answer categories. Each 

category in a market research item, for example, could represent a buying 

choice, and there is no natural way to dichotomize the data. 
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The study discovered that the factorial analysis of responses with an 

implicit ordering, as well as their estimation and testing methodologies, have 

long been discussed in the psychometric literature (Christoffersson, 1975; 

Bartholomew, 1980; Reckase, 2009). These models are based on a normal or 

logistic function that uses a vector of slopes to link observed responses and 

dimensions. Furthermore, the distribution of responses across the item's 

categories is determined by a set of intercept parameters (Mislevy, 1986). 

Because of the inherent challenges of the underlying psychometric paradigm, 

nominal variable component analysis is a more recent development. This 

model is a multidimensional expansion of (Bock's, 1972) nominal response 

model, which assumes things load in one dimension. The slopes of the 

nominal response model are parameters of the categories rather than 

parameters of the items. The ordinal model has two thresholds and two slopes 

for an item with three response categories and measures two dimensions (say), 

whereas the nominal model has two thresholds and four slopes (one category 

has no parameters and the other categories have one slope in each 

dimension).In the psychometric literature, applications of constrained versions 

of the multidimensional nominal response model (MNRM) have been 

published. Hoskens eta!' (2001), for example, used a restricted MNRM to 

assess cognitive components involved in item solving; in this model, 

parameter limitations are imposed to represent the components tested by the 

categories. 

Another version of the MNRM created by (Johnson & Bolt, 2010) 

targeted at separating a general dimension of ability from subsidiary variables 
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that describe test taking strategy. The MNRM will be used in its entirety in 

this article to undertake an exploratory factor analysis of nominal variables. 

Except when essential to identify the model, none of the parameters in the 

exploratory analysis are fixed to a constant value. The MNRM's extensive 

parameterization causes complications in parameter interpretation and 

estimation. (Thissen et aL, 2010; Falk & Cai, 2016) introduced many 

parameterizations aiming at providing parameters with a clear meaning in 

tenns of parameter interpretation. This paper focuses on the inferential parts of 

the problem, specifically the estimation of the number of dimensions. The 

MNRM's estimate issues arise because the response patterns' contingency 

table is often excessively sparse due to the vast number of response categories 

that must be modeled. Using computer algorithms like Latent GOLD, 

maximum likelihood estimates can be generated 01 ennunt & Magidson, 

2016). 

When the sample size IS approximately a few hundred people, 

however, the maximum-likelihood estimation process may run into 

difficulties, resulting in significant standard errors. Convergence Issues are 

most common for parameters in categories with a low response frequency, 

which can occur even when the sample size is rather large. For example, with 

a sample of 500 or more people, it's not uncommon to encounter categories 

with frequencies of less than 10, which means that reliable estimates for the 

many parameters that describe the category are impossible to come by. Apart 

from the issues of estimating, measuring the fit of the nominal model in the 

frequentist framework is problematic since goodness-of-fit statistics are based 
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on asymptotic reasoning that rarely adhere to genuine model application 

conditions. By defining prior distributions for the parameters and shifting the 

inference to a Bayesian setting, the statistical difficulties of the nominal model 

can be solved. Bayesian inference combines information from the sample with 

information from prior distributions, resulting in estimates that are more 

stable, alleviate problems of lack of convergence for some parameters, and 

provide a method for simulating the posterior distribution of model evaluation 

statistics. The study presented a Bayesian inferential approach for determining 

the MNRM's latent dimensionality. 

The suggested approach is based on Markov chain Monte Carlo 

(MCMe) procedures that use basic Bayesian estimating algorithms. In the 

framework of item response theory, Bayesian estimation has already been 

applied to ordinal answers (Kieftenbeld & Natesan, 2012) and 

multidimensional models (Levy et aI. , 2009). By replicating the distribution of 

evaluation statistics, Bay,esian processes have been successfully applied to 

testing model fit (Sinharay, et aI., 2006).The definition of model evaluation 

statistics for a nominal model, on the other hand, is a relatively new subject of 

study. We used two model evaluation statistics that were recently proposed in a 

Bayesian statistical context, the widely. applicable information criterion 

(WAle) and the leave-one-out cross-validation (LOO), both of which are 

based on information theory (Gelman et aI., 2014) and have never been used 

in a psychometric context to our knowledge.The article also covers Levy et 

. ai's adaptation of the standardized generalized dimensionality discrepancy 

measure (SGDDM) to the nominal case. The SGDDM was created to evaluate 
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the dichotomous item response model, but it was later expanded to ordinal 

factorial models. 

The SODDM gives useful information for dimensionality assessment 

of the nominal model, as demonstrated in this paper. The remainder of the 

article is divided into the sections below. The MNRM, as well as the 

restrictions for parameter identification and the rotation problem, are described 

in Section Multidimensional Nominal Response Model. The MCMC Bayesian 

estimation algorithm is described in the section's Bayesian Parameter 

Estimation, while the model evaluation statistics are described in the Section' s 

Bayesian Model Evaluation. The simulation study in section's simulation 

study analyzes the Bayesian inferential procedure under actual situations. A 

real data research is presented in the context of a questionnaire of learning 

styles, in which the response categories indicate several learning styles and 

there is no implicit order among them. 

The effect of distributional differences on dimensionality assessment 

using DIMTEST was investigated by (Walker et aI., 2006). Some people feel 

that most exams are multidimensional, meaning that they examine more than 

one underlying construct, according to the study. The fundamental goal of this 

research is to show how differences in the secondary ability distribution affect 

statistical dimensionality detection and to distinguish between substantive and 

statistical dimensionalitY-. This study shows how altering the ability 

distributions influences the results generated from DIMTEST, a nonparametric 

statistical process based on the notion of essential unidimensionality, given 

dichotomous data simulated as multidimensional. As the mean of the 

31 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



secondary ability distribution approached the extremes and/or the standard 

deviation of the secondary ability distribution approached zero, the power of 

DIMTEST dropped. This has crucial ramifications for both academics and 

practitioners because, while a test may measure extra dimensions from a 

substantive standpoint, statistically, these dimensions may not be discovered. 

Heating et al. (2010) investigated the optimization and uncertainty 

assessment of severely nonlinear groundwater models with a large number of 

parameters. Highly parameterized and CPU-intensive groundwater models are 

increasingly being utilized to explain and predict flow and transport through 

aquifers, according to the [mdings. Despite their widespread use, these models 

pose considerable hurdles to parameter estimation and predictive uncertainty 

analysis algorithms, especially global techniques that typically require a high 

number of forward runs. In this paper, we provide a general methodology for 

parameter estimation and uncertainty analysis that can be used in these 

circumstances. Following the derivation of a surrogate model that mimics 

essential properties of a full process model, we evaluate and apply nullspace 

Monte Carlo (NSMC)" a pragmatic uncertainty analysis tool that combines the 

capabilities of gradient-based search with parameter dimensionality reduction. 

The results of NSMC are contrasted with a formal Bayesian approach 

employing the differential evolution adaptive metropolis algorithm as part of 

the surrogate model study. This kind of comparison has never been done 

before, especially with such high parameter dimensionality. Despite the 

inversion problem's highly nonlinear nature, the presence 'of several local 

minima, and the relatively large parameter dimensionality, both techniques 
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performed well, and the results are comparable. The knowledge collected from 

the surrogate model study is then used to calibrate the full, highly 

parameterized, and CPU heavy groundwater model, as well as to investigate 

the predictive uncertainty of the model's predictions. The methodology 

described here can be used to any highly parameterized and CPU-intensive 

environmental model in which efficient methods like NSMC are the only 

viable way to do predictive uncertainty analysis. 

The Bayesian assessment of dimensionality in reduced rank regression 

was investigated by (Jukka et aI., 2010). In the multivariate reduced rank 

regression framework, which incorporates numerous models such as 

MANOV A, factor analysis, and cointegration models for multiple time series, 

the research investigated a Bayesian inference about dimensionality. A closed 

form approximation to the posterior distribution of the dimensionality is 

derived using the fractional Bayes approach, and some asymptotic features of 

the approximation are established. Simulation is used to investigate [mite 

sample properties, and the method is applied to growth curve data and 

cointegrated multivariate time series. According to the findings, a common 

scenario in multivariate analysis is the examination of relationships between 

sets of variables using explicit parametric models or descriptive methods like 

principal components and canonical correlations. 

Although it was long recognized that these instances could be 

represented jointly in terms of multivariate regression with a reduced rank 

structure for certain parameters (see, for example, Anderson's pioneering work , 

in 1951), the general statistical community has only recently fully appreciated 
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this approach. The generality of the reduced rank regression (RRR) framework 

is one of its strongest features, as it incorporates various well-known models 

for multiple time series, including MANOV A, factor analysis, linear 

simultaneous equations models, and many others.In conventional full rank 

multivariate regression, the most common source of model uncertainty is the 

selection of suitable predictor variables. For the latter model selection 

problem, there are several plausible methods available (Brown et aI., 1998; 

George & Foster, 2000). Producing reasonable conclusions on the 

dimensionality of the subspace of regression coefficients for a fixed set of 

predictor variables has been more difficult. To estimate dimensionality in 

RRR, (Geweke, 1996) suggests a computationally intensive approach, and 

(Kleibergen & Paap, 2002) employ extensive Monte Carlo simulation schemes 

to obtain the posterior distribution of the dimensionality. 

The conveniently computable one-formula solutions without subjective 

input from the user, such as information theoretic criteria (Akaike, 1974), 

approximation logarithmic Bayes factor (Schwarz, 1978), or sequential tests, 

are the methods that tend to be emplo.yed in applications (Anderson, 1951; 

!zenman, 1980; Jo-hansen, 1995). Some recommendations within a narrow 

class of reduced rank models have also been made; see, for example, (Chao 

and Phillips, 1999) for a criterion adapted to cointegration models. Only the 

approach of (Schwarz, 1978) seeks to approximate the posterior distribution of 

dimensionality among these methods. This is significant because the posterior 

distribution is an appealing representation of the dimensionality inference's 

uncertainty. However, the Schwarz approximation is known to be a bit sloppy, 
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and it frequently underestimates the underlying model dimension (Kass & 

Raftery, 1995). The approximate posterior distribution of the dimension of the 

parameter structure was calculated using O'Hagan's fractional marginal 

likelihood (FML) technique (O'Hagan, 1995, 1997). Their method produced 

an analytically tractable answer that may be used without the user's subjective 

input. Its qualities are studied both theoretically and by application to a variety 

of real and simulated data sets. 

Mares (2016) investigated variable selection in the dimensionality. 

The researcher discovered that today's high-throughput technologies are 

resulting in a vast amount of data to be studied. The goal of the research was 

to develop mathematical and statistical approaches for extracting as much 

information as possible from the available data. However, the high 

dimensionality of the data, both in terms of sample size and the number of 

features or variables, creates significant obstacles. Increased computer power 

and the usage of distributed computation technologies make it easier to deal 

with the enormous number of samples. The huge number of features or 

variables increases the risk of using the improper explanatory factors to 

explain variance in both noise and signal. One approach to overcoming this 

challenge is to select a smaller set of features from the original set that are 

most important given an assumed prediction model from the initial set. This 

method is known as variable or feature selection, and it entails making a bias 

or statistical assumption about which attributes are more important. Different 

statistical assumptions about the mathematical relationship between predicted 

and explanatory factors, as well as which explanatory variables should be 
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deemed more relevant are used in different feature selections. The initial , 

contribution of the researcher is to combine the strength of several variable 

selection approaches based on various statistical assumptions. The researchers 

began by categorizing existing feature selection methods based on their 

assumptions and evaluating their scaling capacity for high-dimensional data, 

especially when the number of samples is substantially fewer than the number 

of features. The study introduced a new algorithm that combines the fmdings 

of many feature selection methods based on distinct assumptions about the 

function that generated the data, and we show that our method is more 

sensitive than using each method alone. 

One of the most common simplifYing assumptions is that the predicted 

variable and the explanatory variables have a linear relationship. The second 

contribution is to show that, even though the underlying function that created 

the data is not always linear, at least one feature selection procedure based on 

the linearity assumption is consistent. The study developed a new technique 

based on these theoretical discoveries that offer superior results when the 

underlying function that created the data is at most partially linear. When 

given enough training data, neural networks, particularly deep learning 

architectures, have been found to fit very non-linear prediction models. They 

do not, however, include feature selecting tools. The study made a 

contribution by evaluating the performance of these models when given a 

large number of features and fewer samples, proposing a method for feature 

selection, and demonstrating that combining this feature selection method with 

deep learning architectures outperforms not using feature selection in certain 
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situations. Several feature selection strategies, including the ones suggested in 

this thesis, rely on resampling techniques or the use of several algorithms for 

the same dataset. Their benefit is derived in part from the use of additional 

computational capacity. As a result, our final contribution is an efficient data 

distribution and load-balanced parallel calculation for re-sampling-based 

algorithms. 

Measurement Scale and Sample Size for Determination of Dimensionality 

One of the key findings of (Nkansah, Zakaria, & Howard, 2019) is the 

optimal size of data for detecting factors in IRT generated data. It is found in 

that study that a sample size of 150 is optimal for various types of scales with 

varying underlying dimensionality. However, it is also found that sample size 

of 200 could perform quite close to that of 150. Likert scale with more points 

are also found to perform much better allowing higher underlying 

dimensionality to be captured in factor analysis. Under optimal sample size, 

likert scale of five-points or higher is perf erred. Particularly, seven-point scale 

is identified to be suitable for data with high underlying dimensions. 

Exploratory versus Confirmatory Assessment 

Both exploratory and confirmatory methods could be used to assess 

dimensionality (Reckase, 2009; Svetina & Levy, 2014). When there is no clear 

hypothesis or evidence on the dimensional structure of the given data, 

exploratory dimensionality assessment, which is the focus of this dissertation, 

is frequently used. It has been used in operational testing programs to check 

the alignment of real dimensionali1)' with the desired dimensionality, either 

alone or in combination with confirmatory dimensionality assessment (e.g., 
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Fu, Chung, & Wise, 2013; Jang & Roussos, 2007; Wilson, 2000; Zwick, 

1987). 

Before examInIng other psychometric processes, exploratory 

dimensionality evaluation is frequently used as part of a preliminary 

investigation (e.g., MIRT equating, see Brossman & Lee, 2013). In this thesis, 

more exploratory dimensionality evaluation methods are studied, while the 

insights from these methods may also be beneficial in some confirmatory 

cases. Dimensionality could also be described within the framework of IRT. 

IRT, according to proponents, enables for a clear and exact understanding of 

the ideas of unidimensionality and multidimensionality (Hattie, 1985; 

Nandakumar, 1991; Stout, 1987; Stout et aI., 1996; Zhang & Stout, 1999a, 

1999b). Stout (1990) proposed a classic IRT definition of dimensionality as 

the smallest number of latent features required for a locally independent and 

monotone model, which was further expanded on by (Nandakumar, 1991), 

(Stout et aI., 1996), and (Zhang and Stout. 2000, 1999a, 1999b). 

Local independence specifies whether item answers are mutually 

independent or pairwise uncorrelated after adjusting for underlying latent 

qualities, depending on whether strong local independence (SLI; Lord, 1980) 

or weak local independence (WLI); McDonald, 1981) is evaluated. The 

likelihood of properly answering an item change monotonically with the 

values of latent features, according to monotonicity. The data are called 

unidimensional when a single latent attribute is sufficient to generate such a 

model. The number of latent qualities necessary defines the number of 

dimensions if the data is not unidimensional. (Stout, 1987) defined essential 
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dimensionality as the number of main or dominant latent features based on 

IRT, which has proven to be one of the most important notions in the 

development of non parametric dimensionality evaluation processes. 

Review of Dimensionality Assessment Methods 

Factor Analysis 

Factor analysis has long been used to investigate dimensionality in 

multivariate data. For an overview of the application of factor analytic 

approaches to dimensionality evaluation, see (Hattie, 1985), (Reckase, 2009), 

(Stone & Yeh, 2006), and (Velicer, Eaton, & Fava, 2000). EF A refers to a 

group of statistical approaches that are used to explain observed variances and 

covariances in a broad sense (Kline, 2010). EFA does not need the use of a 

theorized dimensional structure, unlike confirmatory factor analysis (CF A), 

which appears to be favorable for exploratory purposes. The number of 

dimensions equals the number of components or factors to keep, according to 

EF A. When only one component or element is preserved, the data is deemed 

unidimensional; otherwise, some degree of multidimensionality appears.The 

data's dimensional structure correlates to a specific factor solution created by 

EFA. 

Considerations That Could Influence Results of Factor Analysis 

There are a number of considerations that could influence the result of 

factor analysis. (van der Eijka & Rose, 2015) found that, generally, factor 

analysis conducted on ordered categorical survey data is prone to over 

dimensionalisation, irrespective of the mode of analysis. However, the risk 

when using some extraction methods such as the eigenvalue-greater-than-one 
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rule (or Kl rule), are reduced for polychoric, rather than Pearson's 

correlations. The focus on data generated on categorical variables primarily 

violates the assumption of interval-level measurement and questions keep 

being raised regarding the circumstances under which this leads to 

substantially misleading results. The literature is not clear on the matter, and 

this is also the opinion of (van der Eijk and Rose, 2015). Their attempt in this 

regard estimated the risk of over-dimensionalisation when factor analysis is 

used on data generated on Likert-type data. They specifically stress that the 

data that may be factor suitable could be affected in some five main ways: (1) 

the nature of the underlying distribution; (2) the number of items; (3) the level 

of random noise; (4) the range of positions of the items on the underlying 

dimension; and (5) the skewness of the items. Based on their study, van der 

Eijk and Rose therefore recommend, among others, that the Kl should not be 

used, given available alternatives; and that the polychoric correlations are to 

be preferred to Pearson' s correlations within the condition of smaller number 

of items. 

The consequences of violating the assumptions are evident in inflated 

probability chi-square tests of fit, lowered standard errors, and inflated error 

variances in confirmatory factor analysis (Finch & West, 1997). When item 

response scales have more scale points or categories, the repercussions are 

less severe. An item with an ordered seven-point response scale, for example, 

is more likely than a dichotomous item to nearly satisfy the assumption of 

factor analysis. When categorical variables approach a normal distribution, the 

number of categories has no effect on the chi-square test of fit between the 

model and the data, according to (Byrne ,2001). 
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Furthennore, factor loadings and factor coefficients are only slightly 

underestimated under these conditions. When responses to items follow an 

approximate nonnal distribution, research suggests that items with five or 

more ordered response categories do relatively well in confinnatory factor 

analysis (Byrne, 2001). (De Bruin, 2004) employed two ways to deal with the 

problem of non-nonnality and nonlinearity of items.These include (a) using 

item response theory measurement models and (b) using item parcels rather 

than individual items as the primary units of factor analysis. 

Factor analysis is based on the correlations among items on which the 

data is generated. For Pearson"s product-moment correlations to adequately 

reflect the relationships among the variables, observed variables must be 

measured on interval scale (e.g., MacCallum, 2009; Tompson, 2004). This 

condition is also required for the assumption of linearity of relationships 

among latent variables. However, Likert scale items, which are categorical in 

nature violate this condition. This has been the main concern in the literature. 

It is observed, for example, that the correlation between assumed underlying 

continuous variables in a Likert scale items is attenuated by the categorisation 

(Olsson, 1979), though the extent of the attenuation is not unifonn. The 

smaller the number of categorisation, the larger the attenuation, ceteris 

paribus. In addition, attenuation depends on the (observed) distribution of the 

scores: it is minimal when responses are approximately nonnally distributed 

with approximately equal means and is maximal for variable pairs that are 

skewed in opposite directions. Thus, (Flora, LaBrish & Chalmers, 2012) 

report a true popUlation correlation coefficient of 0.75 observed as 0.25 when 

the continuous variables are categorised into five-point items; however, for 
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other item pairs, the attenuation was much less severe. 

These observations imply that observed product-moment correlations 

may be quite different from their underlying true values, and so is also the 

factor structure derived from the observed correlations. This would likely lead 

to over-dimensionalisation with factors discriminating between left and right 

skewed items (for example, in Gorsuch, 1983; and Van Schuur, 2003). 

Moreover, categorisation of true continua leads necessarily to violations ofthe 

linearity, adding to the inadequacy of the product-moment correlation to 

represent the relationship between items (Flora et a!., 2012). For factor 

analysis of ordinal data, polychoric correlations are often recommended. 

Extensive discussion on polychoric correlation can be found in a number of 

texts (Uebersax, 2006) 

Illustrative Dataset and Cut-off Values in Dimensionality Detection 

As noted in Chapter One, the iIIustrative Dataset 1 on the performance 

of sales personnel is contained in several texts (Johnson & Wichern, 2007; 

Anderson, 2003; Mardia, Kent & Bibby, 1979). In these presentations, the data 

were used to illustrate some multivariate techniques, particularly factor 

analysis. The data are one of several datasets that have been used in studies of 

problems associated with factor analysis by (Benyi, 2018) and on the Kaiser

Meier-aIkin's measure of sampling adequacy (Nkansah, 2018). These studies 

have found that although the data is suitable for factor analysis, it surprisingly 

does not yield a reasonable factor solution. A study of dimensionality in the 

data made use of a cut-off value of 0.5 and identified only one dimension 

underlying the data. The factor analysis reveals challenges of interpretation of 

factors. Thus, there is theoretically one dimension and hence the data is 
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suitable for factor extraction. However, it statistically has no ' significant' 

dimension. This implies that a factor model is not suitable for the data. The 

problems identified with this data cover contrasting factors and one-indicator 

factor solutions, which are inconsistent with the features of the variance

covariance matrix of the data. It is apparent therefore that the variance

covariance structure of this data makes it difficult for determination of its 

dimenionality. 

The data is therefore very suitable as a test data for the implementation 

of the methodology developed in this thesis. The study will therefore explain 

more clearly the nature of the data structure that makes its dimensionality 

difficult to detect. 

Dataset 1 has also been studied (Apanyin, 2021) with canonical 

correlation analysis technique. It has been demonstrated that the first three 

columns of the data on seven variables could constitute one subset variables 

whilst the remaining four constitutes the second subset vector. This way, 

canonical correlations could be found for pairs of canonical variables from the 

two sets. 

Dataset 2 on student performance on nine subjects has also been studied 

in Benyi (2018) using a cut-off value of 0.5. Two homogeneous sets have been 

identified in this data indicating a dimensionality of two. A cut-off value as 

low as 0.2 has been identified by subjective choice to support identification of 

homogeneous groupings in data. The choice of a cut-off value is clearly 

dependent on the data structure and a good choice of cut-off value is required 

to identify appropriate dimensionality. 
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Chapter Summary 

The literature has focused on the relevance of the the data used, the cut 

off value, some methods that were used in dimensionality detection in a 

multivariate dataset. A multivariate dataset is either characterised as 

unidimensional or multidimensional. It is clear from the literature that no 

specific study has focused on a structured and rigorous presentation of 

dimensionality detection in multivariate data. Our study therefore seeks to fill 

this gap by developing an objective and robust dimentionalty detection 

method. 
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CHAPTER THREE 

RESEARCH METHODS 

Introduction 

As noted in the introductory chaper, this work is mainly motivated by 

the work ofNkansah (2018) on the computation of the KMO. We review the 

generalized rule as presented for determining the expected dimensions in 

multivariate data and point out in Remark (3.1) the main point of contention in 

the rule that motivates this study. The underlying concepts of the KMO are 

orders zero and one correlation coefficients. The chapter will examine these 

concepts and point out the perspectives taken on them by the study. It will 

review relevant multivariate techniques that have dimensionality detection 

embedded in them and which will be applied in the study. 

Generalized Rule for Determining Expected Dimensions of Datasets 

Suppose a multivariate dataset is generated on a set of p variables 

(~ , X:2 , .. . ,xp) with correlation coefficients that are generally significant. On 

the basis of the level of correlation coefficients, a cut-off value of 1 is. fixed 

for which variables may be considered to belong together if their pair-wise 

correlation coefficient exceeds 1. First, take the pair 

(x;,xJ i,jE I =(1, 2, .. ., p) with the highest correlation coefficient. Let 

this pair be {Xu,xJ, and label the set as SI ={xu,xJ and the index set 

I, =(u,v). If the correlation coefficients r"""i>r, VkEI1, iEl\II> then 

Xi ES1, otherwise, XI f!.SI. The sets s, and I, are updated each time. Now, 

if Y" " <r, for some k E I, and some i E I \ I" then we obtain a fmal first ,. , 
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homogeneous set with index set 

We will fonn a new set S2 from the elements Xi ~SJ, i E 1 \ 11 ' Denote 

coefficient that meets the cut-off value T. This pair is (XII ,x/2 ). Thus, we 

obtain the second set S2 = kl ,XI,}' and an index set 12 = {/ p /2}' Now, if the 

correlation coefficients rx x ><, VkEl2, iEl\l2' then x · ES., otherwise, 
/co I I 

XI ~S •. The sets S2 and 12 are updated each time. Now, if rx.,x, «, for some 

k E 12 and some i E 1 \ 12 then we obtain a [mal second homogeneous set 

Consider all elements Xi ~ (Sl uS2 ), i E 1 \ (II V 12 ) , Denote 

T2 = 1 \ (II V 12 ) • To fonn the new set, take the pair (Xi,Xj 1 i,j E 7; with the 

highest correlation coefficient that meets the cut-off value T. Let the pair be 

(XI ,XI) ' Thus, we obtain the third set S3 = {X" x, }, and an index set 
I 2 I 2· 

If the correlation coefficients rx x ><, VkEl3 , iEl\l3' then Xi ES3 , ,. , 

otherwise, Xi ~S3' The set ~ and 13 are updated each time. Now, if 

rx x «, for some k E I and some i El\13 then we obtain the [mal third 
Ie - I ) 
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We attempt to fonn the qth set Sqfrom the elements x, !i!O (9. Sk ). 

q-I q-I 

i E 1\ Ulk . Denote Tq_1 = 1\ Ulk . Take the pair {Xi'xJ i,j E ~-1 with the 
k~ k~ 

highest correlation coefficient that meets the cut-off value r. Thus, we obtain 

k E /q and some iE/ \ /q then we obtain the final qth homogeneous set 

If for some set SI+1 and index set //+1 , and for X i !i!O (~Sk )., rx" x, <1:', for all 

I 

i,j E 1\ Ulk , then SI+1 is the last set of variables in the original set of p 
k=1 

variables and there are a total of I dimensions underlining the correlation 

matrix. 

Remarks 3.1 

It can be observed that the procedure described for identifying 

homogeneous sets is obviously influenced by a fixed cut-off value of 'l for 

which variables may be considered to belong together if their pair-wise 

correlation coefficient exceeds 'l. Since the value of 'l is set by the 

experimentor, it is highly subjective even though it is based on a general 

assessment of the size of correlations coefficients among the variables. 

It is already acknowledged (Nkansah, 2018) that there are some variables 

which are likely to contaminate the measure of homogeneity of the data. These 

are elements identified in the indexed set ~ of elements that are not found in 
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any of the homogeneous sets. An automated procedure would therefore 

include a process that screens the variables to include only those that are 

identified with a particular homogeneous group. 

Dimensionality of a Dataset 

As they choose one or more techniques to examine their own data, 

researchers make a hazy decision on how they interpret dimensionality. In the 

extant literature, the term dimensionality has been employed in a variety of 

ways, both as a property of a test and as a characteristic of test scores 

(Reckase, 2009). For the purpose of this research, dimensionality of a dataset 

may be described broadly III two ways: unidimensionality and 

multidimensionality. 

A given multivariate dataset could be of unidimensionality and 

multidimensionality. We attempt to establish working definitions of the two 

types of dimensionlity in relation to two statistical applications that deal with 

dimensionality of dataset. These are Item Response Theory (lRT) and Factor 

Analysis (FA). A unidimensional test is one that has one latent trait underlying 

the data (Hattie, 1985). In relation to IRT, a multivariate dataset is said to be 

unidimensional if it is possible to find a vector of values <P = (<Pi) such that 

the probability of correctly answering an item g is 7Cig= !g(<Pi) and local 

dependence holds for each value of <po In factor analysis, if only one factor 

explains a phenomenon, then the data is essentially unidimensional. A 

multidimensional test however has two or more distinct latent traits underlying 

the data. These two concepts will be discussed in detail later in relation to the 

dimensionality assessment methods. 
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In factor analysis, latent variables represent unobserved constructs and 

are referred to as factors or dimensions. In this thesis, only the Confirmatory 

Factor Analysis (CFA) would be relevant and is therefore reviewed briefly. 

Confirmatory Factor Analysis 

Suppose that an exploratory factor analysis of data on the indicators 

.x;, X 2 , ··., Xp yields an m-factor solution given by 

m 

x, = L)ij~ + &;, 
j~1 

i = 1, 2, . .. , P (3.1) 

In Equation (3.1), m:::; p and fj are the factors specific to the individual 

indicator Xi with loading ~ on thejth factor. Usually, indicator variables with 

loading higher than 0.5 are considered influential in the formation of the 

factor. The m factors model in Equation (3.1) could also be represented as 

X=AF+E (3.2) 

where A is the matrix of loadings and F is the vector of specific factors. The 

correlation matrix R could then be approximated as 

R=M'+'I' (3.3) 

The matrices AN and 'I' are respectively, the reproduced correlation matrix 

based on the m-factor model and diagonal matrix of specific variances 

m 

whose elements are given by IJI, = 1-'LZ:, i = 1,2, ... , P . Equation (3.3) is 
j=) 

the fundamental factor analysis equation that provides the principle of 

hypothesis in Confirmatory Factor Analysis (CF A). 

In factor analysis, the number of factors that can be extracted is the 

same as the number of variables. Each factor (h) explains a certain amount 
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(Ay) of overall variance in the observed variables, and the factors are always 

listed in the order of how much variation they explain. Thus, 

The test of adequacy of the m-factor model is equivalent to the test of 

the hypothesis 

Ho: P = A A' + 'P against Ha: P *- A A' + 'P 
J1><P J1><m mxp J1><P J1><P J1><m mxp J1><P 

The null hypothesis means that the m factors are adequate in approximating 

the original correlation matrix. If Ho is rejected, it means that the factor 

model does not significantly represent the underlying dimensions of the 

correlation matrix. Thus, the alternative hypothesis means that p is any other 

positive definite matrix that cannot be factorized as under H o. Under H 0 , 

the maximum of the likelihood function, with ft = x and t = AA' + .p , where 

A and .p are the maximum respective likelihood estimates of A and 'P, is 

proportional to 

f-t exp[-ttr{f-'(~(Xj -x)(Xj -XY)}] 

=0 IAA- + 1f1-f exp[-tntrtAA' + 1f)-ISJ} 

1 n 

where Sn =0- L(x j -x)(x j -x)' . 
n j=1 

By the general likelihood method, 
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[

maXL(9)]-1 
-2lnA = -2ln ..:.O.:..:e0:!.... __ 

maxL(9) 
Oe0 

= -2In(I~lr + n~(i:'S.)- pi 

with degrees of freedom v-vo =~[(p_m)2 - p-m]. 

Under a maximum likelihood estimate of the parameters III Ho, 

tr(R-1Rn )- p = O. Thus, the statistic becomes 

-21nA = nln[:!r (3.4) 

Bartlett (1954) shows that the chi-square approximation to the sampling 

distribution of - 2In A may be improved by replacing n in Equation (3.4) 

with the multiplicative factor [n-l-i(2p+4m+5)]. The hypothesis Ho is 

thus rejected at a level of significance if 

(3.5) 

provided nand (n - p) are larg~. 

Remarks 3.2 

In this study, it will be observed that several factor models may be 

significant (i.e., H 0 will not be rejected) for a number of values of m. In this 

case, it will be sufficient to use the smallest value of m. On the other hand, it 

is also possible that there will be no value of 11/ at which the H 0 would be 

rejected. This means that there are no significant underlying factors, even 

though exploratory techniques are able to identify factor. 
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Item Response Theory 

The item response theory (IRT), also known as the unobserved 

response theory, is a collection of mathematical models that attempt to explain 

the relationship between latent constructs (unobservable characteristics or 

attributes) and their results (i.e. observed outcomes, responses or 

performance). They create a link between the characteristics of items on an 

instrument, the responses of individuals to these items, and the underlying 

property being measured. The unobserved construct (e.g. stress, knowledge, 

attitudes) and measure items are organized in a latent continuum, according to 

IRT. 

As a result, its primary application is to determine an individual's place 

on that continuum. The label item response theory refers to the theory's focus 

on the item, as opposed to conventional test theory's test-level focus. Meaning, 

IRT simulates each examinee's response to each test item for a given ability. 

The term item is broad, encompassing a wide range of instructive materials. 

Multiple choice questions with correct and incorrect answers, popular 

statements on questionnaires that allow respondents to express their level of 

agreement (a rating or Likert scale), patient symptoms rated as present or 

absent, and diagnostic information in complicated systems are examples of 

these. The premise behind IRT is that the chance of a correctlkeyed response 

to an item is a mathematical function of the individual and item factors. A 

single unobserved concept or dimension is understood as the person 

parameter. 
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The difficulty of an item (known as "location" for its location on the 

difficulty range); discrimination (slope or correlation), which represents how 

steeply an individual's rate of success changes with their ability; and a pseudo 

guessing parameter, which represents the asymptote at which even the least 

able persons will score due to guessing (for instance, 25 percent probability on 

a multiple choice item with four possible responses). 

In addition, the goal of IRT is to provide a framework for evaluating 

how effectively exams and particular items on assessments work. IRT is most 

commonly employed in education, where psychometricians use it to conceive 

and design examinations, manage groupings of items for examinations, and 

link item problems for subsequent editions of examinations. Unobserved trait 

models are another name for IRT models. The word "unobserved" is used to 

stress that item responses that do not allow fractions are considered observable 

displays of hypothesized traits or attributes that cannot be tested directly but 

must be inferred from the visible replies. 

Dimensionality in IRT 

The IRT viewpoint is important in research because it provides clear 

stipulations of the correlation between item score variable Xj and the 

unobserved construct 9 = [91 ...•... 9 d Y . When d = 1, the dataset is 

unidimensional; on the other hand, when d > 1, the dataset is 

multidimensional. Both parametric and non-parametric methods have been 

developed to determine dimensionality-inherent item clusters and evaluate 

relationships inter and intra these clusters. 
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Generalized Partial Credit Model (GPCM) 

In the context of IRT, parametric dimensionality assessment methods 

depend on certain Unidimensional IRT models and Multideimensional LRT 

models for dichotomously scored MC items and polytomously scored CR 

items. We attempt to describe the models studied in this research. For 

dichotomous item score variables, the most generic UIRT model in prevalent 

operative use is the three-parameter logistic (3PL) model (Lord, 1980), whose 

Item Response Function is given by 

- P (X - l/fJ) - (1 ) exp[1.7aj(8-bj) p. - r . - - c· + - C 
1 1 ) l+exp[1.7 aj(8-bj)' 

(3.6) 

In the equation 3.6, fJ is the single unobserved trait; aj' hj' and Cj 

denote the item discrimination, difficulty, and pseudo-guessing parameters for 

item j, respectively. The 3 -Parameter model becomes the two-parameter 

logistic (2PL) model by setting Cj= 0, and further becomes the one-parameter 

logistic (lPL) model by setting aj= 1 and Cj= O. A multidimensional 

modification of the 3PL (M3PL) model (Reckase, 2009) is given by 

( / ) 
exp(aJ8+dj) 

Pl· = Pr Xl· = 1 fJ = C; + (1 - c) (8 d)' 
J l+exp aJ + j 

(3.7) 

where multiple unobserved constructs contained in fJ together determine how 

probable a randomly chosen examinee answers item j correctly,aj is a 

transposed vector of slope parameters, d j is the intercept, and Cj is the pseudo-

guessing parameter. According to Reckase (2009), the multidimensional 

discrimination (MDISC) for itemj is defined as 

(3 .8) 
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which is equivalnet to aj in Equation (3 .6). The multidimensional difficulty 

(MDIFF), which is analogous to bj in Equation (3.6), is given by 

-d· -d · 
MDIFFJ = } = --'-

MDlse, r;;;;;; 
,J~J~' 

(3 .9) 

Equation (3 .7) further highlights the model's compensatory nature: a 

low value on one unseen construct could be offset by high value(s) on at least 

one other unobserved construct. Compensatory models have been frequently 

employed in the dimensionality assessment field because they appear to better 

mimic the genuine intellectual processes observed in many educational 

examinations and do not provide significant theoretical or computational 

challenges (e.g., Hattie, 1984; Mroch & Bolt, 2006; Nandakumar, 1994; van 

Abswoude et aI., 2004). The graded response (OR) model (Samejima, 1969) 

for the unidimensional case begins with the outline of the cumulative category 

response functions for polytomous item score variables. 

Pjo' = Pr(Xj » ole) = 

(3.91) 

The parameters in Equation (3 .9.1)) are like those in the 2PL model, 

the only difference being the difficulty parameter bjk is assigned to response 

categories from 1 to ( ~ -1) . The IRF of the OR model is defined as the 

disparity amongst cumulative category response functions: 

Pjk = Pr(Xj = kle) = Pjk' - Pj(k+l)', k = 0, ......... . . ~ - 2 

Pj(Kr1) = Pr(Xj = ~ -lie) = Pj(Kr1)', (3.92) 
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Essential Dimensionality 

In this study, the non-parametric IRT approach was used in accordance 

with the concept of essential dimensionality. The definition of critical 

dimensionality for dichotomous variables was discussed informally by Stout 

(1987). In Stout, this was formalized (1990). Junker (1991) expanded the 

notion to include polytomous variables. Similar ideas have been presented 

discreetly from an EFA perspective; for example, factors responsible for the 

majority of the observed association are preserved while the other minor 

factors are ignored (Stout, 1990)."A construct vector is dominating if the 

residual covariances among the items are minimal in anticipated value after 

conditioning on," to put it another way (Junker, 1991, p. 258). The number of 

dominating dimensions is the emphasis of essential dimensionality. If only one 

dominant dimension is visible, data is believed to be essentially 

unidimensional. 

Methods Using the mT Definition of Dimensionality 

Poly-DIMTEST (Nandakumar et aI., 1998) is an extention of 

DIMTEST (Stout, 1987; Nandakumar & Stout, 1993) to study 

unidimensionality of polytomous data. This approach tests Ho of the essential 

unidimensionality, given by 

Ho: dE = 1 versus H1 : dE > 1 

where dEis the number of dominant dimensions defined In Stout (1987, 

1990). 
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Because it assumes the IRT notion of dimensionality (Stout, 1987, 1990) as 

mentioned previously, the Poly-DIMTEST approach was recognized as an 

IRT approach in this investigation. 

Poly DIMTEST captures numerous phases and is quite similar to 

DIMTEST with a few minor differences (for technical details, refer to 

Nandakumar et aI., 1998). Examinees are given a test of items based on the 

notation described earlier. AT!, AT2, and PT are the three categories that the 

initial test is broken into. M items are found in both AT! and AT2, while the 

remaining (J-2M) items cover PT, where M is a tiny number.According to 

Nandakumar and Stout (1993)'s DIMTEST recommendations, four or more 

AT components are required for reliable estimations, however it is better when 

it goes below J/4. 

To give adequate power, the number of PT pieces should be at least 15. 

(Stout et aI., 1996). AT! items are expected to measure the same unobserved 

construct as A T2 items, and A T2 items are expected to have an item difficulty 

distribution similar to A Tl items. AT! items could be identified at random or 

using EF A, indicating two Poly-DIMTEST modes: confirmatory and 

exploratory.Items measuring the same content subdomain or having the same 

item format could be designated as ATI items in a confirmatory mode.An 

algorithm proposed by Nandakumar and Stout (1993) could be used to choose 

AT! items in an exploratory mode.They suggested that on the second factor, 

items with substantial absolute loadings (e.g., more than 0.15) be used. When 

running a Poly-DIMTEST exploratory model, it is also a good idea to divide 

the initial sample into two categories. EFA is conducted in the first category, 
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and the Stout's T statistic is computed in the second. The first category should 

have a minimum of 500 people (Nandakumar, 1994). When computing the T 

statistic, the examinees' category may be divided into many subcategories 

based on their PT item scores. Under Ho, the T statistic approximates the 

conventional normal distribution (Nandakumar et aI., 1998). If the P-value 

falls below a predetermined significant level, the basic unidimensionality 

assumption is invalidated. 

Proposed Method on the Kaiser-Meier-Olkin's Measure of Sampling 

Adequacy 

In this thesis, we offer a computationally robust methodology for 

employing Kaiser-Meier Olkin's Measure of Sampling Adequacy (KMO) as a 

dimensionality identification method in a multivariate dataset. It frrst 

investigates a systematic strategy for determining the dataset's initial 

dimensionality. It then divides the variables into two groups: those that do not 

contribute to any, dimension (non-homogenuous sets) and those that contribute 

to many dimensions (multidimensional sets). According to the literature, a 

KMO value of 0.6-1.0· is a natural good measure (Rencher, 2002; Nkansah, 

2018). 

KMO values less than 0.6, on the other hand, indicate that the sample is 

unsuitable, and that corrective action should be performed. The suitability of a 

sample is traditionally determined by four factors. 

I. The sample's representativeness 

2. Sample size 

3. Variability in the population 
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4. Estimation precision that is desired 

KMO, which is a measure of similarity between variables, is used to 

determine the acceptability of a sample rather than looking into each of the 

features individually. To determine the suitability of a dataset for 

dimensionality detection, a number of approaches are used. The Kaiser-Meier-

Measure Olkin's of Sampling Adequacy (abbreviated KMO) is a commonly 

used method. It's a detection metric for determining the degree to which a 

dimension's indicators are homogeneous. 

A low KMO score indicates that the connection between the two 

variables cannot be explained by a well-defined unseen factor, and hence 

dimensionality detection may not be appropriate. 

Table 1: A Guide for Interpreting KMO Measure 

KMOMeasure Recommendation 
~ 0.90 Marvellous 

0.80+ Meritorious 

0.70+ Meddling 

0.60+ Mediocre 

0.50+ Miserable 

< 0.50 Unacceptable 

Source: Nkansah (2018) 

According to the criterion in Table 1, the overall KMO measure should 

be 0.8 or higher to achieve acceptable results. Although a value of greater than 

0.6 is permissible, this rule of thumb appears to have gained widespread 

acceptance (Rencher, 2002). The index allows for a comparison of the size of 
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observed correlation coefficients versus partial correlation coefficients. The 

KMO can be calculated using the following equation. 

(3.93) 

where Tij2 is the square of the correlation coefficient between anypairs 

of variables (Xi, Xj) and is an element of the correlation matrix R. The 

corresponding value PTi/ is the square of the partial correlation 

coefficient 

Order Statistics Correlation Coefficient 

Definition and Properties 

Let (xij' x.y), j = 1, 2, ... , rr, i, k = 1, 2, ... , p be n observations on any two 

variables from the set (X;'X2'·· .. Xp). By rearranging pairwisely the 

observations on the two variables with respect to the magnitudes of Xi, we 

obtain two new sets of data (XiU) , Xk[jj) where Xi(l)::;; Xi(2) ::;; • • ·xi(n) are the 

order-statistics of Xi and Xk[lj,Xk[zj,···, xk[nj are the associated concomitants 

of xk • Re-versing the roles of X and y, we also define the order statistics of 

yand the corresponding concomitants which are denoted by Yl ... 'yN and 

Xl ...• XN respectively. The order statistics correlation coefficient can be defined 

as 

(3.94) 
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The order statistics correlation coefficient has the basic properties of a 

correlation coefficient, as follows 

I. -1 ~ Tx ~ 1 

2. Tx(X,y) attains +1(-1) , where x and yare in strict increasing(decreasing) 

relationship 

3. Tx(X',y') = Tx(X,y) for x' = kxx + constx and y' = kyy + consty , 

kx > 0 and ky > 0 

4. If x and yare mutually independent and each is independent identically 

distributed (lID), the expectation E[TX(X', y')] = 0 as N ~ 00 

Chapter Summary 

In this chapter, we reviewed the known statistical techniques that are 

used to interpret multivariate data. Notably, factor analysis, Principal 

Component Analysis and Item Response theory Modelling. The general 

orthogonal factor model and underlying basic conditions and assumptions 

were discussed. 

The methods of principal components and maximum likelihood have 

been discussed and their relative desirable properties have been pointed out. 

The 3-parmeter IRT model has been critically examined. Confirmatory factor 

analysis which uses the Chi square statistic to assess model fit has been 

discussed with the purpose of using it to assess model fit in chapter four. 

Unidimensionality and multidimensionality have also been discussed. The 

generalisation of the dimensionality detection algorithm and a measure of 

homogeneity, KMO have been thoroughly explored. 
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Introduction 

CHAPTER FOUR 

RESULTS AND DISCUSSION 

This chapter presents the development and implementation of the 

algorithms based on methodology for addressing the detection of 

dimensionality in data. Implementationrn is carried out on two existing 

datasets described in Chapter One and one simulated data. The proposed 

dimensionality detection methods are similarity measures which hinges on 

correlation profiles. The study employs the Pearson's correlation and Order 

statistic profiles. In the implementation, attention is focused on identifying two 

sets of indicators that could create distortions in assessing factor-suitability: 

variables that do not influence any dimension; and those that influence 

multiple dimensions. A brief preview of the structure and key findings for each 

of Datasets 1 and 2 obtained in Nkansah (2018) is presented as follows: 

Table 2: Correlation Matrix for Dataset 1 

Xl X2 X3 X4 Xs X6 

X2 0.926 

X3 0.844 0.843 

X4 0.572 0.542 0.700 

Xs 0.708 0.746 0.637 0.591 

X6 0.674 00465 0.641 0.147 0.386 

X7 0.927 0.944 0.853 00413 0.575 0.566 

Source: Nkansah (2018) 
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Using an experimenter specific threshold of 0.5, only one dimension is 

detected to underlie the dataset since only one homogenous set is found 

constituted by five variables given by 51 = {XVX2,X3,XS,X7} ' The KMO 

values for Dataset 1 based on the methodology described in Chapter Three are 

summarised in Table 3. 

Table 3: KMO for Dataset 1 Based on Subgroupings 

SN Groupings KMOValue 

1 All 0.6161 

2 0.6413 

Source: Nkansah (2018) 

Table 4: Correlation Matrix for Dataset 2 

Xl X2 X3 X4 Xs X6 X7 Xs 

X2 0.135 

X3 0.160 0.637 

X4 -0.085 0.549 0.402 

Xs 0.180 0.431 0.318 0.407 

X6 0.126 0.693 0.616 0.381 0.289 

X7 0.020 0.627 0.746 0.447 0.317 0.604 

xs -0.113 0.010 -0.018 -0.029 -0.028 -0.011 -0.019 

X9 0.045 0.692 0.464 0.504 0.386 0.395 0.4220.067 

Source: Nkansah (2018) 

The study detected dimensionality for this data set using an 

experimenter specific threshold. It identified that two dimensions underlie the 

data set since there were two homogenous sets given by 
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Sl = {X3, X7 , X6' } and S2 = {X2' X9' X4' }. The KMO values for dataset 2 are 

summarised in the table below. 

Table 5: KMO Values for Dataset 2 from Literature 

SN Groupings KMO 

1 All 0.8222 

2 Sl only 0.8503 

3 S2 only 0.8365 

Source: Nkansah (2018) 

Remarks 4.1 

The drawbacks in the study described above are specified as follows: 

1. Calculation ofKMO dwelling on the original correlation structure and not 

a spanning set may lead to abuse of information and misleading results 

since KMO depends on the original correlation structure. 

2. KMO determination is based on experimenter specific thresholds and not 

thresholds based on the data structure. 

3. Computation is expensive since the duration involved in calculating KMO 

using the original correlation structure far outweighs the duration 

regarding the computation based on a spanning set. 

4. The method does not investigate the sensitivity and robustness based on 

the correlation profile as only the Pearson's correlation is used. 

64 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



In this study, the proposal to address the drawbacks identified above are as 

follows: 

1. Develop an approach to determine KMO based on a threshold not 

influenced by the choice of the experimenter but by the structure of the 

data 

2. Develop an approach for calculating KMO based on a spanning set, not 

the original correlation structure, to provide reliable results. 

3. Develop an approach that is robust to correlation structure 

It is anticipated that the implementation ofthese proposals would lead to 

a computationally less expensive approach for calculating a measure of 

homogeneity of a dataset. 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy based on Pearson's 

Correlation Profile 

Pearson's correlation coefficient is the covariance of the two variables 

divided by the product of their standard deviations. Given a pair of random 

variables (X, y) , the Pearson correlation coefficient, p , is given by 

Cov(X,Y) 
PX,Y = 

Ux. Uy 

Pearson's correlation coefficient, when applied to a sample, is commonly 

represented by Txy. For a given paired data (Xl' Yl), ......... (Xn' Yn) , 

(4.1) 
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The Kaiser-Meyer-Olkin Measure of Sampling Adequacy ( or simply 

KMO) is a diagnostic measure for assessing the extent to which the indicators 

of a dimension belong together. The KMO is given by 

(4.2) 

where rt/ is the square of the correlation coefficient between any pair of 

variables (Xi ,Xj) and is an element of the correlation matrix R. The 

corresponding value prt/ is the square ofthe partial correlation coefficient. 

For the purpose ofthe approach adopted in this study, the KMO may 

be expressed in the form 

(4.3) 

In an attempt to examine the ratio of the partial correlation to zero order 

correlation. For KMO to be large, the ratio of partial correlation to zero order 

correlation must be small. We need to form the homogeneous set in such a 

way that the variables in a set correlate highly with each other but not with 

members of the other set. For this homogenous set we expect the ratio to be 

small for any pair of elements controlling for all others 

An Automated Dimensionality Detection 

In this section, an updated version of the generalized rule (Nkansah, 

2018) is described that is based on an automated threshold. Subsequently, a 

description of methods for determining the threshold is provided. 
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Generalization of the Modified Rule for Determining Expected 

Dimensions of Datasets 

Suppose the dataset is generated on a set ofp variables YPY2'···'Yp 

with correlation coefficients that are generally significant. We generate a data 

specific threshold 00 using an automated threshold setting for which variables 

may be considered to belong together if their pairwise correlation coefficients 

exceed 00. First take the pair (Yl,lj) ,i,j E 1= (1,2, .. ,p) with the highest 

correlation coefficient. Let this pair be (Ym' Yn) and label the set as Sl = 

(Ym' Yn) and the index as Ii = (m, n). If the correlation coefficient rYk,Yi ~b'o, 

V k E Iv i E lVi' then Yi E Sv otherwise Yi fI. Sl. The sets Sl and Ii are 

updated each time. Now if rYk,Yi < 150 for some k E Ii and some i E IV!> then 

we obtain the first homogenuous set Sl = (YiV Yi2, ... , Yigl) with index Ii = 

We would form a new set S2 from the elements Yi fI. S1> i E IVl . 

Denote Tl = IVl . Consider the pair CYl, lj), i,j E IVl with the highest 

correlation that meets the cut off value 00. This pair is (Yil' Yi2) . Thus we 

obtain the second pair S2 = (Yil' Yi2) and an index set 12 =(/1,12). Now if the 

correlation coefficient 

Sv otherwise Yi FI. Sl The sets S2 and 12 are updated each time. Now if 

T.y Y < 150 for some k E 12 and some i E IV2then we obtain a final second 
k' f 

homogeneous set Sl = (YiV Yi2' ... , Yig2) with index Ii =(iv i2, ... , ig2) c I 

(Ii u 12 ). To form a new set, take the pair CYl, lj) ,i,j E T2 with the highest 
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correlation coefficient that meets the cut off, 00' Let the pair be (Ycv YC2 ) . 

Thus, we obtain the third set S3=(Ytl ' YC2 ) and an index 13 = {tv t2} 

If the correlation coefficie rYk'Yf? 00 , V k E 13• i E f\l3 • then Yi E 

S3. otherwise Yi fI. S3 The sets S3 and 13 are updated each time. Now if 

rYk'Yf < 00 for some k E 13 and some i E 1\l3 then we obtain the third 

homogenuous set S3 = (Ycv YC2 • ...• Ytg3) with index 13 =(i1• i2 • .... ig3) C I. 

We attempt to form the qth set Sq from the elements Yi fI. (U%:~ Sk ), 

i E 1\ u%:i Ik . Denote Tq- 1 =u%:i Ik . Take the pair (yt. }j), i.j E Tq- 1 

with the highest correlation coefficient that meets the threshold value 00 

Thus, we obtain Sq = (YdV Yd2) and an index set Iq = (dv d2). Now if 

for some k E Iq and some i E l\lq then we obtain the qth 

homogenuous set Sq = (Ydv Yd2, .. " Ydgq) with index Iq =(dv d2 • ... , dgq ) C 1 

. If for some set Si+l and index set I i+1 and for Yi fI. (Uk=l Sk) , 

rYk'Yf < 00 for all ij E 1\ Uk=l Ik then Si+1 is the last set of variables in the 

original set of p variables and there are a total of I dimensions underlying the 

correlation matrix. 

Similarity Based Dimensionality Detector 

Consider a p variate random variable, Y = Yt> Y2 • ••• , Yp on which an n 

x p data set is observed on a given multivariate system. Let Cy denote a p x p 

matrix of pairwise similarity measure based on Y We assume that without 

knowledge of the appropriate number of dimensions underly.ing the data 

under consideration, an appropriate guess of the number of dimensions will 

be at most the number of variables defining the data. It is also possible that 

the variables are inter-related in some sense which may be simple or 
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complex. This relationship may be informative about the intrinsic dimension 

underlying the data and thus, an appealing source for building a dimensionality 

detection scheme for detecting dimension in such data. The similarity-based 

algorithm for detecting dimension is outlined in algorithm 1, with the following 

conversion for notation. N(x) denotes the number of variables in x. and Y\ Yi 

denotes the remaining variables without Y;, i = 1, .. . p. 

Algorithm 2: Similarity-based Dimensionality Detector 

Initialization: Data: Y = Yv Y2, ••• , Yp. Set threshold, 15 = 150 

Compute similarity matrix, Cy = 1" (Y) =, (h ... , Yp). 

Compute lower triangular matrix of Cy, Dy 

Compute fundamental spanning set, Sf= {(li)]): D = max(Dy), i *" j}. 

Compute reduced dataset, 

Y '= Y \ Sf= Y \ (Y;, lj), i *" j 

Setn'=p - mf, Hs = Sf and Hns = NULL 

Do while n' > 2 

• Sf={(Y;, lj, Yk)} 

• mf=N(Sf) 
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3. else 

• n'=N(Y') 

4. Go to step I . Otherwise return n, Hns, Cy 

Explanation of Dimensionality Detection Algorithm Procedure 

The algorithm initializes by generating the variance-covariance matrix 

for p variables. Since Pearson's correlation is symmetric, the lower triangular 

matrix is used. The highest pairwise correlation in the variance-covariance 

matrix is selected and the associated variables constitute the spanning set sf. 

All variables in the reduced matrix whose pairwise correlations are at least the 

threshold 00 are used to update the spanning set giving us the first 

homogeneous set Sl. The process is repeated until all possible homogenous 

sets are formed. The algorithm terminates when the number of variables in the 

reduced dataset n' is at most two. The number of homogeneous sets gives us 

the number of dimensions underlying the dataset for each threshold. 

Automated Threshold Setting 

The use of threshold is primal in dimensionality detection as the 
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generation as well as the detection of homogeneous sets from a given 

multivariate dataset is threshold driven. It is important to note that not 

all thresholds will yield homogeneous set. Also, it is highly likely that 

a single threshold may generate multiple homogeneous sets. 

Mathematical Background 

h 00 ~-~ were al = . 1, a2 = --;;s a1 = min(Dy) 

Un = max(Dy) 

8;. = median of 01 

We set ko = 12 

Automated Threshold Setting Algorithm Procedures 

Automated Threshold Setting 1 (01) 

The algorithm picks the lowest pairwise correlation in the variance -

covariance matrix. generates series of thresholds using a step value of 0.01 

until all thresholds in the variance -covariance matrix are accommodated. This 

generates a total of 80 thresholds. The dimensionality detection algorithm is 

then used to generate homogeneous sets for each of these thresholds. Since 

multidimensionality is expected, some thresholds could yield more than one 

homogeneous set. The KMO values are then calculated for each homogeneous 

set for each threshold. Sensitivity analysis is then carried out for these 
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thresholds in an attempt to pick the optimal threshold suitable for 

dimensionality detection for the dataset. 

Automated Threshold Setting Two (82) 

The correlation profile used is the Pearson's correlation which is 

normally distributed. Statistically majority (about 97%) of the data points lie 3 

standard deviations about the mean. This gives us 6 standard deviations; we 

add an allowance of 2 standard deviations to cater for the rest of the data 

points. The algorithm then uses a step value of the ratio of the range for the 

variance -covariance matrix to the resultant standard deviation to generate 

series of thresholds. This generated 38 thresholds. The dimensionality 

detection algorithm is then used to generate homogeneous sets for each of 

these thresholds. Since multidimensionality is expected some thresholds 

yielded more than one homogeneous set. The KMO values are then calculated 

for each homogeneous set that corresponds to each threshold. Sensitivity 

analysis is then carried out for these thresholds in an attempt to pick the 

optimal threshold suitable for dimensionality detection for the data set. 

Automated Threshold Setting Three (83 ) 

This procedure is based on Threshold Setting 1. Statistically the 

variance-covariance matrix used which hinges on Pearson's correlation is 

symmetric. This makes the data points normally distributed. In view of this the 

algorithm determines the median for thresholds generated using automated 

threshold setting 1 and selects those thresholds that are at least the median . 

. This is similar to the usage of the lower triangular matrix of the variance 

covariance matrix. The dimensionaJity detection algorithm is then used to 
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generate homogeneous sets for each of these thresholds. Since 

multidimensionality is expected, some thresholds yield more than one 

homogeneous set. The KMO values are then calculated for each homogeneous 

set that corresponds to each threshold. Sensitivity analysis is then carried out 

for these thresholds in an attempt to pick the optimal threshold suitable for 

dimensionality detection for the dataset. 

Table 6: Dimensionality Detection for Dataset 1 

SNffhreshold No of hom. Sets SNIKMO 

[1] 0.15 1 [1] 0.6995 

[2]0.16 1 [[2]] 0.6995 

[3] 0.17 1 [[31] 0.6995 

[4]0.18 1 [[4]] 0.6995 

[5] 0.19 1 [[5]] 0.6995 

[6] 0.20 [[6]] 0.6995 

[7] 0.21 1 [[7]] 0.6995 

[8] 0.22 [[8]] 0.6995 

[9] 0.23 I [[9]] 0.6995 

[10] 0.24 1 [[ 1 0]]0.6995 

[11] 0.25 1 [[11]) 0.6995 

[12] 0.26 1 [[12]] 0.6995 

[13] 0.27 1 [[13]] 0.6995 

[14] 0.28 1 [[14]] 0.6995 

[15] 0.29 1 [[15]]] 0.6995 

[16] 0.30 1 [[16]] 0.6995 

[17] 0.31 1 [[ 17]]0.6995 

[18] 0.32 [[18]] 0.6995 

[19] 0.33 1 [[19]] 0.6995 

[20] 0.34 1 [[20]] 0.6995 

[21]0.35 1 [[21]] 0.6995 

[22] 0.36 1 [[22]] 0.6995 

[23] 0.37 [[23]] 0.6995 

[24] 0.38 1 [[24]] 0.6995 

[25] 0.39 [[25]] 0.6995 
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[26J 0.40 1 [[26JJ 0.6995 

[27J 0.41 1 [[27]J 0.6995 

[28J 0.42 [[28]]] 0.7571 

[29J 0.43 [[29]] 0.7571 

[30J 0.44 1 [[30JJ 0.7571 

[31J 0.45 1 [[31 JJ 0.7571 

[32J 0.46 1 [[32]] 0.7571 

[33J 0.47 1 [[33]] 0.7571 

[34J 0.48 1 [[34JJO.7571 

[35J 0.49 1 [[35]] 0.7571 

(36] 0.50 ([36]] 0.7571 

[37] 0.51 1 [[37]] 0.7571 

[38J 0.52 1 [[38]] 0.7571 

[39J 0.53 1 [[39JJ 0.7571 

[40J 0.54 [[40]] 0.7571 

[41] 0.55 1 [[41JJ 0.7571 

[42J 0.56 [[42JJ 0.7571 
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[43] 0.57 1 [[43]] 0.7571 

[44] 0.58 2 [[44]] 0.8587 0.5000 

[45] 0.59 2 [[45]] 0.8587 0.5000 

[46] 0.60 2 [[46]] 0.8587 0.5000 

[47] 0.61 2 [[47]] 0.8587 0.5000 

[48] 0.62 2 [[48]] 0.8587 0.5000 

[49,] 0.63 2 [[49]] 0.8587 0.5000 

[50] 0.64 2 [[50]]0.8587 0.5000 

[51]0.65 2 [[51]] 0.8587 0.5000 

[52] 0.66 2 [[52]] 0.8587 0.5000 

[53] 0.67 2 [[53]] 0.8587 0.5000 

[54] 0.68 2 [[54]] 0.8587 0.5000 

[55] 0.69 2 [[55]] 0.8587 0.5000 

[56] 0.70 2 [[56]] 0.8587 0.5000 

[57] 0.71 2 [[57]] 0.8587 0.5000 

[58] o.n 2 [[58]] 0.8587 0.5000 

[59] 0.73 2 [[59]] 0.8587 0.5000 

[60] 0.74 2 [[60]] 0.8587 0.5000 

[61} 0.75 2 [[61)) 0.8587 0.5000 

[62] 0.76 2 [[62]]0.8587 0.5000 

[63] 0.77 2 [[63]]] 0.8587 0.5000 
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[64] 0.78 2 [[64]] 0.8587 0.5000 

[65] 0.79 2 [[65]] 0.8587 0.5000 

[66] 0.80 2 [[66]] 0.8587 0.5000 

[67] 0.81 2 [[67]] 0.8587 0.5000 

[68] 0.82 2 [[68]]0.8587 0.5000 

[69] 0.83 2 [[69]] 0.8587 0.5000 

[70] 0.84 2 [[70]] 0.8587 0.5000 

[71] 0.85 2 [[71]] 0.7848 0.5000 

[72] 0.86 2 [[72]] 0.7848 0.5000 

[73] 0.87 2 [[73]] 0.7848 0.5000 

[74] 0.88 2 [[74]] 0.7848 0.5000 

[75] 0.89 2 [[75]] 0.7848 0.5000 

[76] 0.90 2 [[76] 0.7848 0.5000 

[77] 0.91 2 [[77]] 0.7848 0.5000 

[78] 0.92 2 [[78] 0.7848 0.5000 

[79] 0.93 3 [[79]] 0.5 0.5 0.5 

[80] 0.94 3 [[80]] 0.5 0.5 0.5 

Source: Author' s Construct (2022) 

From Table 6, it is observed that the automated threshold setting which 

allows the dataset to generate its own threshold is used to generate series of 

thresholds, thus 80 in this case. Though some thresholds may appear small, it 
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is not in our power to determine the thresholds generated by the algorithm. 

Our mandate is to allow the algorithm detect the optimal threshold that is 

suitable for dimensionality detection for this dataset. Subsequently the 

dimensionality detection algorithm generates homogenous set(s) for each 

threshold. It is possible to have either a single homogeneous set giving one 

dimension, two homogeneous sets giving us two dimensions and so on as we 

outlined early on in Chapter One that it is possible for a multivariate dataset to 

be unidimensional meaning we have only one latent construct underlying the 

data and also multidimensional meaning we have two or more latent traits 

explaining the phenomenon being studied . The modified automated KMO 

algorithm is then used to calculate the KMO for each homogeneous set. It is 

observed that if there are mUltiple homogenous sets for a particular threshold, 

the algorithm calculates the KMO for each homogenous set. For instance, for 

threshold 0.92, resulting in two homogeneous sets, the algorithm calculates the 

KMO for each homogeneous set namely 0.7848 and 0.5 respectively. Since 

KMO is a measure of homogeneity the higher it is the better. So in a case 

where we have multiple KMO we pick the highest .We then graph the KMO 

against the thresholds to determine either a unique optimal threshold or a 

saturation point if any. 
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Figure 1: Sensitivity Analysis for Dataset 1 

The graphs in Figure I depict the plot of KMOs against the various 

thresholds. Though we have a couple of saturation points, our interest is the 

one that corresponds to the highest KMO. It could be observed that the 

saturation points for all three graphs corresponding to the highest KMO lie 

within 0.6 and 0.85 inclusive. This means any threshold within this range 

could be the optimal threshold for dimensionality detection for this dataset. 

Selecting an Optimal Threshold from the Saturation Point 

A resultant saturation point indicates that any threshold within this 

range is suitable for dimensionality detection for the given dataset. However, 

each threshold within this range could give different factor solutions when the 
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multivariate dataset is subjected to factor analysis. Consequently we should be 

able to select a threshold that generates the optimal factor solution. The 

dimensionality detection outlined in this research hinges on KMO which is 

calculated for each homogeneous set. We observed that the larger the number 

of variables in a homogeneous set, the higher the KMO. This suggests that the 

threshold within the saturation point which accounts for the homogeneous set 

with the highest number of variables and a corresponding highest KMO 

should be the threshold that generates the optimal factor solution. We attempt 

to investigate this in the next table. 
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Table 7: Threshold Selection for Optimal Factor Solution 

SNrrhreshold No. of No. of variables KMO 
hom. Sets in hom. Set 

[1] 0.15 1 6 [1] 0.6995 

[2] 0.16 1 6 [[2]] 0.6995 

[3] 0.17 1 6 [[3]] 0.6995 

[4] 0.18 1 6 [[4]] 0.6995 

[5] 0.19 1 6 [[5]] 0.6995 

[6] 0.20 1 6 [[6]] 0.6995 

[7] 0.21 1 6 [[7]] 0.6995 

[8] 0.22 1 6 [[8]] 0.6995 

[9] 0.23 1 6 [[9]] 0.6995 

[10] 0.24 1 6 [[10]]0.6995 

[11]0.25 1 6 [[11]] 0.6995 

[12] 0.26 1 6 [[12]] 0.6995 

[13] 0.27 1 6 [[13]] 0.6995 

[14] 0.28 1 6 [[14]] 0.6995 

[15]0.29 1 6 [[15]]] 0.6995 

[16] 0.30 1 6 [[16]] 0.6995 

[17] 0.31 1 6 [[17]]0.6995 

[18] 0.32 1 6 [[18]] 0.6995 

[19] 0.33 1 6 [[19]] 0.6995 

[20] 0.34 1 6 [[20]] 0.6995 

[21]0.35 1 6 [[21]] 0.6995 

[22] 0.36 1 6 [[22]] 0.6995 

[23] 0.37 1 6 [[23]] 0.6995 

[24] 0.38 1 6 [[24]] 0.6995 

[25] 0.39 1 6 [[25]] 0.6995 
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[26] 0.40 1 6 [[26]] 0.6995 

[27] 0.41 1 5 [[27]] 0.6995 

[28] 0.42 1 5 [[28]]] 0.7571 

[29] 0.43 1 5 [[29]] 0.7571 

[30] 0.44 1 5 [[30]] 0.7571 

[31]0.45 1 5 [[31]] 0.7571 

[32] 0.46 1 5 [[32]] 0.7571 

[33] 0.47 1 5 [[33]] 0.7571 

[34] 0.48 1 5 [[34]]0.7571 

[35] 0.49 1 5 [[35]] 0.7571 

[36] 0.50 1 5 [[36]] 0.7571 

[37] 0.51 1 5 [[37]] 0.7571 

[38] 0.52 1 5 [[38]] 0.7571 

[39] 0.53 1 5 [[39]] 0.7571 

[40] 0.54 1 5 [[40]] 0.7571 

[41] 0.55 1 5 [[41]] 0.7571 

[42] 0.56 1 5 [[42]] 0.7571 

[43] 0.57 1 5 [[43]] 0.7571 
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[44] 0.58 2 4,2 [[44]] 0.8587 0.5000 

[45] 0.59 2 4,2 [[45]] 0.8587 0.5000 

[46] 0.60 2 4,2 [[46]] 0.8587 0.5000 

[47] 0.61 2 4,2 [[47]] 0.8587 0.5000 

[48] 0.62 2 4,2 [[48]] 0.8587 0.5000 

[49,] 0.63 2 4,2 [[49]] 0.8587 0.5000 

[50] 0.64 2 4,2 [[50]]0.8587 0.5000 

[51] 0.65 2 4,2 [[51]] 0.8587 0.5000 

[52] 0.66 2 4,2 [[52]] 0.8587 0.5000 

[53] 0.67 2 4,2 [[53]] 0.8587 0.5000 

[54] 0.68 2 4,2 [[54]] 0.8587 0.5000 

[55] 0.69 2 4,2 [[55]] 0.8587 0.5000 

[56] 0.70 2 4,2 [[56]] 0.8587 0.5000 

[57] 0.71 2 4,2 [[57]] 0.8587 0.5000 

[58] 0.72 2 4,2 [[58]] 0.8587 0.5000 

[59] 0.73 2 4,2 [[59]] 0.8587 0.5000 

[60] 0.74 2 4,2 [[60]] 0.8587 0.5000 

[61] 0.75 2 4,2 [[61]] 0.8587 0.5000 

[62] 0.76 2 4,2 [[62]]0.8587 0.5000 

[63] 0.77 2 4,2 [[63]]] 0.8587 0.5000 

[64] 0.78 2 4,2 [[64]] 0.8587 0.5000 

[65] 0.79 2 4,2 [[65]] 0.8587 0.5000 
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[66] 0.80 2 4,2 [[66]] 0.8587 0.5000 

[67] 0.81 2 4,2 [[67]] 0.8587 0.5000 

[68] 0.82 2 4,2 [[68]]0.8587 0.5000 

[69] 0.83 2 4,2 [[69]] 0.8587 0.5000 

[70] 0.84 2 3,2 [[70]] 0.8587 0.5000 

[71] 0.85 2 3,2 [[71]] 0.7848 0.5000 

[72] 0.86 2 3,2 [[72]] 0.7848 0.5000 

[73] 0.87 2 3,2 [[73]] 0.7848 0.5000 

[74] 0.88 2 3,2 [[74]] 0.7848 0.5000 

[75] 0.89 2 3,2 [[75]] 0.7848 0.5000 

[76] 0.90 2 3,2 [[76] 0.7848 0.5000 

[77] 0.91 2 3,2 [[77]] 0.7848 0.5000 

[78] 0.92 2 3, 2 [[78] 0.7848 0.5000 

[79] 0.93 3 2,2,2 [[79]] 0.5 0.5 0.5-

[80] 0.94 3 2,2,2 [[80]] 0.5 0.5 0.5 

Source: Author's Construct (2022) 

As opposed to the earlier assertion that the threshold that accounts for 

the optimal factor solution should be the threshold with the homogenuous set 

that has the highest number of variables and a corresponding highest KMO, 

from the Table 7, it could be observed that all thresholds within the saturation 

point have homogeneous sets with the Same number of variables but not a 

unique highest KMO. This suggests that it is possible that none of these 

thresholds could generate an optimal factor solution. An attempt is 

subsequently made to show whether it is possible to use any of these 
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thresholds to generate an optimal factor solution for these data by carrying out 

a confirmatory factor analysis. 

Confirmatory Test of Model Adequacy for Dataset 1 

In this dataset, we first test the adequacy of the one-, two- and three 

factor models equivalent to one, two and three dimensions to determine which 

is the most suitable. As indicated earlier by our assessment, we suspect that 

each threshold within the saturation point could yield different factor 

solutions. Our aim here is to conduct a confirmatory factor analysis to justifY 

our assertions. 

Table 8: Significance test of Factor Solutions for Dataset 1 

Model 

1 

2 

3 

Chi-Square 

162.715 

117.114 

61.651 

Source: Author's Construct (2022) 

Df 

14 

8 

3 

Sig. 

0.000 

0.000 

0.000 

Since our highest number of dimensions for the data does not exceed 

three, it suggests a 3-factor solution. The confirmatory factor analysis is 

therefore carried out for a maximum of three factors. In Table 8, no specific 

factor solution is seen to fit the model due to the small p-values. This confirms 

that there is no unique homogeneous set that has the highest number of 

variables and hence no unique highest KMO. It implies that these data may not 

be practically suitable for factor extraction. 
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Table 9: Dimensionality Detection for Dataset 2 

Threshold No. of hom. Sets KMOS 

0.38 2 ([1]] 0.8242 0.5000 

0.39 2 [[2]] 0.7942 0.5000 

0.40 2 [[3]] 0.7942 0.5000 

0.41 3 ([4]] 0.8058 0.5000 0.5000 

0.42 3 [[5]] 0.8058 0.5000 0.5000 

0.43 3 ([6]] 0.8058 0.5000 0.5000 

0.44 3 ([7]] 0.8058 0.5000 0.5000 

0.45 3 [[8]] 0.8058 0.5000 0.5000 

0.46 3 [[9]] 0.8058 0.5000 0.5000 

0.47 3 ([10]] 0.8058 0.5000 0.5000 

0.48 3 [[11]] 0.8058 0.5000 0.5000 

0.49 3 [[12]] 0.8058 0.5000 0.5000 

0.50 3 [[13]] 0.8058 0.5000 0.5000 

0.51 3 [[14]] 0.8058 0.5000 0.5000 

0.52 3 [[15]] 0.8058 0.5000 0.5000 

0.53 3 [[16]] 0.8058 0.5000 0.5000 

0.54 3 [[17]] 0.8058 0.5000 0.5000 

0.55 3 [[18]] 0.8058 0.5000 0.5000 

0.56 3 [[19]] 0.8058 0.5000 0.5000 

0.57 3 [[20]] 0.8058 0.5000 0.5000 

0.58 3 [[21]] 0.8058 0.5000 0.5000 
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0.59 3 ([22]] 0.8058 0.5000 0.5000 

0.60 3 [[23]] 0.8058 0.5000 0.5000 

0.61 3 ([24]] 0.7202 0.5000 0.5000 

0.62 3 [[25]] 0.7202 0.50000.5000 

0.63 4 [[26]] 0.5 0.5 0.5 0.5 

0.64 4 ([27]] 0.5 0.5 0.5 0.5 

0.65 4 [[28]] 0.5 0.5 0.5 0.5 

0.66 4 [[29]] 0.5 0.5 0.5 0.5 

0.67 4 ([30]] 0.5 0.5 0.5 0.5 

0.68 4 [[31]] 0.5 0.5 0.5 0.5 

0.69 4 [[32]] 0.5 0.5 0.5 0.5 

0.70 4 [[33]] 0.5 0.5 0.5 0.5 

0.71 4 [[34]] 0.5 0.5 0.5 0.5 

0.72 4 [[35)] 0.5 0.5 0.5 0.5 

0.73 4 [[36]] 0.5 ()"S ()'.5 0.5 

0.74 4 [[37]] 0.5 0.5 0.5 0.5 

0.75 4 [[38]] 0.5 0.5 OS 0.5 

Author' s Contruct (2022) 

From Table 9 it is observed that the automated threshold setting 

generates series of thresholds, 38 in this case. The task is to allow the 

algorithm to detect the optimal threshold that is suitable for dimensionality 

detection for this dataset. Subsequently, the dimensionality detection 

algorithm generates homogenous set(s) for each threshold. The modified 
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automated KMO algorithm is then used to calculate the KMO for each 

homogeneous set. It is observed that ifthere are multiple homogenous sets for 

a particular threshold, the algorithm calculates the KMO for each homogenous 

set. For instance, for threshold 0.62, resulting in three homogeneous sets the 

algorithm calculates the KMO for each homogeneous set, namely, 0.7202, 0.5 

and 0.5, respectively. Since KMO is a measure of homogeneity the higher it is 

the better. So in a case where we have multiple KMOs, we pick the highest. 

We then generate a graph of the KMOs against the thresholds to 

determine either a unique optimal threshold or a saturation point, if any. 
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Figure 2: Sensitivity Analysis ofImplementation Based on Dataset 2 

The graph in Figure 2 shows that there is a saturation point between 

0.42 and 0.63. However, the range does not contain the highest KMO 

(0.8242). It could therefore be observed that a threshold of 0.38 is the unique 

optimal threshold for dimensionality detection for this dataset since it 

corresponds to the highest KMO (0.8242). 
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Threshold Selection for Optimal Factor Solution 

If there is a unique optimal threshold for dimensionality detection for a 

dataset as demonstrated in Dataset 2, then this threshold should automatically 

give the optimal factor solution. We proceed to confirm this and also perform 

a confirmatory factor analysis. We attempt to show that the highest KMO is 

the one that corresponds to the homogeneous set with the highest number of 

variables and that the threshold for this particular homogeneous set should be 

the threshold that generates the optimal factor solution. In Table 10, the 

specific number of variables in each homogenuous set is provided along with 

the respective KMO. 

Table 10: Threshold Selection for Optimal Factor Solution Based on 

Dataset 2 

Threshold No. of hom. Sets No. of variables KMO 
in hom. Sets 

0.38 6 0.8242 
2 

2 0.5000 

0.39 5 0.7942 
2 

2 0.5000 

0040 5 0.7942 
2 

2 0.5000 

0041 4 0.8058 

3 2 0.5000 

2 0.5000 

0042 4 0.8058 

3 2 0.5000 

2 0.5000 

0043 4 0.8058 
3 

2 0.5000 
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2 0.5000 

0.44 4 0.8058 

3 2 0.5000 

2 0.5000 

0.45 4 0.8058 

3 2 0.5000 

2 0.5000 

0.46 4 0.8058 

3 2 0.5000 

2 0.5000 

0.47 4 0.8058 

3 2 0.5000 

2 0.5000 

0.48 4 0.8058 

3 2 0.5000 

2 0.5000 

0.49 4 0.8058 

3 2 0.5000 

2 0.5000 

0.50 4 0.8058 

3 2 0.5000 

2 0.5000 

0.51 4 0.8058 

3 2 0.5000 

2 0.5000 

0.52 4 0.8058 

3 2 0.5000 

2 0.5000 

0.53 4 0.8058 

3 2 0.5000 

2 0.5000 
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0.54 4 0.8058 

3 2 0.5000 

2 0.5000 

0.55 4 0.8058 

3 2 0.5000 

2 0.5000 

0.56 4 0.8058 

3 2 0.5000 

2 0.5000 

0.57 4 0.8058 

3 2 0.5000 

2 0.5000 

0.58 4 0.8058 

3 2 0.5000 

2 0.5000 

0.59 4 0.8058 

3 2 0.5000 

2 0.5000 

0.60 4 0.&058 

3 2 0.5000 

2 0.5000 

0.61 3 0.7202 

3 2 0.5000 

2 0.5000 

0.62 3 0.7202 

3 2 0.5000 

2 0.5000 

0.63 2 0.5000 
4 

2 0.5000 
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2 0.5000 

2 0.5000 

0.64 2 0.5000 

2 0.5000 
4 

2 0.5000 

2 0.5000 

0.65 4 2 0.5 

2 0.5 

2 0.5 

2 0.5 

0.66 4 2 0.5 

2 0.5 

2 0.5 

2 0.5 

0.67 4 2 0.5 

2 0.5 

2 0.5 

2 0.5 

0.68 4 2 0.5 

2 0.5 

2 0.5 

2 0.5 

0.69 4 2 0.5 

2 0.5 

2 0.5 

2 0.5 

0.70 4 2 0.5 

2 0.5 

2 0.5 

2 0.5 
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0.71 4 2 0.5 

2 0.5 

2 0.5 

2 0.5 

0.72 4 2 0.5 

2 0.5 

2 0.5 

2 0.5 

0.73 4 2 0.5 

2 0.5 

2 0.5 

2 0.5 

0.74 4 2 0.5 

2 0.5 

2 0.5 

2 0.5 

0.75 4 2 0.5 

2 0.5 

2 0.5 

2 0.5 

Source: Author's Construct (2022) 

Table 10 displays the various thresholds, their corresponding 

homogeneous sets, number of variables in each homogenous set and 

corresponding KMOs. 

From Table 10 it could be observed that a threshold of 0.38, 

corresponding to a homogenous set with the highest number of variables (6) 

has the highest KMO making it the threshold that generates the optimal factor 

solution for Dataset 2 as suspected earlier. Though the two homogeneous sets 
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both have the same threshold, the KMO for the entire data set (0.822) shows 

that the required homogeneous set is the one whose KMO is equal to or 

greater than the full KMO. 

Confirmatory Test of Model Adequacy for Dataset 2 

It is indicated earlier that the second confirmatory test to verify our 

assertion that if a dataset generates an optimal threshold for dimensionality 

detection, then this threshold should automatically yield an optimal factor 

solution based on a confirmatory factor analysis test. 

In this dataset, we first test the adequacy of the one-, two, three and 

four factor models equivalent to one, two, three and four dimensions to 

determine which is the most suitable. 

Table 11: Significance Test of Factor Solutions for Dataset 2 

Model Chi-Square Df Sig. 

I 41.949 27 0.033 

2 18.505 19 OA89 

3 10.144 12 0.603 

4 2.584 6 0.859 

Source: Author's Construct (2022) 

Table 11 shows the best possible fitting factor solutions that can be 

obtained for Dataset 2. Model 2 is the least-fitting factor solution since the p

value begins to get greater than 0.05 with a two-factor solution model. It also 

shows that factor solutions containing two factors or more are all suitable. The 

question now is: which factor solution is optimal? The results based on our 

algorithm (Table 10) indicates that the two factor solution would be the best 
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since it contains a homogenous set with the highest number of variables. This 

is in line with our earlier results. 

Dimensionality Detection based on Order Statistics 

It is intimated in our objective that works done in earlier research do 

not investigate the robustness of their method to other correlation profiles as 

only Pearson's Correlation is used. Statistically the variance-covariance matrix 

of the Pearson's correlation hinges on the mean which is affected by extreme 

values. So, an attempt is made to test the robustness of the algorithm using 

another correlation profile which hinges on a statistic which is not affected by 

extreme values. In this study we make use of the order statistic, which hinges 

on the median. Here the values of the p variables are ordered. A correlation 

matrix is then generated for these ordered variables. 

Order Statistics Algorithm Procedure 

The algorithm generates the correlation matrix for p variables, 

Xl> X2 ,X3, •.• , xp and returns the order statistics for the variables 

X(1), X(2) ,X(3)' ... , xCp). Meaning the sample values placed in ascending 

order. X(1), XC2}' X(3)' ... , x(p) is the set of ordered values form the original 

sample values. The correlation matrix is then generated for these ordered 

variables. The dimensionality detection algorithm is then applied to detect 

dimensionality for the dataset. 
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Table 12: Order Statistic Implementation 

SNffhreshold No. of hom. KMO 
Sets 

[1]0.31 1 [1] 0.6995 
[2] 0.32 1 [[2] 0.6995 
[3] 0.33 1 [[3] 0.6995 
[4] 0.34 1 [4] 0.6995 
[5] 0.35 1 [[5] 0.6995 
[6] 0.36 1 [[6] 0.6995 
[7] 0.37 1 [[7]] 0.6995 
[8] 0.38 1 [8]] 0.6995 
[9] 0.39 1 [9]] 0.6995 
[10] 0.40 1 [10] 0.6995 
[11] 0.41 1 [11] 0.6995 
[12] 0.42 1 [12] 0.6995 
[13] 0.43 1 [13] 0.6995 
[14] 0.44 1 [14] 0.6995 
[15] 0.45 1 [15] 0.7614 
[16] 0.46 1 [16] 0.7614 
[17] 0.47 1 [17] 0.7614 

[18] 0.48 1 [18] 0.7571 

[19] 0.49 [19] 0.7571 

[20] 0.50 1 [[20]] 0.7571 

[21] 0.51 2 [[21]] 0.8587 0.5000 

[22] 0.52 2 [[22} 0.8587 0.50(}(} 

[23] 0.53 2 [[23} 0.8587 0.5000 

[24] 0.54 2 [[24]] 0.8587 0.5000 

[25] 0.55 2- [[25]] 0.8587 0.5000 

[26] 0.56 2 [[26]] 0.8587 0.5000 

[27] 0.57 2 [[27]] 0.8587 0.5000 

[28] 0.58 2- [[28}f0.8587 0.5000 

[29] 0.59 2 [[29}] 0.8587 0.5000 

[30] 0.60 2 [30] 0.8587 0.5000 

[31] 0.61 2 [31] 0.8587 0.5000 

[32J 0:62 2 [32] 0.8587 0.5000 

[33] 0.63 2 [33] 0.8587 0.5000 

[3.4] 0.64 2 [34] 0.8587 0.5000-

[35] 0.65 2 [35] 0.8587 0.5000 

[36] 0.66 2 [36] 0.8587 0.5000 

[37] 0.67 2 [37] 0.8587 0.5000 

[38] 0.68 2 [38] 0.8587 0.5000 
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[39] 0.69 2 [39] 0.8587 0.5000 
[40] 0.70 2 [40] 0.8587 0.5000 

[41] 0.71 2 [41] 0.8587 0.5000 
[42] 0.72 2 [42] 0.8587 0.5000 

[43] 0.73 2 [43] 0.8587 0.5000 

[44] 0.74 2 [44] 0.8587 0.5000 

[45] 0.75 2 [45] 0.8587 0.5000 

[46] 0.76 2 [46] 0.8587 0.5000 

[47] 0.77 2 [47] 0.8587 0.5000 

[48] 0.78 2 [48] 0.8587 0.5000 

[49] 0.79 2 [49] 0.8587 0.5000 

[50] 0.80 2 [50] 0.8587 0.5000 

[51] 0.81 2 [51] 0.8587 0.5000 

[52] 0.82 2 [52] 0.8587 0.5000 

[53] 0.83 2 [53] 0.8587 0.5000 

[54] 0.84 2 [54] 0.8587 0.5000 

[55] 0.85 2 [55] 0.7848 0.5000 

[56] 0.86 2 [56] 0.7848 0.5000 

[57] 0.87 2 [57] 0.7848 0.5000 

[58] 0.88 2 [58] 0.7848 0.5000 

[59] 0.89 2 [59] 0.7848 0.5000 

[60] 0.90 3 [60] 0.5 0.5 0.5 

[61] 0.91 3 [61] 0.5 0.5 0.5 

[62] 0.92 3 [62] 0.5 0.5 0.5 

[63] 0.93 3 [63] 0.5 0.5 0.5 

[64] 0.94 3 [64] 0.5 0.5 0.5-

Source: Author's Construct (2022) 

Table 12 shows series of threshold generated using the automated 

threshold setting outlined early on. The Dimensionality detection algorithm 

generates homogeneous set(s) for each threshold. The KMO algorithm 

calculates the KMO for each homogeneous set. In case a threshold generates 

multiple homogeneous sets and corresponding multiple KMOs we choose the 
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highest. This is because KMO is measure of homogeneity so the higher it is 

the better it is. We graph the KMO'S against the thresholds to determine either 

a unique optimal threshold or the saturation point if any. 
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Figure 3: Sensitivity Analysis for Dataset I Based on Order Statistic profile 

0.9 

The graphs in Figure 3· show a plot of KMOs against the correspond 

thresholds. It could be observed that the saturation point for all three graphs lie 

within 0.6 and 0.85 inclusive meaning any threshold within this range could be 

the optimal threshold for dimensionality detection for this dataset. This is also 

supported by the highest KMOs. 

Since similar results were obtained for Pearson's corelation, this 

establishes the robustness of the method to other correlation profiles that hinge 
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on the median. It is also observed that the results show that the same number 

of variables in each homogenous set for each cut-off for both the Pearson's 

correlation and order statistics. This also establishes that the method is not 

sensitive to the correlation profile used. 

Robustness of Method using a Reduced Dataset 

The dimensionality detection method outlined early on used a 

correlation profile which hinges on all the original variables in the dataset. 

Meaning we generated the corelation matrix using all the variables in the 

original dataset. For a dataset with extreme values, some extreme values may 

not contribute prominently towards explaining the phenomenon under study. 

So it is important to control for those extreme values by selecting the k highest 

contributors. We then generate a correlation matrix for this reduced dataset for 

dimensionality detection. The idea is to compare the results for using a 

correlation profile that hinges on all the original variables in the dataset to the 

results of a correlation profile that hinges on the k highest contributors after 

controlling for extreme values. 

Original Data Layout 

Consider a set of p -variables and n observations. The data layout is 

given below. 

Table 13: Original Data Layout onp Variables 

Yi 
Yl1 
Y12 

Yin Y2n 
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To detennine the contributions of each of the p variables, we extract a 

feature from these variables that automatically controls for outliers based on 

probability distributions since this automatically controls for outlier. 

Figure 4: A Plot of Probability Distribution Function Values against the 

Variables 

Statistically, whenever we plot the probability distribution function 

values against the observations, we get the density plot as shown in Figure 4. 

Regardless of the nature of the distribution, the variables are ordered 

automatically so the mode is always found at the peak. Also, the median 

would divide the density in two equal halves. This means that values close to 

the tail of the distribution have smaller weights. From this, the variable that 

happens to be the median assumes the highest probability distribution value, in 

this case the highest probability density function value. Now it is observed 

from the diagram that Yl1f(Yl1)' Ylz!(Y12),· · ·, Ylnf(Yln) denote the mean of 

Yl1' Y12 , .•. Yln which is. their individual contributions towards the common 

center. Reason being statistically the kth moment about the origin is given by 
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E(yk) = {fykf(Y)dY, ycontinuous 
L.y yk f(y) , y discrete 

We set k =1 to get the first moment about the origin given by 

E(Y) = f y f(y)dy ,for y continuous 

(4.4) 

(4.5) 

This gives the mean of the distribution which gives information about 

the center of the distribution. Thus, yf(y) indicates the contribution of each 

variable towards the center. Also, the closer a variable is to the center, the 

higher its contribution towards the common center E(l'). It is therefore 

possible to identify the variables that contribute more based on their 

probability distribution values and then use these variables to generate the 

correlation profile as opposed to the use of all the original p variables. The 

Kernel Smoothing package in R is used to generate the probability distribution 

values. 

It is clear from Figure 4 that eachy has its own density value. We also 

observe that when the y is closer to the tail of the distribution, its density value 

is smaller but as it tends towards the center its density value increases. Based 

on these arguments we extract a feature T(y) = y fCy) where T(y) is the 

statistics and y fCy) is the contribution of each y towards the common center. 

The T(y) extracted is shown in Tablel4. 
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Table14: Data Layout of Extracted Feature T(y) 

Source: Author's Construct (2022) 

where t(Yij) = Yij[(Yij) , i = l, . . . ,p; j = l, ... ,n 

Now we order the columns of T(y) in order to select the k highest 

contributors based on the strength of their contribution and use the 70% 

training rule in Machine learning to select the k highest contributors. 

Mahanatesh (2020), intimated that in Machine learning 70% of the dataset 

should be used for training (to model) and 30% for testing (assessing the 

predictive performance of the model). Thus, the value of k is 0.7 times the 

size of the data. We then compute the correlation matrix for the reduced 

dataset, detect dimensionality for this reduced dataset and compare results 

with that of the full dataset. 
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Table 16: Dimensionality Detection for Reduced Dataset 1 

SNffhreshold No. of hom. Sets SNIKMO 

[1 ,] 0.22 [[I)) 0.7045 
[2,] 0.23 1 [[2)) 0.7045 
[3,] 0.24 1 [[3)) 0.7045 
[4,] 0.25 1 [[4)) 0.7045 
[5,] 0.26 [[5]] 0.7045 

[6,] 0.27 1 [[6)) 0.7045 

[7,] 0.28 [[7]] 0.7045 

[8,] 0.29 1 [[8]] 0.7045 

[9,] 0.30 1 [[9]] 0.7045 

[10,] 0.31 1 [[10]]0.7045 

[11,] 0.32 1 [[II]} 0.7045 

[12,] 0.33 [[12]] 0.7045 

[13,] 0.34 1 [[13]] 0.7045 

[14,] 0.35 1 [[14]] 0.7045 

[15,] 0.36 [[15]] 0.7045 

[16,] 0.37 1 [[16]] 0.7045-

[17,] 0.38 1 [[17]] 0.7045 

[18,] 0.39 1 [[18]] 0.7045-

[19,] 0.40 1 [[19]] 0.7045-

[20,] 0.41 1 [[20]] 0.7045 

[21,] 0.42 1 [[21] 0.7045-

[22,] 0.43 [[22]] 0.7712 

[23,] 0.44 [[23]] 0.7712 

[24,] 0.45 1 [[24]] 0.7712 

[25,] 0.46 [[25]] 0.7826 
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[26,] 0.47 

[27,] 0.48 

[28,] 0.49 

[29,] 0.50 

[30,] 0.51 

[31,] 0.52 

[32,] 0.53 

[33,] 0.54 

[34,] 0.55 

[35,] 0.56 

[36,] 0.57 

[37,] 0.58 

[38,] 0.59 

[39,] 0.60 

[40,] 0.61 

[41,] 0.62 

[42,] 0.63 

[43,] 0.64 

[44,] 0.65 

[45,] 0.66 

[46,] 0.67 

[47,] 0.68 

[48,] 0.69 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 
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[[26]] 0.7826 

[[27]] 0.7826 

[[28]] 0.7571 

[[29]] 0.7571 

[[30]]0.7571 

[[31]] 0.7571 

[[32]] 0.7571 

[[33]] 0.7571 

[[34]] 0.7571 

[[35]] 0.7571 

[[36]] 0.7571 

[[37]] 0.7571 

[[38]] 0.7571 

[[39]] 0.7571 

[[40]] 0.7571 

[[41]] 0.7571 

[[42]] 0.7571 

[[43]] 0.7826 

[[44]] 0.7826 

[[45]]0.83600.5000 

[[46]] 0.83600.5000 

[[47]] 0.83600.5000 

[[48]] 0.8360 0.5000 
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[49,] 0.70 2 [[49]] 0.8360 0.5000 

[50,] 0.71 2 [[50]] 0.8360 0.5000 

[51 ,] 0.72 2 [[51]] 0.83600.5000 

[52,] 0.73 2 [[52]] 0.8360 0.5000 

[53,] 0.74 2 [[53]] 0.8360 0.5000 

[54,] 0.75 2 [[54]] 0.8360 0.5000 

[55,] 0.76 2 [[55]] 0.8360 0.5000 

[56,] 0.77 2 [[56]] 0.8360 0.5000 

[57,] 0.78 2 [[57]] 0.8360 0.5000 

[58,] 0.79 2 [[58]] 0.8360 0.5000 

[59,] 0.80 2 [[59]] 0.8360 0.5000 

[60,] 0.81 2 [[60]] 0.83600.5000 

[61,] 0.82 2 [[61]] 0.83600.5000 

[62,] 0.83 2 [[62]] 0.83600.5000 

[63,] 0.84 2 [[63] 0.773 I 0.5000 

[64,] 0.85 2 [[64]] 0.7731 0.5000 

[65,J 0.86 2 [[65]] 0.7731 0.5000 

[66,J 0.87 2 [[66]] 0.7731 0.5000 

[67,J 0.88 2 [[67J 0.77310.5000 

[68,J 0.89 2 [[68]] 0.77310.5000 

[69,] 0.90 2 [[69]] 0.7731 0.5000 
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[70,] 0.91 2 [[70]] 0.7731 0.5000 

[71 ,] 0.92 3 [(71)) 0.5 0.5 0.5 

[72,] 0.93 3 [[72]]0.5 0.5 0.5 

[73,] 0.94 3 [(73)) 0.5 0.5 0.5 

[74,] 0.95 3 [[74)) 0.5 0.5 0.5 

[75,] 0.96 3 [(75)) 0.5 0.5 0.5 

Source: Author's Construct (2022) 

Table 16 shows series of thresholds generated using the automated 

threshold setting outlined early on. Now comparing the KMOs for the reduced 

dataset in Table 16 to that of the full dataset in Table 6 indicate higher KMOs 

for the reduced dataset. For instance, a threshold of 0.22 in the full data set has 

a KMO of 0.6995 whiles the same threshold of 0.22 for the reduced dataset 

has a KMO of 0.7045. Similar patterns are observed for other thresholds. This 

gives a glimpse of a more superior result ahead. We graph the KMO against 

the thresholds to determine either a unique optimal threshold or the saturation 

point, if any. 
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Figure 5: Sensitivity Analysis ofImplementation Based on Reduced Dataset 1 

The graph to the right shows the plot of KMOs against the 

corresponding thresholds for the reduced dataset. It could be observed that the 

saturation points for aJI three graphs lie within 0.65 and 0.85 inclusive 

meaning any threshold within this range could be the optimal threshold for 

dimensionality detection for this dataset. This is also supported by the highest 

KMOs. Though the number of dimensions generated by these thresholds 

remain the same for both the reduced and the fuJI datasets, the interval of 0.65 

and 0.85 for the reduced dataset (Graph to the right in Fig.5) is shorter as 

opposed to 0.6 and 0.85 (Graph to the left in Figure 5) inclusive for the full 

dataset. This makes the use of reduced dataset after controlling for extreme 
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values when detecting dimensionality computationally less expensive as 

opposed to the full dataset since it takes a shorter time to arrive at a shorter 

interval. We attempt to summarise the thresholds and highest KMO for both 

the full and reduced datasets in Table 17 to paint a clearer picture of the 

assertion. 

Table 17: Summary of Thresholds and Highest KMOs for Full and 

Reduced Datasets. 

Threshold for Threshold for Highest KMOs Highest KMOs for 
Full Dataset Reduced Dataset for Full Dataset Reduced Dataset 

[1] 0.15 [1] 0.22 [1] 0.6995 [1] 0.7045 

[2] 0.16 [2] 0.23 [2] 0.6995 [2] 0.7045 

[3] 0.17 [3] 0.24 [3] 0.6995 [3] 0.7045 

[4] 0.18 [4] 0.25 [4] 0.6995 [4] 0.7045 

[5] 0.19 [5] 0.26 [5] 0.6995 [5] 0.7045 

[6] 0.20 [6] 0.27 [6] 0.6995 [6] 0.7045 

[7] 0.21 [7] 0.28 [7] 0.6995 [7] 0.7045 

[8] 0.22 [8] 0.29 [8] 0.6995 [8] 0.7045 

[9] 0.23 [9] 0.30 [9] 0.6995 [9] 0.7045 

[10] 0.24 [10] 0.31 [10] 0.6995 [10) 0.7045 

[11] 0.25 [11] 0.32 [11] 0.6995 [11] 0.7045 

[12] 0.26 [12] 0.33 [12] 0.6995 [12] 0.7045 

[13] 0.27 [13] 0.34 [13] 0.6995 [13] 0.7045 

[14] 0.28 [14] 0.35 [14] 0.6995 [14] 0.7045 

[15] 0.29 [15] 0.36 [15] 0.6995 [15,] 0.7045 
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[16] 0.30 [16] 0.37 [16) 0.6995 [16] 0.7045 

[17] 0.31 [17] 0.38 [17) 0.6995 [17] 0.7045 

[18] 0.32 [18] 0.39 (18] 0.6995 [18] 0.7045 

[19] 0.33 [19] 0.40 [19] 0.6995 (19] 0.7045 

[20] 0.34 [20] 0.41 [20] 0.6995 [20] 0.7045 

[21] 0.35 [21] 0.42 [21] 0.6995 [21] 0.7045 

[22] 0.36 [22] 0.43 [22] 0.6995 [22] 0.7712 

[23] 0.37 [23] 0.44 [23] 0.6995 [23] 0.7712 

[24] 0.38 [24] 0.45 [24] 0.6995 [24] 0.7712 

[25] 0.39 [25] 0.46 [25] 0.6995 [25] 0.7826 

[26] 0.40 [26] 0.47 [26] 0.6995 [26] 0.7826 

[27] 0.41 [27] 0.48 [27] 0.6995 [27] 0.7826 

[28] 0.42 [28] 0.49 [28] 0.7571 [28] 0.7826 

[29] 0.43 [29] 0.50 [29] 0.7571 [29] 0.7826 

[30] 0.44 [30] 0.51 [30] 0.7571 [30] 0.7826 

[31] 0.45 [31] 0.52 [31] 0.7571 [31] 0.7826 

[32] 0.46 [32] 0.53 [32] 0.7571 [32] 0.7826 

[33] 0.47 [33] 0.54 [33] 0.7571 [33] 0.7826 

[34] 0.48 [34] 0.55 [34] 0.7571 [34] 0.7826 

[35] 0.49 [35] 0.56 [35] 0.7571 [35] 0.7826 

[36] 0.50 [36] 0.57 [36] 0.7571 [36] 0.7826 

[37] 0.51 [37] 0.58 [37] 0.7571 [37] 0.7826 

[38] 0.52 [38] 0.59 [38] 0.7571 [38] 0.7826 

[39] 0.53 [39] 0.60 [39] 0.7571 [39] 0.7826 
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[40] 0.54 [40]0.61 [40] 0.7571 [40] 0.7826 

[41]0.55 [41] 0.62 [41] 0.7571 [41] 0.7826 

[42] 0.56 [42] 0.63 [42] 0.7571 [42] 0.7826 

[43] 0.57 [43] 0.64 [43] 0.7571 [43] 0.7826 

[44] 0.58 [44] 0.65 [44] 0.8587 [44] 0.7826 

[45] 0.59 [45] 0.66 [45] 0.8587 [45] 0.8360 

[46] 0.60 [46] 0.67 [46] 0.8587 [46] 0.8360 

[47] 0.61 [47] 0.68 [47] 0.8587 [47] 0.8360 

[48] 0.62 [48] 0.69 [48] 0.8587 [48] 0.8360 

[49,] 0.63 [49] 0.70 [49] 0.8587 [49] 0.8360 

[50] 0.64 [50] 0.71 [50] 0.8587 [50] 0.8360 

[51]0.65 [51,] 0.72 [51] 0.8587 [51] 0.8360 

[52] 0.66 [52,] 0.73 [52] 0.8587 [52] 0.8360 

[53] 0.67 [53] 0.74 [53] 0.8587 [53] 0.8360 

[54] 0.68 [54] 0.75 [54] 0.8587 [54] 0.8360 

[55] 0.69 [55] 0.76 [55] 0.8587 [55] 0.8360 

[56] 0.70 [56] 0.77 [56] 0.8587 [56] 0.8360 

[57] 0.71 [57] 0.78 [57] 0.8587 [57] 0.8360 

[58] 0.72 [58] 0.79 [58] 0.8587 [58] 0.8360 

[59] 0.73 [59] 0.80 [59] 0.8587 [59] 0.8360 

[60] 0.74 [60] 0.81 [60] 0.8587 [60] 0.8360 

[61] 0.75 [61] 0.82 [61] 0.8587 [61] 0.8360 

[62] 0.76 [62] 0.83 [62] 0.8587 [62] 0.8360 

[63] 0.77 [63] 0.84 [63] 0.8587 [63] 0.7731 
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[64] 0.78 [64] 0.85 [64] 0.8587 [64] 0.7731 

[65] 0.79 [65] 0.86 [65] 0.8587 [65] 0.7731 

[66] 0.80 [66] 0.87 [66] 0.8587 [66] 0.7731 

[67] 0.81 [67] 0.88 [67] 0.8587 [67] 0.7731 

[68] 0.82 [68] 0.89 [68] 0.8587 [68] 0.7731 

[69] 0.83 [69] 0.90 [69] 0.8587 [69] 0.7731 

[70] 0.84 [70] 0.91 [70] 0.8587 [70] 0.7731 

[71] 0.85 [71] 0.92 [71] 0.7848 [71] 0.5000 

[72] 0.86 [72] 0.93 [72,] 0.7848 [72] 0.5000 

[73] 0.87 [73] 0.94 [73] 0.7848 [73] 0.5000 

[74] 0.88 [74] 0.95 [74] 0.7848 [74] 0.5000 

[75] 0.89 [75] 0.96 [75] 0.7848 [75] 0.5000 

[76] 0.90 [76] 0.7848 

[77] 0.91 [77] 0.7848 

[78] 0.92 [78] 0.7848 

[79] 0.93 [79] 0.5000 

[80] 0.94 [80] 0.500(} 

Source: Author' s Construct (2022) 

It could be observed from the table that the reduced dataset generated a 

smaller number of thresholds that is 75 as opposed to 80 thresholds for the full 

dataset. Also, the reduced dataset has higher KMOs than that of the full 

dataset. This is as a result of the selection of the k highest contributors rather 

than all variables in the full dataset. These observations resulted in a shorter 

saturation point for the reduced data set as opposed to a longer saturation point 

1 I 1 
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for a full dataset owing mainly to the control of extreme values in the reduced 

dataset. 

Implementation (for simulated data) 

Table 18 gives the result of the implementation of the procedure in the 

simulated data using Threshold Setting I . The results show that there is a 

highest KMO of 0.9643 corresponding to thresholds of 0.03 and 0.04. This 

shows that a highest KMO value is obtained at a very small cut-off value. It is 

however not clear the uniqueness of the highest KMO value. It requires an 

examination of the actual number of variables in the two homogeneous sets. In 

a large dataset such as this, this is quite cumbersome to present. It is quite 

clear that since multiple thresholds yield the same KMO value, the uniqueness 

of the value is not clearly determined. 
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Table 18: Dimensionality Detection for Simulated data 

Snffhreshold No. of hom. Sets KMO 

[1] 0.01 2 [1] 0.9582671 

[2] 0.02 2 [2] 0.9618571 

[3] 0.Q3 2 [3] 0.9642579 

[4] 0.04 2 [4] 0.9642579 

[5] 0.05 2 [5] 0.9627946 

[6] 0.06 2 [6] 0.9627946 

[7] 0.Q7 2 [7] 0.9627946 

[8] 0.08 2 [8] 0.9627946 

[9] 0.09 2 [9] 0.9619099 

[10] 0.10 2 [10] 0.9615578 

[11]0.11 3 [11] 0.9604512 

[12]0.12 3 [12] 0.9604512 

[13]0.13 3 [13] 0.9603667 

[14] 0.14 3 [14] 0.9591313 

[15] 0.15 3 [15] 0.9582347 

[16] 0.16 3 [16] 0.9582347 

[17] 0.17 3 [17] 0.9582347 

[18]0.18 3 [18] 0.9565589 

[19] 0.19 3 [19] 0.9565589 

[20] 0.20 3 [20] 0.9565589 

[21] 0.21 3 [21] 0.9505914 

[22] 0.22 4 [22] 0.9518408 
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[23] 0.23 4 [23] 0.9518408 

[24] 0.24 4 [24] 0.9405952 

[25] 0.25 4 [25] 0.9408441 

[26] 0.26 4 [26] 0.9408441 

[27] 0.27 4 [27] 0.9408441 

[28] 0.28 4 [28] 0.9408441 

[29] 0.29 4 [29] 0.9324921 

[30] 0.38 4 [30] 0.9132894 

[31] 0.39 4 [31] 0.9132894 

[32] 0040 5 [32] 0.9132894 

[33] 0041 5 [33] 0.9132894 

[34] 0042 5 [34] 0.9132894 

[35] 0.43 5 [35] 0.9132894 

[36] 0044 5 [36] 0.9132894 

[37] 0045 5 [37] 0.9132894 

[38] 0046 5 [38] 0.9132894 

[39] 0047 5 [39] 0.9132894 

[40J 0048 5 [40] 0.9132894 

[41J 0049 5 [41] 0.9132894 

[42J 0.50 2 [42] 0.9132894 

[43J 0.51 2 [43] 0.9132894 

[44] 0.52 2 [44] 0.9132894 

[45] 0.53 2 [45] 0.9132894 

[46] 0.60 5 [46] 0.9132894 
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[47] 0.61 5 [47] 0.9132894 

[48] 0.62 5 [48] 0.9132894 

[49] 0.63 5 [49] 0.9132894 

[50] 0.64 5 [50] 0.9132894 

[51] 0.65 5 [51] 0.9132894 

[52] 0.66 5 [52] 0.9132894 

[53] 0.67 5 [53] 0.9132894 

[54] 0.68 5 [54] 0.9132894 

[55] 0.69 5 [55] 0.9132894 

[56] 0.70 2 [56] 0.9132894 

[57] 0.71 2 [57] 0.9132894 

[58] 0.72 2 [58] 0.9132894 

[59] 0.73 2 [59] 0.9132894 

[60] 0.74 3 [60] 0.9132894 

[61] 0.75 6 [61] 0.9617736 

[62] 0.76 6 [62] 0.9607194 

[63] 0.77 6 [63] 0.9607194 

[64] 0.78 6 [64] 0.9607194 

[65] 0.79 7 [65] 0.9607194 

[66] 0.80 8 [66] 0.9607194 

[67] 0.81 10 [67] 0.9536611 

[68] 0.82 12 [68] 0.8691330 

[69] 0.83 12 [69] 0.8691330 

[70] 0.84 13 [70] 0.7693248 
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[71] 0.85 9 

Source: Author' s Construct (2022) 
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Figure 6: Sensitivity Analysis of Implementation Based on Simulated data 

Figure 6 shows that there is a saturation point between 0.75 and 0.80 

thresholds for all three threshold settings. However, it also clear that for the 

first two settings, there is another interval of much smaller thresholds that 

could also be examined for the highest KMO value. 

As anticipated, the simulated data present some complexity in the 

identification of the optimal threshold. It is therefore necessary to observe the 
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number of variables in each of the homogenous sets for each threshold. In 

Table 18, it is observed that thresholds of 0.03 and 0.04 have the highest KMO 

of 0.9643 and given by Threshold Setting I. This is a threshold that produces 

only two homogeneous sets. For Threshold Setting 3, the highest KMO 

(0.9618) corresponds to threshold value of 0.75 and produces six homogeeous 

sets. A plot of thresholds for the three settings against the number of 

homogeneous sets is given in Figure 7. 
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Figure 7: Plot of thresholds against number of homogeneous sets 

. th data involve large number of variables (30), it is clumsy to Smce e 

h t I number of variables for each homogeneous set. The result generate t e ac ua 

d Veals that an optimal threshold could be as small as 0.03, a from these ata re 
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value that may be t· II · . . . prac Ica y Impossible to be thought of by a subjective 

consideration. 

Remarks 4.2 

It is observed with the simulation that there are some threshold values 

from the settings that could not be used for the implementation as those values 

run into errors with the generation ofthe KMO from the associated correlation 

matrices. For example, with Threshold Setting 1, the following values has 

issues associated with correlation matrix: 0.30, 0.31, 0.32, 0.33, 0.34 ,0.35, 

0.36, 0.37, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59; with Threshold Setting 2, the 

following values have issues with the correlation matrix: 0.32, 0.56; and with 

Threshold Setting 3, the following values have issues: 0.54, 0.55, 0.56, 0.57, 

0.58, 0.59. 

Remarks 4.3 

The simulated dataset is obtained 9by Item Response Theory with 

underlying dimension of three. The approach presented here rather identifies 

two dimensions. This is not surprising as homogeneity of groupings in a 

simulated data may not be very well-defined as in real data. The difiiculty in 

constructing clear homogenous sets in such data might account for some 

thresholds that could not yield homogenous sets. 

Discussion 

The findings ofthis study shed light on some results in the literature. In 

the study (Benyi, 2018; Nkansah, 2018) of dimensionality on the Dataset 1 

and that carried out in this study, it is found that there is actually no significant 

d I · the correlation matrix, even though the dataset is dimension un er ymg 
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presented (Johnson & Wichern, 2009) apparently to demonstrate the concept 

of factor analysis Th' I" . . I . IS resu t IS mltla Iy observed from confirmatory factor 

analysis. In this study, it is further explained that the lack of significant 

d' " . 
unenslOn m the data IS as a result of the fact that there is no homogeneous set 

with a unique highest KMO. Even though the use of KMO is not a new 

concept, it is only by a structured approach such as the one presented in this 

study that could unravel the detailed effect of the data structure on its true 

dimensionality. 

The study on the simulated data has made interesting findings . It is 

observed that some threshold values may not generate homogeneous sets. This 

is an observation that is not noted in the literature. This means that it could be 

quite impractical to set a subjective cut-off value for certain datasets for the 

purpose of detecting dimensions. The study therefore affirms that to detect 

dimension in multivariate data, the way to go is to allow the data structure 

itself to determine its own threshold. 

Chapter Summary 

The chapter has focused on the implementation of the proposed 

dimensionality detection approach. It outlines a procedure for identifying the 

initial dimensionality in the data. The study of the formation of homogeneous 

groups in the dataset enables us to obtain preliminary understanding of the 

correlation structure of the data. The method starts with the determination of a 

data specific threshold as opposed to an experimenter-specific one, and then 

identifies a pair of indicators with the highest correlation that is at least equal 

to the threshold. This pair of variables forms the spanning set. All variables in 

the reduced dataset whose pairwise correlations with the variables in the 
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for these threshold . . . . 
S In an attempt to pick the optimal threshold sUitable for 

dimensionality detection for the data set. 

Also, for automated threshold setting two, the correlation profile used 

is the Pearson's correlation which is normally distributed. Statistically 

majority (about 97%) of the data points lie 3 standard deviations about the 

mean. This gives us 6 standard deviations, we add an allowance of 2 standard 

deviations to cater for the rest of the data points. The algorithm then uses a 

step value of the ratio of the range for the variance -covariance matrix to the 

resultant standard deviation to generate series of thresholds. This generated 38 

thresholds. The dimensionality detection algorithm is then used to generate 

homogeneous sets for each of these thresholds. Since multidimensionality is 

expected some thresholds yielded more than one homogeneous set. The KMO 

values are then calculated for each homogeneous set that corresponds to each 

threshold. Sensitivity analysis is then carried out for these thresholds in an 

attempt to pick the optimal threshold suitable for dimensionality detection for 

the data set. 

In addition, for automated threshold setting three, the procedure is 

based on Threshold setting 1. Statistically the variance- covariance matrix 

used which hinges on Pearson's correlation is symmetric. This makes the data 

points normally distributed. In view of this the algorithm determines the 

median for thresholds generated using automated Threshold Setting 1 and 

selects those thresholds that are at least the median. This is similar to the use 

of the lower triangular matrix of the variance-covariance matrix. The 

d
. . l·ty detection algorithm is then used to generate homogeneous sets ImenSlOna I 

for each of these thresholds. Since multidimensionality is expected, some 
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thresholds yield more th h 
. an one omogeneous set. The KMO values are then 

calculated for each h 
omogeneous set that corresponds to each threshold. 

Sensitivity analysis· th . 
IS en camed out for these thresholds in an attempt to 

pick the optimal threshold suitable for dimensionality detection for the data. 

The study discovers that for Dataset I, any threshold between 0.6 and 

0.85 could be used to detect dimensionality for this data since there is a 

resultant saturation point. Also, for Dataset 2, a unique threshold of 0.38 is 

discovered as being the optimal threshold for dimensionality detection for this 

data set. 

The study establishes that for data set I, there were two homogeneous 

sets indicating that two dimensions underlie the data. Also, for data set two, 

there were two homogeneous sets indicating that two dimensions underlie the 

data. The study also established that Data set I could not be practically 

suitable for factor extraction since the confirmatory factor analysis test for 

Model adequacy did not indicate any model fit for up to three factors 

equivalent to three dimensions. These fmdings were based on Pearson's 

correlation. 

The study. observed that for any dataset with an optimal unique 

threshold suitable for dimensionality detection, this threshold generates a 

unique homogeneous set with the highest number of indicators and the highest 

KMO. This is demonstrated using dataset 2. On the other hand, if the dataset is 

not able to generate a unique homogeneous set with the highest KMO and the 

highest number of indicators, it is likely that the determination of the 

dimensionality of this dataset could be a challenge. This is demonstrated in 

dataset 1. 
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Also, for a data t 'th se WI extreme values, some extreme values may not 

contribute prominently t d . . owar s explammg the phenomenon under study. So, it 

is important to control for those extreme values by selecting the k highest 

contributors. Kernel smoothing package in R is used to exclude extreme 

values in the dataset before dimensionality detection. The density function in 

R computes the values of the kernel density estimate, in our case the 

probability density values. Applying the plot function to an object created by 

density, in our case the observations will plot the estimate. This generates the 

probability distribution curve that reveals outliers. 

From the arguments above, the dimensionality detection results for the 

reduced data set generated a smaller number of thresholds that is 75 as 

opposed to 80 thresholds for the full dataset. Also, the reduced dataset has 

higher KMOs than that of the full. This is as a result of the selection of the k 

highest contributors rather than all variables in the full dataset. These 

observations resulted in a shorter saturation point of 0.65 and 0.85 inclusive 

for the reduced data set as opposed to a longer saturation point of about 0.6 

and 0.85 for the full dataset owing mainly to the control of extreme values in a 

reduced dataset. This renders the use of reduced dataset after controlling for 

extreme values when detecting dimensionality computationally less expensive 

as opposed to the use of the full dataset since it takes a shorter time to arrive at 

a shorter interval. 

The study investigated the robustness of the proposed dimensionality 

detection method by using order statistic correlation profile which hinges on 

the median as opposed to Pearson's correlation which hinges on the mean. The 
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algorithm converged in both cases since similar results for Pearson's 

correlation were obtained. 
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CHAPTER FIVE 

SUMMARy CONCLUSIONS AND RECOMMENDATIONS 

This chapter presents the summary of the entire work. It highlights the 

main findings in all th d· e precee mg chapters. It then presents the conclusion to 

the study and prescribes recommendations based on the key findings of the 

study. 

Summary 

The purpose of this study is to propose an automated threshold method 

for detecting dimensionality in a multivariate dataset which would serve as the 

basis for the application of the well-known statistical tools for purposes of 

interpreting a multivariate dataset. The underlisted are the major findings from 

the study. 

Automated Threshold Setting for Dimensionality Detection 

Earlier researchers conducted research that explored a systematic 

approach that determines the initial dimensionality of the dataset. However, 

these researchers used an experimenter specific threshold which is a threshold 

based on the judgement of the experimenter for their studies which may lead 

to misleading results. Our study proposed three automated threshold setting 

using an automated algorithm that generates a data specific threshold by 

allowing the data structure to generate the optimal threshold for detecting 

dimensionality ofthe multivariate data set for more accurate results. 

For automated threshold setting 1, the algorithm picks the lowest 

pairwise correlation in the variance covariance matrix, generates series of 

thresholds using a step value of 0.01 until all thresholds in the variance 
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covariance matrix are accommodated. The dimensionality detection algorithm 

is then used to generate homogeneous sets for each of these thresholds. Since 

multidimensionality . d . 
IS expecte some thresholds Yielded more than one 

homogeneous set. The KMO values are then calculated for each homogeneous 

set that corresponds to each threshold. Sensitivity analysis is then carried out 

for these thresholds in an attempt to pick the optimal threshold suitable for 

dimensionality detection for the data set. 

Also, for automated threshold setting two, the correlation profile used 

IS the Pearson's correlation which is normally distributed. Statistically 

majority (about 97%) of the data points lie 3 standard deviations. about the 

mean. This gives us 6 standard deviations, we add an allowance of 2 standard 

deviations to cater for the rest of the data points. The algorithm then uses a 

step value of the ratio of the range for the variance -covariance matrix to the 

resultant standard deviation to generate series of thresholds. This generated 38 

thresholds. The dimensionality detection algorithm is then used to generate 

homogeneous sets for each of these thresholds. Since multidimensionality is 

expected some thresholds yielded more than one homogeneous set. The KMO 

values are then calculated for each homogeneous set that corresponds to each 

threshold. Sensitivity analysis is then carried out for these thresholds in an 

attempt to pick the optimal threshold suitable for dimensionality detection for 

the data set. 

In addition, for automated threshold setting three, the procedure IS 

based on Threshold setting 1. Statistically the variance- covariance matrix 

used which hinges on Pearson's correlation is symmetric. This makes the data 

d· tr'b ted In view of this the algorithm determines the 
points normally IS I U • 
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median for thresholds generated 
using automated threshold setting I and 

selects those threshold th 
s at are at least the median. This is similar to the usage 

of the lower triangul· . ar matrIx of the vanance covariance matrix. The 

dimensionality detect" I . h . Ion a gont m IS then used to generate homogeneous sets 

for each of these thresholds. Since multidimensionality is expected some 

thresholds yielded more than one homogeneous set. The KMO values are then 

calculated for each homogeneous set that corresponds to each threshold. 

Sensitivity analysis is then carried out for these thresholds in an attempt to 

pick the optimal threshold suitable for dimensionality detection for the data 

set. 

The study discovered that for data set 1, any threshold between 0.6 and 

0.85 could be used to detect dimensionality for this data set since there was a 

resultant saturation point. Also, for data set two, a unique threshold of 0.38 

was discovered as being the optimal threshold for dimensionality detection for 

this data set. 

Dimensionality Detection Method 

Statistical applications such as factor analysis, principal component 

analysis are method dependent applications used by statisticians to interpret 

multivariate data. However, these applications are not able to determine 

whether data is dimensionless or not prior to their application. Our study 

d automated method independent dimensionality detection propose an 

approach that could be used by statisticians to have a prior knowledge of the 

. . I·ty f a dataset before subsequent applications of these statistical 
dlmenslOna I 0 

. tation Our approach also helps the researcher to generate 
tools for mterpre . 

mUltiple homogeneous sets for a threshold that results in multiple 
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homogeneous making . 
It suitable for both unidimensional and 

multidimensional multivariate data. 

The study established that for Dataset I, there were two homogeneous 

sets indicating that tw d" . o ImenSlOns underlie the data. Also, for dataset two, 

there were two homogeneous sets indicating that two dimensions underlie the 

data. The study also established that Dataset 1 could not be practically suitable 

for factor extraction since the confirmatory factor analysis test for Model 

adequacy did not indicate any model fit for up to three factors equivalent to 

three dimensions. 

Robustness of the Dimensionality Detection method to other Correlation 

Profiles 

Previous researchers who attempted dimensionality detection did not 

investigate the robustness of the method to other correlation profiles since 

only Pearson's correlation which hinges on the mean was employed. Our 

study filled this gap by applying the Algorithm to other correlation profiles 

that hinge on the median specifically order statistic. The Algorithm converged 

in all cases indicating the robustness of the method to another correlation 

profile that hinges on the median specifically order statistic. 

The study discovered that for dataset I, any threshold between 0.6 and 

0.85 could be used to detect dimensionality for this data set since there was a 

resultant saturation point. Also, for dataset two, a unique threshold of 0.38 was 

discovered as being the optimal threshold for dimensionality detection for this 

dataset. 
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Robustness of the Dimensionality Detection method using a reduced 

Dataset 

Previous results of th ' I · ' . .. . e Imp ementatlOn of the dlmenslOnaltty detection 

method used a correlatio fil h' h . . . . n pro lew IC hmges on all the ongmal vanables in 

the data set Meaning th I " . . . e core atlOn matnx generated used all the vanables ill 

the original dataset. For a dataset with extreme values, some extreme values 

may not contribute prominently towards explaining the phenomenon under 

study. So, it is important to control for those extreme values by selecting the k 

highest contributors, then generate a correlation matrix for this reduced dataset 

for dimensionality detection. The idea is to compare the results for using a 

correlation profile that hinges on all the original variables in the data set to the 

results of a correlation profile that hinges on the k highest contributors after 

controlling for extreme values. For our work, using, the dimensionality 

detection results for the reduced dataset generated a smaller number of 

thresholds that is 75 as opposed to 80 thresholds for the full dataset. Also, the 

reduced dataset has higher KMOs than that of the full. This is as a result of the 

selection of the k highest contributors rather than all variables in the full 

dataset These observations resulted in a shorter saturation point of 0.65 and 

0.85 inclusive for the reduced data set as opposed to a longer saturation point 

of about 0.6 and 0.85 for the full dataset owing mainly to the control of 

extreme values in a reduced data set. 

This renders the use of reduced dataset after controlling for extreme 

h d tect'lng dimensionality computationally less expensive as 
values w en e 

h 
ofthe full dataset since it takes a shorter time to arrive at a 

opposed to t e use 

shorter interval. 
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Automated Modified KMO AI . gOrlthm 

Our study mod'fi d d 
I Ie an automated the KMO algorithm that allows the 

researcher to examine th . 
e ratio of partial correlations to zero order 

correlations This alg 'thrn I . on a so has the capacity to calculate the KMO for 

multiple homogeneou t Th' . s se s. IS comes In handy for statisticians who wish to 

examine these relations AI h . . so, our tec mque allows the researcher to resolve a 

KMO value outside the stipulated range by examining the features of those 

variables in the h omogenous set whose KMO returned values outside the 

range. 

Conclusions 

Multivariate methods such as principal component analysis and factor 

Analysis have been used to interpret multivariate data. However, these 

statistical applications are not able to determine prior to their application 

whether a dimension exist within the multivariate data set since it is possible 

to have a dimensionless multi\:'ariate dataset. In addition, these statistical 

applications are method dependent, so it imperative to propose a method 

independent technique for detecting dimensionality using automated threshold 

settings which are thresholds generated based on the structure of the data and 

not the judgement ofthe researcher so that these statistical applications will be 

for purposes of interpretation or giving meaning to the data structure. Also, the 

formation of dimensionality in the well-known multivariate techniques is not 

analytically or computationally presented. They therefore offer a leave-or-take 

result with no understanding of the formation of the dimensions. This study 

d h· ap by successfully proposing a method independent 
therefore fille t IS g 
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dimensionality detect" th d . . 
IOn me 0 usmg three automated threshold settmgs that 

generate data specific thresholds by allowing the data structure to generate the 

optimal threshold for detecting dimensionality of the multivariate data set for 

more accurate results. The study also established the robustness of the method 

using Pearson's correlation which hinges on the mean and another correlation 

profile that does not hinge on a statistic which is affected by extreme values, 

in this case order statistic which hinges on the median. The algorithm 

converged in all cases. Confirmatory factor analysis are carried out for 

confirmation of results. 

Recommendations 

The proposed approach for dimensionality detection shows it is 

threshold sensitive. It is therefore reasonable to allow the data structure to 

generate its own optimal threshold suitable for dimensionality detection. This 

will guide a reasonable application of relevant multivariate techniques on the 

data. 

Also, the proposed method completely removes the challenge of 

d W·tth dimensionality detection, and hence is highly subjectivity associate 

recommended. 
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APPENDICES 

APPENDIX A 

DIMENSIONALITY DETECTION CODES - PEARSON'S 

CORRELATION APPROACH 

#'======================== 

#Dimension detection in 

#Multivariate datasets 

#!=================== 

library(mvtnonn) 

library(MASS) 

library(pscl) 

library(Matrix) 

library(foreign) 

Dim _ Detector<-function(Mdata,thold=O .5) { 

#Function to compute correlation matrix 

Corrv<-function(mdata) { 

Connat<-matrix(O,dim(mdata)[2],dim(mdata)[2]) 

for(i in 1: dim(Connat)[I]){ 

forU in I :dim(Connat)[2]){ 

Connat[ij]<-cor(mdata[,i],mdata[j]) 

} 

} 

Connat 
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} 

#======================= 

#Function to select first 

#Spanning set based on 

#Correlation Coefficient 

#====================== 

Span _ set<-function(xmat){ 

max_ val<-max(xmat) 

stvl<-function(x,max_ v){ 

ifelse(x=max _v, 1 ,0) 

} 

Rid<-Iapply( se~len( dim(xmat)[ 1 ]),function(i) { 

stv<-stvl(xmat[i,],max_ val) 

ld<-which( stv= 1 ) 

c(i,ld) 

}) 

#Sr<-NULL 

Is_len<-unlist(1apply(se~len(length(Rid» ,functionO){ 

Vecx<-as. vector(Rid[[j]]) 

sl<-length(Vecx) 

sl})) 

#if(any(1sJen=2»){ 
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S<-Rid[[ which(ls _len=2)]] 

S<-c(S[2],S[l ]) 

#}else{ 

#break 

#} 

S} 

#--------------------------

Vbind<-function(X,y){ 

#======================== 

#Function to combine vectors of 

#different lengths 

#========================= 

m bind<-function( x,y.) { 

slab<-NULL 

a<-dim(x)[ 1 ];b<-Iength(y) 

if(a=b) {slab<-cbind(x,y)} 

if(a>b){slab<-

cbind(x, y=c(y, rep(NA,(a-b)))) 

} 

slab 

} 
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#========================== 

#Function to combine vectors of 

#different lengths 

#========================== 

sbind<-function(x,y){ 

slab<-NULL 

a<-length(x);b<-length(y) 

if(a=b) {slab<-cbind(x,y)} 

if(a>b){slab<-

cbind(x, y=c(y, rep(NA,(a-b)))) 

} 

if(a<b){ slab<-cbind(y, x=c(x, rep(NA,(b-a)))) 

} 

slab 

} 

sfit<-NULL 

if(length(X)=O){ sfit<-sbind(X,y)} else { 

if(length(X» 1 & is.matrix(X)="TRUE"){ 

sfit<-mbind(X,y) 

} 

} 

sfit} 
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Foutput<-function(rrnat){ 

Dresult<-sapply(se~len(dim(rrnat)[2]),function(i){ 

rrnat[,i]} ) 

Dresult} 

#=========================== 

#Updating spanning function 

#Based on pairwise Correlation 

#=========================== 

CompwS<-function(S _index, Cor _ Mat,thold) { 

Sxupdator<-function(Sx _ set,x _ dex,Cor _ mat,thold){ 

pwcr<-unlist(lapply(se~len(length(Sx_set» ,function(i){ 

Crr<-c(Cor_mat[Sx_set[i},x_dex},Cor_mat[x_dex,Sx_set[i]}) 

rr<-which(CII 0) 

Drr<-Crr[-rr] 

Drr 

}» 

if( all(pwcr>=thold)="TRUE"){ 

Sx _set<-c(Sx_ set,x _ dex)} else{ Sx_ set<-Sx _set} 

Sx_set} 

N<-dim(Cor _ Mat) [2] 
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m<-seCLlen(N)[ -S _index] 

New set<-S index - -

for(i in 1 :Iength(m»{ 

NS<-Sxupdator(New _ set,m[i],Cor _ Mat,thold) 

New set<-NS 

} 

Hset<-New _ set;Nhset<-seCLlen(N)[ -Hset] 

list(Hset=Hset,Nhset=Nhset) } 

#Start sequential updating 

tol<-2 

elab<-eolnames( data.frame(Mdata» 

Sreeord<-NULL 

eount<-O 

Cmat<-Corrv(Mdata) 

if(any(Cmat<O)="TRVE"){ 

Cmat<-abs(Cmat) }else { 

Cmat<-Cmat} 

ermat<-as.matrix(tril(Cmat»;diag(ermat)<-O 

d<-dim( ermat)[2) 

lnhset<-d 

Nlab<-seCLlen( d) 

S<-Span _set( ermat) 

while(lnhset>tol){ 

eount<-eount+ I 

fit<-CompwS(S,ermat,thold) 
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hset<-fit$Hset 

nhset<-fit$~set 

mlab<-clab[hset] 

rlab<-clab[ -hset] 

Srecord<-Vbind(Srecord,mlab) 

Rcrmat<-crmat[ -hset, -hset] 

NHset<-rlab 

if(is.matrix(Rcrmat)="F ALSE"){ 

break 

} 

S_new<-Span_set(Rcrmat) 

S<-S _ new;crmat<-Rcnnat 

c1ab<-r1ab 

Inhset<-Iength(nhset) 

cat( count,lnhset,S,mlab, "\n ") 

} 

if( count> 1 & Inhset<tol){ 

cat("Algorithm failed to converge II ,"\n") 

retum(NULL) 

}else{ cat("Algorithm coverged","\n") 

list(Srecord=Srecord,NHset=NHset) } 

} 

#-----------------------------------
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Screen_result<-function(mat_result){ 

#======================== 

#Comment 

# This function takes mat with 

#NAs, remove the NAs with 

#reconstruction based on 

#content of the original 

#matrix. 

#=======,======,==== 

RemovNA<-function(x){ 

x[!is.na(x)] 

} 

Replace<-function(x}{ 

ifelse( is.na(x)="TRUE",O,x) 

} 

Zero Jm<-function(x}{ 

x[-which(x=O)] 

} 

MatRed<-function(mat){ 

fx<-function(x}{ 

ifelse(all(x=O)="TRUE",l,O)} 

nd<-as. vector( apply(mat,2,fx)) 
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Nmat<-mat[,-which(nd=I)] 

Nmat} 

Rlist<-function(Mmat) { 

Ttf<-function(ylist){ 

vv<-NULL 

if(any(ylist O)){vv<-Zero_nn(ylist)}else{vv<-ylistO} 

vv 

} 

if(is.matrix(Mmat)="TRUE") { 

rIist<-apply(Mmat,2,list) 

fresult<-lapply(seCLlen(length(rlist)),functionU){ 

vv<-NULL 

tts<-unlist(rlist[O]]) 

if( any(tts=O)){ vv<-Zero _ nn(tts)} else{ vv<-ttsO} 

}) 

} 

if(is.vector(Mmat)="TRUE"){ 

fresult<-Ttf(Mmat) 

} 

fresult} 
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11========,=============== 

#eal! 

#------

smat<-Replace(mat_result) 

mmat<-MatRed(smat) 

Fresult<-Rlist(mmat) 

Fresult} 

11----------------------------

Data.names<-function(Data Jrame,rlist) { 

Data Jrame<-if(is.data.frame(Data Jrame )=nF ALSEn) { 

Data Jrame<-data.frame(Data Jrame) 

}else{Data_frame<-DataJrame} 

n.set<-names(Data _frame) 

xsame<-function(x,y){ 

which(x y)} 

smvec<-function(xdata,ystand) { 

ufit<-unlist(lapply(se~len(length(xdata)),function(i){ 

xsame(ystand,xdata[i)) 

})) 

ufit 
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} 

data __ var<-Iapp Iy( seqJen(length( rI ist) ),functionG) { 

smvec(rlist[O]],n.set) } 

) 

Hdata<-sapply( se~ len(length( data __ var) ),function( t) { 

Data Jrame[,data __ var[[t]]] 

}) 

I ist( data __ var=data __ var,Hdata=Hdata)} 

#-----------------------------------------------------

#Algorithm to compute KMO of a Multivariate dataset 

#----------------------------------------------------

KMO __ Val<-function(mdata){ 

#!=================== 

#Comments: 

#This function computes 

#the KMO ofa multivariate 

#data 

#------------------------

R <-cor( as.matrix(mdata» 

Qmat<-function(Rm) { 
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RI<-solve(Rm) 

Dm<-(sqrt(diag(diag(RI)))) 

Dr<-solve(Dm) 

Q<-(Dr%*%RI)%*%Dr 

Q} 

Q<-do.call(Qmat,list(R») 

#Function to compute 

Sr _ sq<-function(CMat) { 

rsq<-NULL 

for(i in 1 :dim(CMat)[l]){ 

forG in 1 :dim(CMat)[2]){ 

if(i<j){ 

rsq<-cbind(rsq,CMat[ij]) 

} 

}} 

Rsq<-sum( as. vector( rsq)"2) 

Rsq 

} 

Sum ....R.sq<-Sr _ sq(R) 

Sum]r _ sq<-Sr _ sq(Q) 
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KMO<-lI(l+(Sum]r_sq/Sum_Rsq)) 

KMO} 

#list(KMO=KMO,Sum_Rsq=Sum_Rsq,Sum]r_sq=Sum_Pr_sq,Q=Q,R=R 

)} 

#==============ENDOFALGOruTHM============= 

VData_KMO<-function(Mdata,resuIUist){ 

kmo _ oneH<-function(xdata) { 

km<-KMO _ Val(xdata) 

km} 

kmo _ twomore<-function(hdata _list) { 

lapply(hdata_list,KMO_ Val) 

} 

dkmo<-lapply(seCLlen(length(result_list)),function(i){ 

Rmat<-ScreenJesult(resuIUist[[i])$Srecord) 

HData _ set<-Data.names(Mdata,Rmat) 

if(is.list(Rmat)=ttTRUEtt){kmos<-kmo _ twomore(HData _ set$Hdata) 

}else{kmos<-kmo _ oneH(HData _ set$Hdata) 

} 

kmos 

}) 
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dkmo 

} 

#Sensitivity analysis 

#'================= 

SenAnalysis<-function(Mdata,seUhold) { 

m<-Iength(set_thold) 

Sresult<-Iapply( se~len(m ),function(i) { 

Dim _ Detector(Mdata,seUhold[i)) 

}) 

Sresult} 

#======================= 

#Data driven threshold setting 

#========================= 

strehod<-function(Mdata) { 

CMat<-Corrv(Mdata) 

Lmat<-as.matrix(tril(CMat));diag(Lmat)<-O 

Nmat<-as.vector(Lmat) 

NCnnat<-Nmat[ -which(Nmat 0)] 

crange<-round(range(NCnnat),2) 

sth<-seq( crange[l ],crange[2],0.0 1) 

a<-« crange[2]-crange[l ))/12) 

b<-round(a,2) 
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st2<-seq( crange[ I ],crange[2],b) 

st3<-sth[which(sth>=median(sth))] 

list( crange=crange,sth=sth,a=a,st2=st2,st3=st3)} 

#Example 

#Import data into R 

Datta<-read.spss("Speformance.sav" , use. value.label=TRUE, 

to.data.frarne=TRUE) 

mdata<-data.matrix(Datta) [,-c(8,9)] 

colnames(mdata)<-c("Xl" "X2" "X3" "X4" "X5" "X6" "X7") :t , , , , , 

Result<-Dim_Detector(mdata,thold=O.5) 

Rmat<-Screen Jesult(Result$Srecord) 

HData _ set<-Data.names(mdata,Rmat) 

kmo_Hsetl<-KMO_ Val(HData_set$Hdata[[l]]) 

kmo _Hset2<-KMO _ Val(HData _ set$Hdata[[2]]) 

#Example2 

#Import data into R 

Datta<-read.spss("concreteStrength.sav", 

to.data.frame=TRUE) 

mdata<-data.matrix(Datta ) 

use.value.label=TRUE, 

colnames(mdata)<-c("Xl","X2","X3","X4","X5","X6","X7") 

Result<-Dim _ Detector(mdata,thold=O.) 
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#Example 2: Dataset 3 

#Import data into R 

Datta<-read.spss("F ATHERdata2.sav", use.value.label=TRUE, 

to.data.frame=TRUE) 

mdata<-data.matrix(Datta) [,e( S :24)] 

eolnames(mdata)<-

e("XI" "X2" "X3" "X4" "XS" "X6" "X7" "XS" "9" "XIO" "XII" "XI2" "X ,,,,,,,,,,,,, , , , 

13" "XI4" "XIS" "XI6" "XI7" "XIS" "XI9" "X20") , , , , , , , 

Result<-Dim_Deteetor(mdata,thold=0.34) 

#Sensitivity analysis 

#================== 

#Example 

#Import data into R 

Datta<-read.spss("Speformanee.sav" , use.value.label=TRUE, 

to.data.frame=TRUE) 

mdata<-data.matrix(Datta)[,-e(8,9)] 

eolnames(mdata)<-e("XI" "X2" "X3" "X4" "XS" "X6" "X7") , , , , , , 

sthod 1 <-strehod(mdata )$sth 

sthod2<-strehod(mdata)$st2 

sthod3<-strehod( mdata )$st3 

Sfit<-SenAnalysis(mdata,sthod) 

Sfit2<-SenAnalysis(mdata,sthod2) 

Sfit3<-SenAnalysis(mdata,sthod3) 
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kmo_ val<-VData_KMO(mdata,Sfit3) 

KMO _ LS<-unlist(lapply(seq.Jen(length(kmo _ val»,function(i){ 

Ic<-Iength(kmo _ val[i]) 

kkmo<-ifelse(lc> 1 ,max(unlist(kmo _ val[i])),unlist(kmo _ val[i])) 

kkmo}) 

Dimensionality Detection Codes: Order Statistics Approach 

Algorithm 3: Order statistics correlation approach 

#================================== 

#Order Statistic correlation approach to 

#Dimensionality Detection 

#======================== 

#Dimension detection in 

#Multivariate datasets 

#================= 

library(mvtnorm) 

library(MASS) 

library(pscl) 

library(Matrix) 

library(foreign) 

library(corrplot) # For correlation plot (Correlogram) 

#================,====== 

#Dimension detection in 

#Multivariate datasets 
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#=====================,=========== 

1 i brary( mvtnorm) 

library(MASS) 

library(pscl) 

library(Matrix) 

library(foreign) 

Dim _ Detector<-function(Mdata,thold=O.5) { 

#------------------------------

#Order statistics correlation 

#=Function==================== 

OStat_ Cor<-function(mydata){ 

mat <- as.matrix(mydata) 

n <- ncol(mat) 

cor.mat<- matrix(NA, n, n) 

corr.c<-function(x,y){ 

Dnum.x<-Num.x<-numeric(length(x» 

x.new<-x[ order(x,decreasing=F ALSE») 

y .new<-y[ order(y ,decreasing= FALSE») 

forG in 1 :length(x.new»){ 

Num .x[j)<-(x.new[j)-x[length(x.new )-j+ 1 ))*y[ order(x,decreasing=F ALSE») U) 

Dnum.x[j)<-(x.new[j)-x[length(x.new)-j+ 1 )*y .new[j)} 

cr.x<-sum(Num.x)/surn(Dnurn.x) 

rx<-round( cr .x,S) 

return(rx)} 
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Cvmat<-function( n,mat,cor.mat) { 

for (i in 1 :n) { 

for (j in 1 :n) { 

cor.mat[i, j] <-corr.c(mat[,i],mat[j)) 

} 

} 

retum( cor.mat)} 

cormat<-Cvmat(n,mat,cor.mat) 

#colnames( cormat)<-rownames( cormat) <-colnames(mydata) 

retum( cormat)} 

#======================= 

#Function to select first 

#Spanning set based on 

#Correlation Coefficient 

#===================== 

Span_set<-function(xmat){ 

max val<-max(xmat) 

stvl<-function(x,max _ v){ 

ifelse(x max_v, 1 ,0) 

} 

Rid<-Iapply( seqJen( dim(xmat)[ 1 ]),function(i) { 

stv<-stvl(xmat[i,],m~ val) 

Id<-which(stv=l) 
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c(i,ld) 

}) 

#Sr<-NULL 

Is _Ien<-unlist(lapply( se~len(length(Rid) ),functionU) { 

Vecx<-as. vector(Rid[[j]]) 

sl<-length(Vecx) 

sl})) 

#if(any(ls_len=2)){ 

S<-Rid[[which(ls_len 2)]] 

S<-c(S[2],S[ I]) 

#}else{ 

#break 

#} 

S} 

#--------------------------

Vbind<-function(X,:x) { 

# 

#Function to combine vectors of 

#different lengths 

# 

mbind<-function(x,y){ 

slab<-NULL 

a<-dim(x)[ I ];b<-Iength(:x) 

if( a=b){ slab<-cbind(x,y)} 

if(a>b){slab<-
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cbind(x, y=c(y, rep(NA,(a-b»») 

} 

slab 

} 

#!=========================== 

#Function to combine vectors of 

#different lengths 

#'========================= 

sbind<-function(x,y){ 

slab<-NULL 

a<-length(x);b<-length(y) 

if( a=b) {slab<-cbind(x,y)} 

if(a>b){slab<-

cbind(x, y=c(y, rep(NA,(a-b»» 

} 

if(a<b){slab<-cbind(y, x=c(x, rep(NA,(b-a»» 

} 

slab 

} 

sfit<-NULL 

if(length(X)=O){ sfit<-sbind(X,y)} else { 

if(length(X» 1 & is.matrix(X)=ITRUE"){ 

sfit<-mbind(X,y) 

} 
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} 

sfit} 

Foutput<-function(nnat){ 

Dresult<-sapply( se'L len( dim( nnat)[2]),function(i) { 

nnat[,i]}) 

Dresult} 

#========================= 

#Updating spanning function 

#Based on pairwise Correlation 

#============================ 

CompwS<-function(S _index, Cor _ Mat,thold){ 

Sxupdator<-function(Sx_ set,x _ dex, Cor _ mat,thold){ 

pwcr<-unlist(lapply( se'L1en(length(Sx _set) ),function(i){ 

rr<-which(CIi 0) 

Drr<-Crr[ -rr] 

Drr 
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}) 

if( all(pwcr>=thold)="TRUE"){ 

N<-dim(Cor _ Mat) [2] 

m<-seqJen(N)[ -S _index] 

for(i in 1 :Iength(m»{ 

NS<-Sxupdator(New _ set,m[i],Cor _ Mat,thold) 

New set<-NS 

} 

Hset<-New _ set;Nhset<-seqJen(N)[ -Hset] 

list(Hset=Hset,Nhset=Nhset) } 

#Start sequential updating 

tol<-2 

clab<-colnames( data.frame(Mdata» 

Srecord<-NULL 

count<-O 

Cmat<-OStat_ Cor(Mdata) 

if(any(Cmat<O)="TRUE"){ 
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Cmat<-abs(Cmat) }else { 

Cmat<-Cmat} 

crmat<-as.matrix(tril(Cmat));diag(crmat)<-O 

d<-dim(crmat)[2] 

lnhset<-d 

Nlab<-se~ len( d) 

S<-Span _ set( crmat) 

while(lnhset>tol){ 

count<-count+ 1 

fit<-CompwS(S,crmat,thold) 

hset<-fit$Hset 

nhset<-fit$Nhset 

mlab<-clab[hset] 

rIab<-clab[ -hset] 

Srecord<-Vbind(Srecord,mlab) 

Rcrmat<-crmat[ -hset, -hset] 

NHset<-r1ab 

if(is.matrix(Rcrmat)="F ALSE") { 

break 

} 

S_new<-Span_set(Rcrmat) 

S<-S _ new;crmat<-Rcrmat 

clab<-rlab 

Inhset<-length(nhset) 

cat( count, Inhset,S,mlab, "\n ") 
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} 

if( count> 1 & Inhset<tol){ 

cat("Algorithm failed to converge","\n") 

return(NULL) 

} else { cat(" Algorithm coverged", "\n ") 

I ist(Srecord=Srecord,NHset=NHset)} 

} 

#-----------------------------------

Screen Jesult<-function( mat_result) { 

#=============== 

#Comment 

# This function takes mat with 

#NAs, remove the NAs with 

#reconstruction based on 

#content of the original 

#matrix. 

#================= 

RemovNA<-function(x){ 

x[!is.na(x)] 

} 

Replace<-function(x){ 

ifelse( is.na(x)="TRUE",O,x) 

} 

Zero rm<-function(x){ 
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x[ -which(x=O)] 

} 

MatRed<-function(mat) { 

fx<-function(x){ 

ifelse(all(x=O)="TRUE", 1,0)} 

nd<-as. vector( app ly(mat,2,fx» 

Nmat<-mat[,-which(nd= 1)] 

Nmat} 

Rlist<-function(Mmat) { 

Ttf<-function(ylist){ 

vv<-NULL 

if(any(ylist O»{ vv<-Zero Jm(ylist) }else{ vv<-ylistO} 

vv 

} 

if(is.matrix(Mmat)="TRUE"){ 

rlist<-apply(Mmat,2,list) 
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fresult<-lapply(se~len(length(rlist»,functionG){ 

vv<-NULL 

tts<-unlist(rlist[O)]) 

if(any(tts=O»{ vv<-Zero _ rrn(tts)} else{ vv<-tts[]} 

}) 

} 

if(is.vector(Mmat)="TRUE"){ 

fresult<-Ttf(Mmat) 

} 

fresult} 

#======================== 

#Ca\l 

#------

smat<-Replace(matJesult) 

mmat<-MatRed(smat) 

Fresult<-Rlist(mmat) 

Fresult} 

#----------------------------
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Data.names<-function(DataJrame,rlist) { 

Data Jrame<-if(is.data.frame(Data _frame )="F ALSE") { 

Data _ frame<-data. frame(Data Jrame) 

} else {Data Jrame<-Data Jrame } 

n.set<-names(Data _frame) 

xsame<-function(x,y){ 

which(x y)} 

smvec<-function(xdata,ystand){ 

ufit<-unlist(lapply(se~len(length(xdata»,function(i){ 

xsame(ystand,xdata[i]) 

})) 

ufit 

} 

data _ var<-lapply(se~len(length(r1ist»,functionU) { 

smvec(rl ist[[j)),n.set)} 

) 

Hdata<-sapply( se~len(length( data _ var) ),function( t) { 

Data Jrame[,data _ var[[ t]]] 

}) 

Iist( data _ var=data _ var,Hdata=Hdata)} 
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#-----------------------------------------------------

#Algorithm to compute KMO of a Multivariate dataset 

#----------------------------------------------------

KMO_ Val<-function(mdata){ 

#================== 

#Comments: 

#This function computes 

#the KMO of a multivariate 

#data 

#------------------------

R<-cor(as.matrix(mdata)) 

Qmat<-function(Rm) { 

RI<-solve(Rm) 

Dm<-(sqrt(diag(diag(RI)))) 

Dr<-solve(Dm) 

Q<-(Dr%*%RI)%*%Dr 

Q} 
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Q<-do.call(Qmat,list(R» 

#Function to compute 

Sr_sq<-function(CMat){ 

rsq<-NDLL 

for(i in l :dim(CMat)[l]){ 

forO in 1 :dim(CMat)[2]){ 

if(i<j){ 

rsq<-chind(rsq,CMat[ij]) 

} 

}} 

Rsq<-sum(as.vector(rsq)"2) 

Rsq 

} 

KMO<-lI(l+(Surn]r_sq/Sum_Rsq)) 
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KMO} 

#list(KMO=KMO,Sum_Rsq=Sum_Rsq,Sum]r_sq=Sum]r_sq,Q=Q,R=R)} 

#==============ENDOFALGOruTHM=============== 

VData _ KMO<-function(Mdata,resuIUist) { 

kmo _ oneH <-function(xdata) { 

km<-KMO_ Val(xdata) 

km} 

kmo _ twomore<-function(hdata _Iist){ 

} 

dkmo<-lapply(se~len(length(result_list»,function(i){ 

Rmat<-ScreenJesult( result_list[[i]]$Srecord) 

HData _ set<-Data.names(Mdata,Rmat) 

if(is.list(Rmat)="TRUE ") {kmos<-kmo _ twomore(HData _ set$Hdata) 

} else {kmos<-kmo _ oneH(HData _ set$Hdata) 

} 
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krnos 

}) 

dkrno 

} 

#Sensitivity analysis 

#=================== 

SenAnalysis<-fimction(Mdata,seUhold) { 

m<-length(seUhold) 

Sresult<-Iapply( se'L len(m ),function(i) { 

Dim _ Detector(Mdata,seUhold[i]) 

}) 

Sresult} 

Correlogram<-function(mydata){ 

invisible(Ttr<-order _ stat_ cor(mydata)) 

mcol<- colorRampPalette(c("red", "white", "blue"))(20) 

corrplot(Ttr,method="square",order="hclust",ti.col="black",tl.srt=45,bg="light 

blue" ,col=mcol) 
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invisible(retum(Ttr» } 

#======================= 

#----------------------------------------

#Example 

#------------------------------

#Import data into R 

Datta<-read.spss("Speformance.sav" , use.value.label=TRUE, 

to.data.frame=TRUE) 

mdata<-data.matrix(Datta)[,-c(8,9)] 

colnames(mdata)<-c("XI" "X2" "X3" "X4" "X5" "X6" "X7") , , , , , , 

ResuIt<-Dim __ Detector(mdata,thold=O. 7) 

Rmat<-Screen __ result(Result$Srecord) 

HData __ set<-Data.names(mdata,Rmat) 

#----------------------------------

#Example 2 

#-------------------------
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#Import data into R 

#---------------------------

Datta<-read.spss("concreteStrength.sav" , use.value.label=TRUE, 

to.data.frame=TRUE) 

mdata <-data.matrix(Datta) 

colnames(mdata)<-c("Xl" "X2" "X3" "X4" "X5" "X6" "X7") , , , , , , 

Result<-Dim_Detector(mdata,thold=O.) 

#Sensitivity analysis 

#=======, 

sthod<-seq(O.2,O.9,by=O.OI) 

Sfit<-SenAnalysis(mdata,sthod) 

kmo_ val<-VData_KMO(mdata,Sfit) 

KMO _ LS<-unlist(lapply( seq.Jen(length(kmo _val) ),function(i) { 

Ic<-Iength(kmo _ val[i)) 

kkmo<-ifelse(lc> \,max(unlist(kmo _ val[i])),unlist(kmo_ val [i))) 

kkmo}» 

max(kkmo) 
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KMO Algorithm 

Modified Algorithm to Compute KMO of a Multivariate dataset 

KMOD<-function(cvMat,Sx){ 

~================= 

#Comments: 

#This function computes 

#the KMO of a multivariate 

#data 

#------------------------

Qmat<-function(Rm){ 

Rl<-solve(Rm) 

Dm<-(sqrt(diag(diag(RI)) 

Dr<-solve(Dm) 

Q<-(DrOlo*%Rl)%*%Dr 

Q} 

#Function to compute 

Sr_sq<-function(CMat){ 

rsq<-NULL 

for(i in l:dim(CMat)[I)){ 

197 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



forO in 1 :dim(CMat)[2]){ 

if(i<j){ 

rsq<-cbind(rsq,CMat[iJ]) 

} 

}} 

Rsq<-sum( as. vector(rsq)1\2) 

Rsq 

} 

R<-cvMat 

Rs<-R[ c(Sx),c(Sx)] 

Q<-do.call(Qmat,list(Rs)) 

Qr<-Q;diag(Qr)<-O 

Sum_Rsq<-Sr_sq(R) 

Sum]r _ sq<-Sr _ sq(Qr) 

KMO<-lI( 1 +(Sum]r _sq/Sum _ Rsq)) 

list(KMO=KMO,Sum_Rsq=Sum_Rsq,Sum]r_sq=Sum]r_sq,Q=Q,R=R,Qr 

=Qr)} 

~#==============ENDOFALGOruTHM============== 

Dimensionality. Detection Codes: Reduced Dataset Approach 
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N 

#Dimension detection in 

#Multivariate datasets 

#'==================== 

library(mvtnorm) 

library(MASS) 

library(pscl) 

library(Matrix) 

library(foreign) 

#==================================== 

#Data-based tuning schemes 

# '==================================== 

#Load library ks for kernel density estimation 

#=================================== 

library(ks)#For kernel density estimation 

library(latex2exp) 

#Package for hi, hc 

#hcl<-hlscv(mdata) # Not applicable because data contain duplicated values 

hi<-hpi(mdata) #plug in estimator 
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hcl <-hscv(mdata) #Smoothed Cross validation 

hn<-hns(mdata) 

#======================= 

#Euclidean distance metric 

#==================== 

Dxx<-function(x I ,x2){ 

sqrt(sum«xl-x2)"2» } 

#============= 

~===================== 

#S2 and S 1 statistic functions 

# 

S2x<-function(W2xstat) { 

s2x<-unlist(lapply(seq.Jen(length(W2xstat»,function(i){ 

Dxx(W2xstat[i), W2xstat[ -i)) 

}» 

s2x} 

#------------------

S I x<-function(W 1 xstat){ 
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dxabs<-function(x 1 ,x2){ 

sqrt(sum(abs(xl-x2») 

} 

s 1 x<-unlist(lapply(se~Jen(length(W 1 xstat) ),function(i) { 

dxabs(W 1 xstat[i], WI xstat[ -in 

})) 

sIx} 

If------------------

# 

#Function to compute 

#W2i statistic in h2 and h2i 

# 

W2stat<-function(y.aO=2) { 

m<-length(y) 

Dxx<-function(x 1 ,x2) {sum«xI -x2)AaO)} 

sim __ vec<-unlist(lapply(se<L1en(length(y»,functionG) { 

(l/(m-l »*Dxx(y[ -j],y[j]) 

})) 

sim vec} 
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#Function to compute 

#Average KNN distances 

#of observations 

~============== 

KNNy<-function(y,K = 1 O){ 

Edist<-function(x 1 ,x2) { 

sqrt(sum«xl-x2)"2» } 

uspar<-function(X,K){ 

SDmat<-function(x){ 

Evec<-function(x i ,x){ 

unlist(lappiy(se'Lien(length(x»,functionG){ 

Edist(xl ,x[j]) 

})) 

} 

Emat<-t(sappiy(se'L1en(iength(x» ,functionO){ 

Evec(x[j],x[-j])} » 

Emat[ which(Emat<O) ]<-0 

Emat 
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} 

Smat<-SDmat(X) 

MNN<-( llK)*rowSums(t(apply(Smat, 1 ,function(x) { 

x[order(x,decreasing=TRUE)[l :K] ] 

} ») 

MNN} 

knn _ d ist<-uspar(y,K) 

knn_dist} 

11-------------------

II!======================= 

IIObservation level delta 

IIbased on Expected value 

IIInformation 

II 

delt_ExptVi<-function(xdata){ 

hr<-(range(xdata)[2]-range(xdata)[1))/6 

Fit<-kde(xdata,eval.points=xdata,hr) 

fx<-Fit$estimate 

Wx=fx*xdata 
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list(fx=fx, Wx=Wx)} 

#--------------------

#-----------------------------

#Common weight proposals 

#--------------------------

#====================== 

#delta ~ function 

# 

de\t~<-function( a, b,stepp=O. 0 1 ) { 

x_int<-seq(a,b,by=stepp) 

x int 

} 

#---------------------------------

#========================== 

#Function for delta 1 

#============================== 

delt 1_ fun<-function(S2stat,a\pht) { 

Sm2<-min(S2stat) 

\ /sqrt«a\pht*Sm2» 

} 
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# =============== 

#====================== 

#Delta 2 function 

#========================== 

delt2 jun<-function(S2stat,alpht){ 

Sm2<-min(S2stat) 

1/(alpht*sqrt(Sm2)) 

} 

#---------------------

#================================ 

#Delta 3 function 

#=========================== 

delt3 _ fun<-function(S 1 stat) { 

S Im<-min(S 1 stat) 

l/Slm 

} 

#---------------

#====================== 

#Delta 4 function 
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#========= 

delt4 Jun<-function(S2stat) { 

hs<-XOGK(S2stat) 

dI4<-lIsqrt(hs) 

d14} 

#--------------------

#================ 

#Tuming parameter function 

#Median based tuning 

#================ 

delta5<-function(y){ 

med<-median(y) 

d<-Iength( which(y>med) )/length(y) 

d} 

#==================================== 

#Full training data-based 

#tuning function 

#--------------------------

delta6<-function(y){ 
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muy<-median(y) 

ymax<-max(y) 

m 1 <-(muy/ymax)-l 

m2<-I-(muy/ymax) 

d<-ifelse(muy>ymax,m 1 ,m2) 

} 

#-----------

~===================== 

#Train data range based 

#delta 

#--------------------------

delta7<-function(y){ 

drange<-range(y) 

eps<-( drange[2J-drange[l J)/6 

deltd7=l/sqrt(eps) 

deltd7} 

#------------
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#=== 

#Common weight based Expected 

# delta 8 

# ========,===, 

delta8<-function(xdata){ 

dfit<-delt_ExptVi(xdata) 

Wx<-dfit$Wx 

umx=median(Wx) 

mx=max(Wx) 

mcx<-c(umx,mx) 

de It Jat<-m inC mcx)/max( mcx) 

#---------------

~===================== 

#Common weight based Expected 

#= delta 9 

# 

delta9<-function(xdata}{ 

dfit<-delt_ExptVi(xdata} 
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Wx<-dfit$Wx 

mxni<-min(Wx) 

mx=max(Wx) 

delts<-l!sqrt«mx-mxni» 

delts} 

#-------------------------------

#== End of common weighl=t == 

#=================== 

#Varying deltas 

# 

deltl i<-function(delt,S2stat){ 

m<-length(S2stat)-1 

dm2<-sapply( se~len(length( de It», function(i) { 

1/sqrt«m*delt[i]*S2stat» 

}) 

dm2} 

delta2i<-function( delt,S2stat) { 

m<-length(S2stat)-1 
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dm 1 <-sapply(se'L len(length( delt)),function(i){ 

1/( delt[iJ*sqrt( (m * S2stat))) 

}) 

dml} 

delta3i<-function(S 1_ W2istat,delt){ 

m<-length(SI_ W2istat)-1 

dmx<-sapply( se'L len(length( delt) ),function(i) { 

1/(delt[iJ*sqrt((m*SI_ W2istat))) 

}) 

dmx} 

delta4i<-function(S 1_ W2istat,delt){ 

m<-length(S 1_ W2istat)-1 

dmn<-sapply( se'Llen(length( delt) ),function(i) { 

l/sqrt((m*delt[iJ*S 1_ W2istat)) 

}) 

dmn} 

delt5i<-function(S2 _ WI istat){ 

1/(S2_ Wlistat) 

} 
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deIt6i<-function(S2 _WI istat) { 

l/sqrt(S2 _ WI istat) 

} 

delt7i<-function(S2stat){ 

l/sqrt(S2stat) 

} 

delt8i<-function(y){ 

mum <-unlist(lapp I y( se<L len(length(y)), functi on (i) { 

length(which(y[ -i]>y[i))) 

})) 

deltr= l-(mum/length(y)) 

deltr 

} 

delt9i<-function(y){ 

Inum<-unlist(lapply(se~len(length(y)),function(i){ 

length(which(y[ -i]<y[i))) 

})) 

deltl<-l-(lnumllength(y)) 
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deltl} 

de It 1 Oi<-function(y) { 

deltr<-delt6i(y) 

deltl<-delt7i(y) 

deltrn<-O.5 *( deltl+deltr) 

deltrn} 

J¥-------------------

J¥!=================== 

J¥delta II i function 

J¥ 

deltll i<-function(Cx}{ 

d9<-Cxlmax(Cx) 

d9} 

J¥-----------------

# 

# delta 12i function 

# 

delt12i<-function(Cx, W2val){ 
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uct<-median(Cx) 

drat<-W2valluct 

d 11 = lIsqrt( drat) 

dll} 

#-----------------

# 

#delta 13i function 

# ====================== 

de It 13i<-function(Cx,alphs) { 

m<-length(Cx) 

del ts<-sapp Iy( se'L len(length (al phs) ),function( i) { 

I/sqrt(m*alphs[i]*Cx) 

}) 

delts} 

#------------------

# 

#delta 14i function 

#========== 

delt 14 i<-function(S2Cx _ stat,alphs) { 
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m<-length(S2Cx_stat) 

delts<-sapply(se~len(length(alphs»,funetion(i){ 

l!sqrt(m *alphs[i] *S2Cx _stat) 

}) 

delts} 

#------------------

#=========================== 

# hel function 

# 

he 1_ fune<-funetion(smdist,deltn){ 

hel <-sqrt(mean(deltn*smdist» 

hel} 

#-----------------------

#======================= 

#=== he2 function 

#======= 

he2 _ func<-function(W2stat,deltn) { 

Vt<-mean(W2stat*deltn) 

hc2<-sqrt(sum(Vt)} 
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hc2} 

#-------------------

#======================== 

# hc3 function 

# ========== 

hc3 _ func<-function(Sim _KNN,deltn) { 

result<-Sim KNN 

hc3<-sqrt(XOGK(deltn*result» 

hc3} 

#--------------------

# 

# hc4 function 

# 

hc4 _ func<-function(W2stat,deltn) { 

Vt<-W2stat*deltn 

hc4<-sqrt(round(XOGK(Vt») 

hc4} 

#--------------------

#======================= 

#= hI v function 
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#======== 

hI v<-function(Sim _KNN,deltv){ 

result<-Sim KNN 

hw<-deltv*(result) 

hlv<-mean(hw) 

hlv} 

t/-----------------

t/ 

#=- hv2 function 

#============== 

hv2<-function(W2stat,deltv) { 

Vt<-deltv*W2stat 

hv2<-sqrt(sum(Vt» 

hv2} 

t/--------------------

t/ 

t/ hv3 function 

t/:======= 

hv3<-function(S 1_ W2istat,deltv){ 

result<-S 1_ W2istat 

lambda<-sqrt( deltv) 

hx<-Iambda*result 
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h3v<-sqrt(mean(hx» 

h3v} 

#-----------------

~=============== 

# hv5 function 

#========= 

hv4<-function(S2stat,deltv3){ 

Vt<-deltv3* S2stat 

h4<-sqrt(XOGK(Vt» 

h4} 

#--------------------

#Function to compute correlation matrix 

Corrv<-function( mdata) { 

Cormat<-matrix(O,dim(mdata)[2],dim(mdata)[2)) 

for(i in I: dim(Cormat)[l]){ 

forO in I :dim(Cormat)[2]){ 

Cormat[ij]<-cor(mdata[,i],mdata[j)) 

} 

} 

Corm at 

} 

PDF_Dim _Detector<-function(Mdata,thold=O.5){ 
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~=================== 

#Function to select first 

#Spanning set based on 

#Correlation Coefficient 

#===================== 

Span_set<-function(xmat){ 

max_ val<-max(xmat) 

stvl<-function(x,max_v){ 

ifelse(x==max _ v, 1 ,0) 

} 

Rid<-Iapply( se~ len( dim (xmat)[ 1 )),function(i) { 

stv<-stvl(xmat[i,],max _val) 

Id<-which( stv= 1) 

c(i,ld) 

}) 

#Sr<-NULL 

Is_len<-unlist(lapply(se~len(length(Rid)),functionG){ 

Vecx<-as. vector(Rid[[j))) 

sl<-length(Vecx) 

sl})) 

#if(any(ls_len=2)){ 

218 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



S<-Rid[[ which(ls _len=2)]] 

S<-c(S[2],S[1)) 

#}else{ 

#break 

#} 

S} 

#--------------------------

Vbind<-function(X,y) { 

I' 
fI 

#Function to combine vectors of 

#different lengths 

#========================= 

mbind<-function(x,y){ 

slab<-NULL 

a<-dim(x)[ I ];b<-Iength(y) 

if(a=b){ slab<-cbind(x,y)} 

if(a>b){slab<-

cbind(x, y=c(y, rep(NA,(a-b)))) 

} 

slab 

} 
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~========================= 

#Function to combine vectors of 

#different lengths 

# 

sbind<-function(x,y){ 

slab<-NULL 

a<-Iength(x);b<-Iength(y) 

if(a=b){slab<-cbind(x,y)} 

if( a>b){ slab<-

cbind(x, y=c(y, rep(NA,(a-b)))) 

} 

if(a<b){slab<-cbind(y, x=c(x, rep(NA,(b-a)))) 

} 

slab 

} 

sfit<-NULL 

if(length(X)=O){ sfit<-sbind(X,y)} else{ 

if(length(X» 1 & is.matrix(X)="TRUE"){ 

sfit<-mbind(X,y) 

} 

} 

sfit} 

F output<-function(rmat){ 

220 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Dresult<-sapply(se~ len( dim( rmat) [2]),function(i) { 

rmat[,i]} ) 

Dresult} 

~========================= 

#Updating spanning function 

#Based on pairwise Correlation 

" 1"1 

CompwS<-function(S _index, Cor_Mat, thold) { 

Sxupdator<-function(Sx _ set,x _ dex, Cor_mat, thold){ 

pwcr<-unlist(lapply(se~len(length(Sx_set»,function(i){ 

rr<-which(Cu 0) 

Drr<-Crr[ -rr] 

Drr 

}» 

if( all(pwcr>=thold)="TRUE"){ 

N<-dim(Cor _ Mat)[2] 

m<-se~len(N)[-S _index] 

for(i in l:length(m»{ 
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NS<-Sxupdator(N ew _ set,m [i], Cor _ Mat,thold) 

New _set<-NS 

} 

Hset<-New _ set;Nhset<-seq.Jen(N)[ -Hset] 

list(Hset= Hset,Nhset=Nhset)} 

#Start sequential updating 

tol<-2 

elab<-eolnames( data.frame(Mdata») 

Sreeord<-NULL 

eount<-O 

Cmat<-Corrv(Mdata ) 

if(any(Cmat<O)=IOTRUEIO){ 

Cmat<-abs(Cmat) }else{ 

Cmat<-Cmat} 

ermat<-as.matrix(tril(Cmat) );diag( ermat)<-O 

d<-dim( ermat) [2] 

Inhset<-d 

Nlab<-seq..Jen( d) 

S<-Span_set(ermat) 
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while(lnhset>tol){ 

count<-count+ 1 

fit<-CompwS(S,crmat,thold) 

hset<-fit$Hset 

nhset<-fit$Nhset 

mlab<-clab[hset] 

r1ab<-clab[ -hset] 

Srecord<-Vbind(Srecord,mlab) 

Rcrmat<-crmat[ -hset, -hset] 

NHset<-rlab 

i f(is.matrix(Rcrmat)="F ALSE") { 

break 

} 

S<-S _ new;crmat<-Rcrmat 

c1ab<-r1ab 

Inhset<-Iength(nhset) 

cat( count, Inhset,S,mlab, "\n ") 

} 

if( count> 1 & Inhset<tol){ 
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cat("Algorithm failed to converge","\n") 

return (NULL) 

} else { cat(" Algorithm coverged", "\n ") 

list(Srecord=Srecord,NHset=NHset) } 

} 

#-----------------------------------

Screen Jesult<-function( mat_result) { 

# 

#Comment 

# This function takes mat with 

#NAs, remove the NAs with 

#reconstruction based on 

#content of the original 

#matrix. 

#================= 

RemovNA<-function(x){ 

x[!is.na(x)] 

} 

Replace<-function(x) { 

ifelse( is.na(x)=="TRUE",O,x) 

} 
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Zero Jm<-function( x){ 

x[ -which(x=O)] 

} 

MatRed<-function(mat){ 

fx<-function(x){ 

ifelse( all( x=O)="TRUE", 1,0)} 

nd<-as.vector(apply(mat,2,fx» 

Nmat<-mat[,-which(nd= 1)] 

Nmat} 

Rlist<-function(Mmat) { 

Ttf<-function(ylist){ 

vv<-NULL 

if( any(ylist 0» { vv<-Zero _ rm(ylist)} else {vv<-ylistO} 

vv 

} 

if(is.matrix(Mmat)="TRUE"){ 

rlist<-apply(Mmat,2,list) 

fresult<-lapply(se'Llen(length(r1ist»,functionG){ 

vv<-NULL 

tts<-unlist(rlist[[j]]) 

if(any(tts=O»){ vv<-Zero _ rm(tts) }else{ vv<-ttsm 

}) 
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} 

if(is. vector(Mroat)="TRUE") { 

fresult<-Ttf(Mroat) 

} 

fresult} 

# 

#Call 

#------

smat<-Replace(matJesult) 

mmat<-MatRed(smat) 

Fresult<-Rlist(mmat) 

Fresult} 

#----------------------------

Data.names<-function(Data _ frame,rlist) { 

Data_frame<-if(is.data.frame(Data_frame)="FALSE"){ 

Data _ frame<-data.frame(Data _frame) 

}else {Data_ frame<-Data _frame} 

n.set<-names(Data _frame) 

xsame<-function(x,Y){ 
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which(x=y)} 

smvec<-function(xdata,ystand) { 

ufit<-unlist(lapply(seCLlen(length(xdata»,function(i){ 

xsame(ystand,xdata[i]) 

}» 

ufit 

} 

data __ var<-lapply(seCLlen(length(rlist»,functionG){ 

smvec(rlist[0J1,n.set) } 

) 

Hdata<-sapply( seCLlen(length( data _ var) ),function(t) { 

Data Jrame[,data _ var[[ t]]] 

}) 

list( data _ var-data _ var,Hdata=Hdata)} 

#-----------------------------------------------------

#Algorithm to compute KMO of a Multivariate dataset 

#----------------------------------------------------

KMO _ Val<-function(mdata){ 

#1================== 

#Comments: 

#This function computes 
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#the KMO of a multivariate 

#data 

#------------------------

R <-cor( as.matrix(mdata)) 

Qmat<-function(Rm) { 

RI<-solve(Rm) 

Dm<-(sqrt( diag( diag(RI)))) 

Dr<-solve{Dm) 

Q<-{Dr"Io*%RI)%*%Dr 

Q} 

Q<-do.call(Qmat,list(R)) 

#Function to compute 

Sr_sq<-function(CMat){ 

rsq<-NULL 

for(i in 1 :dim(CMat)[ l)){ 

forO in 1:dim(CMat)[2]){ 

if(i<j){ 

rsq<-cbind(rsq,CMat[iJ)) 

} 

}} 

Rsq<-sum( as. vector( rsq)"2) 
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Rsq 

} 

Sum _ Rsq<-Sr _ sq(R) 

Sum]r_sq<-Sr_sq(Q) 

KMO<-lI(l+(Sum]r_sq/Sum_Rsq) 

KMO} 

#list(KMO=KMO,Sum _ Rsq=Sum _ Rsq,Sum]r _sq=Sum]r _ sq,Q=Q,R=R)} 

#=======END OF ALGORlTHM======= 

VData _ KMO<-function(Mdata,resuIU ist) { 

Muti_ Homoset<-function(Datta,rmat) { 

if(is.list(rmat)="TRUE"){ 

Udata<-lapply(se~len(length(rmat»,functionG){ 

Data.names(Datta,rmat[U]])$Hdata 

})}else{ 

Udata<-Data.names(Datta,rmat)$Hdata 

} 

Udata} 

kmo _ oneH <-function(xdata){ 

km<-KMO _ Val(xdata) 
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km} 

kmo _ twomore<-function(hdata _list) { 

m 1 <-length(hdata_list) 

ut<-unlist(lapply(se~len(m 1 ),function(i){ 

KMO _ Val(hdata Jist[[i]]) 

})) 

ut} 

dkmo<-lapply(se~len(length(result_list»,function(i){ 

Rmat<-Screen _result(resulUist[[i]]$Srecord) 

HData _ set<-Muti _Homoset(Mdata,Rmat) 

if(is.l ist(Rmat)="TRUE") {kmos<-kmo _ twomore(HData _set) 

} else {kmos<-kmo _ oneH(JIData _set) 

} 

kmos 

}) 

dkmo 

} 

# 

#Sensitivity analysis 

#================== 

SenAnalysis<-function(Mdata,seUhold){ 

230 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



m<-length(seUhold) 

Sresult<-Iapply( se~len(m), function(i) { 

PDP_Dim _ Detector(Mdata,set_thold[i]) 

}) 

Sresult} 

fI 

#Data driven threshold setting 

# 

strehod<-function(Mdata) { 

CMat<-Corrv(Mdata) 

Lmat<-as.matrix(tril(CMat»;diag(Lmat)<-O 

Nmat<-abs( as. vector(Lmat» 

NCrmat<-Nmat[ -which(Nmat 0») 

crange<-round(range(NCrmat),2) 

sth<-seq( crange[1 ],crange[2],0.0 I) 

a<-«crange[2}-crange[I))/12) 

b<-round( a,2) 

st2<-seq( crange[ 1 ),crange[2],h) 

st3<-sth[ which(sth>=median(sth»] 

list( crang!!=crange,sth=sth,a=a,st2=st2,st3=st3)} 
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#===== 

#Altemative approaches to threshold setting 

# 

#----------------------------------

EDSim<-function(Tdata,k=2){ 

Edist<-function(xl,x2){ 

sqrt(sum«x l-x2)"2))} 

Sim<-function(xdata,x){ 

sm<-apply(xdata,2, function(x 1) { 

Edist(xl,x) 

}) 

bdist<-sm[ order(sm,decreasing=F)][l :k] 

bdist} 

smat<-t(sapply(seCLlen(dim(Tdata)[2]),function(i){ 

Sim(Tdata[,-i],Tdata[,i]) 

})) 

smat} 

KMO _ Set<-function{kmo _ set){ 
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kkm<-unl ist(lapply( seCLlen(length(kmo _set) ),function(i) { 

lc<-length(kmo _ set[i]) 

kkmo<-ifelse(lc> 1 ,max( unlist(kmo _set[i]) ),unlist(kmo _ set[i]) 

kkmo}» 

kkm} 

#======= End oflist of functions ,======== 

KMO _ Val<-function(mdata){ 

# 

#Comments: 

#This function computes 

#the KMO of a multivariate 

#data 

#------------------------

R<-cor(as.matrix(mdata» 

Qmat<-function(Rm){ 

RI<-solve(Rm) 

Dm<-(sqrt(diag(diag(RI)) 

Dr<-solve(Dm) 
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Q<-(Dr%*%RI)%*%Dr 

Q} 

Q<-do.call(Qmat,list(R)) 

#Function to compute 

Sr_sq<-function(CMat){ 

rsq<-NVLL 

for(i in l:dim(CMat)[1]){ 

forO in 1 :dim(CMat)[2]){ 

if(i<j){ 

rsq<-cbind(rsq,CMat[ij]) 

} 

}} 

Rsq<-sum( as. vector( rsq)"2) 

Rsq 

} 

Sum _ Rsq<-Sr _ sq(R) 

Sum]r_sq<-Sr_sq(Q) 

KMO<-I/(I+(Sum]r_sq/Sum_Rsq)) 

KMO} 

#== 
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#=Probability density function 

#=based features 

# 

DensF eat<-function(Datta,sm -'par,dprop=O.7) { 

dens _ feat<-function(ydatta,smooth -'par,dat-'prop=O. 7) { 

Fit<-kde(ydatta,h=smooth -'par,eval. points=ydatta) 

fy<-Fit$estimate 

Ty=fy*ydatta 

Uy=mean(Ty) 

Zstat<-(Ty-mean(Ty) )/sqrt( var(Ty» 

zr<-order(Ty,decreasing=T) 

K=round(length(ydatta)*dat-'prop,O) 

y _ select<-ydatta[ 1 :K] 

sprob=Ty/max(Ty) 

list(fy=fy, Ty=Ty, Uy=Uy,Zstat=Zstat,y _ select=y _ select,sprob=sprob)} 

Dfit<-lapply( se~ len( dim(Datta)[2]),functionU) { 

dens Jeat(Datta[j],sm Jar01,dprop) 

}) 

fymat<-sapply( se~ len(length(Dfit) ),function(i) { 
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Dfit[[i]]$fy 

}) 

Tymat<-sapply(se~ len(length(Dfit» ,function(i) { 

Dfit[[i]]$Ty 

}) 

Zystat<-sapply(se~len(length(Dfit» ,function(i) { 

Dfit[[i]]$Zstat 

}) 

fymat<-sapply(s~len(length(Dfit» ,function(i){ 

Dfit[[i]]$fy 

}) 

yselect<-sapply(se~len(length(Dfit»,function(i){ 

Dfit[[i]]$y _select 

}) 

list(Dfit=Dfit,fymat=fymat,Tymat=Tymat,Zystat=Zystat,yselect=yselect)} 

#Import data into R 

Datta<-read.spss("Speformance.sav", 

to.data.frame=TRUE) 

mdata<-data.matrix(Datta)[,-c(8,9)] 

use. value.\abel=TRUE, 
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colnames(mdata)<_c("XI ","X2","X3","X4","X5","X6","X7") 

smyar<-unlist(lapply(se~len(dim(mdata)[2]),function(i){ 

hscv(mdata[,i]) 

}») 

perf om _data _ fit<-DensFeat(mdata,sm yar,dprop=O.7) 

yselect<-perfom _data _ fit$yselect 

fymat<-perfom _data _ fit$fymat 

Tymat<-perfom _data _fit$Tymat 

Zymat<-perfom _data _fit$Zymat 

CVMatP<-Corrv(mdata) 

CVMatP Jdata<-Corrv(yselect) 

CVMatP _Tymat<-Corrv(Tymat) 

#CVMatO<-OStat Cor(mdata) 

sthod I Jdata<-strehod(yselect)$sth 

sthod2 Jdata<-strehod(yselect)$st2 

sthod3 Jdata<-strehod(yselect)$st3 

Ffit I Jdata<-SenAnalysis(yselect,sthod 1 Jdata) 

Ffit2Jdata<-SenAnalysis(yselect,sthod2:...rdata) 

Ffit3 Jdata<-SenAnalysis(yselect,sthod3 Jdata) 

kmo _ val3 Jdata<-VData _ KMO(yselect,Ffit3 _rdata) 

237 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



kmo_vaI2Jdata<-VData_KMO(YSelect,Ffit2_rdata) 

kmo _vall Jdata<-VData _KMO(yselect,Ffit I_rdata) 

KMOIJdata<-KMO_Set(kmo_vallJdata) 

KM02Jdata<-KMO_Set(kmo_vaI2Jdata) 

KM03Jdata<-KMO_Set(kmo_va13Jdata) 

pare mfrow=c(3,2» 

plot(mdata[, I ],tymat[, I ],xlab=expression(y[1 )),ylab=expression(f(y[ I)))) 

plot(mdata[,2],fYmat[,2],xlab=expression(y[2)),ylab=expression(f(y[2]») 

plot(mdata[,3],tymat[,3],xlab=expression(y[3)),ylab=expression(f(y[3)))) 

plot( mdata[, 4 ],fYmat[,4 ],xlab=expression(y[ 4 )),ylab=expression(f(y[ 4)))) 

plot(mdata[,5],tymat[,2],xlab=expression(y[5]),ylab=expression(f(y[5)))) 

par(mfrow=c(3,2» 

plot(fymat[, I ],Tymat[, I ],xlab=expression(f(y[1 ]» ,ylab=expression(f(y[ 1 )))) 

plot(fymat[,2],Tymat[,2],xlab=expression(f(y[2]»,ylab=expression(f(y[2)))) 

plot(fymat[,3],Tymat[,3],xlab=expression(f(y[3])),ylab=expression(T(y[3)))) 

plot(fymat[,4],Tymat[,4],xlab=expression(f(y[4))),ylab=expression(T(y[4]») 

plot(fymat[,5],Tymat[,2],xlab=expression(f(y[5])),ylab=expression(T(y[5)))) 

#=================== 

#Using Original data . 

~================= 
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plot(sthod3,KM03 ty e-" " 
, p - 0 ,xlab=expression(delta[3]),ylab="KMO",col=1) 

plot(sthod3 rdata KM03 
- , Jdata,type="o",xlab=expression(delta[3]),ylab="K 

MO",col=2) 

#Example 2 

#Import data into R 

#Dataset3 : Concrete strength 

#========================= 

Datta<-read.spss(" concreteStrength.sav", use. value.label=TRUE, 

to.data.frame=TRUE) 

Mdata<-data.matrix(Datta)[,-c(8,9)] 

1 (Md' t)< ("Xl" "X2" "X3" "X4" "X5" "X6" "X7") co names a a -c , , , , , , 

#hi<-hpi(mdata) 

smooth yar<-unlist(lapply( seq.Jen( dim(Mdata)[2]),function(i) { 

hscv(Mdata[,i]) 

})) 

#hn<-hns(mdata ) 

Fitd<_DensFeat(Mdata,smyar,dProP==0.7) 

CVMat<-corrv(mdata2) 
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sthod I <-strehod( d 
m ata2)$sth 

sthOd2<-strehod( d 
m ata2)$st2 

sthOd3<-strehod(mdata2)$st3 

Sfitl <-SenAn I . ( a YSlS mdata2,sthodl) 

Sfit2<-SenAn I . ( a YSlS mdata2,sthod2) 

Sfit3<-SenAnalysis(mdata2,sthod3) 

lano _ va13<-VData _KMO(mdata2,Sfit3) 

kmo _ vaI2<-VData _ KMO(mdata2,Sfit2) 

kmo _vall <-VData _ KMO(mdata2,Sfit I) 

time! <-system. time(kmo _val I <-VData _ KMO(mdata2,Sfitl)) 

time2<-system.time(kmo _ vaI2<-VData _ KMO(mdata2,Sfit2)) 

time3<-system.time(kmo _ vaI3<-VData _ KMO(mdata2,Sfit3) 

KMOl<-KMO_Set(kmo_vaIl) 

KM02<-KMO_Set(kmo_vaI2) 

par(mfrow=c(2,2) ) 

( h dl KMO
I type="o" xlab=expression(delta[I)),ylab="KMO") 

plot st 0, , , 

2 KM
02; type=="o" xIab=expression( delta[2]),ylab="KMO") 

plot(sthod , , , 
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plot(sthod3 KM03 
, ,type="o" xl b= 

, a expression(delta[3]),ylab="KMO") 

APPENDIXB 

CODES FOR SIMUL 
ATING DATA BASED ON 

SIMULATION ON 

library(mirt) 

library(ltm) 

library(psych) 

library(polycor) 

d=matrix( c( 

ITEM RESPONSE THEORY 

SEVEN-POINT SCALE 

0.357,0.714,1.071,1.428,1 .785,2.142,2.5, 

0.331 ,0.662,0.993,1.324,1.655,1.986,2.32, 

0.283,0.566,0.849,1.132,1.415,1.698,1.98, 

_3.0,_2.574,_2.145,-1 .716,-1.289,-0.858,-0.429, 

_2.5,_2.142,-1.785,-1.428,-1.071,-0.714,0.357, 

_2.0,-1.716,-1.430,-1.144,-0-.858,-0.572,-0.286, 

0.300,0.600,0.900,1.200,1.500,1.800,1.830,2.1, 

_2 .5,-2.142,-1.785,-1.428,-1 .071,-0.714,0.357, 

0.286,0.572,0.858,1.144,1.430,1.716,2.0, 

0.376,0.752,1.128,1.504,1.880,2.256,2.63, 

0.321,0.642,0.963,1.284,1 .605,1.926,2.25, 

_1.7,-1.458,-1.215,-0.972,-0.729,-0.486,-0.243, 

-2 30 -1.974 -1.645,-1.316,_0.987,-0.658,-0.329, 
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0.3570714 
,. ,1.071,1.428,1.785,2.142,2.5, 

-2.7,-2316 1930 
. ,-. ,-1.544,-1.158,-0.772,_0.386, 

0.283,0.566,0.849,1.132,1.415,1 .698,1.98, 

-2.30,-1.974 -1 645 1 
,. ,- .316,-0.987,-0.658,-0.329, 

0.343,0.686,1.029,1.379,1.715,2.058,2.400 , 

0.450,0.900,1.350,1.800,2.250,2.700,3.15, 

-3.18,-2.724,-2.270,-1.816,-1.362,_0.908, -0.454, 

0.557,1 .114,1.671,2.228,2.785,3.342,3.9, 

0.386,0.772,1.158,1.544,1.930,2.316,2.7, 

0.304,0.608,0.912,1.216,1.520,1.824,2.13, 

0.286,0.572,0.858,1 .144,1.430, 1.716,2.0, 

0.367,0.734,1.101,1.468,1.835,2.202,2.57, 

-0.84,-0.72,-0.600,-0.480,-0.360,-0.240,-0.120, 

-0.20,-0.174,-0.145,-0.116,-0.087,-0.058,-0.029, 

-0.36,-0.306,-0.255,-0.204,-0.153,-0.102,-0.051, 

_0.63,_0.540,_0.450,_0.360,-0270,-0.180,-0.090, 

0.059,0.118,0.117,0.236,0.295,0.354,0.41, 

0.029,0.058,0.087,0.116,0.145,0.174,0.20, 

0.100,0.200,0.300,0.400.0.500,0.600,0.70, 

0.101,0.202,0.303,0.404,0.505,0.606,0.71, 

_0.51,-0.365,-0.292,-0.219,-0.146,-0.073, 

0.127,0.254,0.381 ,0.508,0.635.,0.762,0.89, 

_0.95,-0.816,-0.680,-0.544,-0.408, _0.272,-0.163, 

_0.65,-0.558,-0-.465,-0.372,-0.279,-0.186,.0.093, 

2 0 285 
-0 228 .0.171,-0.114,.0.057, 

_0.4,·0.34 ,.. ,. , 
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0.071,0.1420213 
,. ,0.284,0.355,0.426,0.5, 

-0.60,-0.516 -0 430 
,. ,-0.344,-0.258,-0.172,_0.086, 

0.129,0 .258,0.387,0.516,0.645,0.774,0.900, 

0.086,0 .172,0.258,0.344,0.430,0.516,0.600, 

0.057,0.114,0.171,0.228,0.285,0.342,0.400 , 

0.021,0.042,0.063,0.084,0.105,0.126,0.15, 

0.043,0.086,0.129,0.172,0.215,0.258,0.300, 

0.026,0.052,0.078,0.104,0.130,0.156,0.180, 

-0.76,-0.654,-0.545,-0.436,-0.327,-0.218,_0.109, 

0.033,0.066,0.099,0.132,0.165,0.198,0.230, 

-0.19,-0.162,-0.135,-0.108,-0.081,-0.054,-0.027, 

-0.4,-0.342,-0.285,-0.228,-0.171 ,-0.114, -0.057),ncol=7,byrow=TRUE) 

#Difficulty parameter 

d40=matrix( c( 

d[ c( 1 :20,26:45), 1 ),d[ c(1 :20,26:45),2),d[c( 1 :20,26:45),3), 

d[ c( 1 :20,26:45),4),d[ c(1 :20,26:45),5},d[ c( 1 :20,26:45),6], 

d[ c( 1 :20,26:45), 7) ,ncol=7 ,byrow=F ALSE) #40 Variables 

d30=matrix( c( 

d[ c(1 : 15,26:40), 1 ),d[c( 1: 15,26:40),2],d[ c(l: 15,26:40),3), 

d[ c(1: 15,26:40),4),d[ c(l: 15,26:40),5],d[c(l: 15,26:40),6], 

d[ c(l: 15,26:40), 7),ncol=7,byrow=F ALSE) #30 Variables 

#Two-dimensional Dataset 
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a2=matrix( c( 

2.00,0.54, 

2.00,0.25, 

1.80,0.30, 

2.50,0.01, 

2.13,0.33, 

1.79,0.05, 

2.05,0.59, 

1.88,0.31, 

1.95,0.60, 

2.33,0.46, 

1.80,0.56, 

1.30,0.90, 

1.75,0.l1, 

2.03,0.35, 

3.50,0.40, 

1.50,0.24, 

2.06,0.15. 

1.95,0.05, 

2.65,0.19, 

2.93,0.13, 

3.15,0.25, 

2.l7,0.20, 

1.95,0.16, 

2.15,0.09, 
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l.89,0.18 

\ 
0.54,2.00 

, 

, 

0.25,2.00, 

0.30,1.80, 

0.01,2.50, 

0.33,2.13, 

0.05, l.79, 

0.59,2.05, 

0.31,l.88, 

0.60,l.95, 

0.46,2.33, 

0.56,l.80, 

0.90,1.30, 

0.11,1.75, 

0.35,2.03, 

0.40,3.50, 

0.24,0.50, 

0.l5,2.06, 

0.05,1.95. 

0.19,2.65, 

0.13,2.93, 

0.25,3.l5, 

0.20,2.17, 

(}.l6,1.95, 

0.09,2.15, 
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0.18,1.89 

),neol==2 byrow==TRUE) #D' . . . 
' IsenmmatlOn parameter 

a2.40==matrix( e( 

a2[ e(1 :20), 1 ],a2[ e(1 :20),2], 

a2[ e(26:45), 1 ],a2[ e(26:45),2]),neol==2,byroW=F ALSE) 

set.seed(200 1 );data 1 ==simdata( a==a2.40,d==d40,N=200,itemtype=" gpem ") 

#Data simulation 

#Faetor Analyses 

FA40<-fa(r-data l,nfaetors = 2,n.obs = 200,rotate = "varimax",frn="pa",cor = 

"poly") 

r-FA40$r 

print(r,digits=3,max=2000) 

print(F A40$loading$,digits = 3) 

print(F A40$fit) 

#======================= 

#Three-dimensional Datasets 

a3 .4O=matrix( e( 

2.00,0.54,0.56, 

2.00,0.25,0.90, 

1.80,0.63,0.11, 

2.50,0.41,0.35, 
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2.13,0.33,0.40, 

1.79,0.05,0.24, 

2.05,0.59,0.15, 

1.88,0.31,0.05, 

1.95,0.60,0.19, 

2.33,0.46,0.13, 

1.80,0.56,0.25, 

1.30,0.90,0.20, 

1. 75,0.11,0.16, 

2.03,0.3.5,0.09, 

3.50,0.40,0.18, 

1.50,0.24,0.54, 

2.06,0.15,0.25, 

1.95,0.05,0.30, 

2.65,0.19,0.01, 

2.93,0.13,0.33, 

0.54,2.00,0.56, 

0.25,2.00,0.90, 

0.30,1.80,0.11, 

0.01,2.50,0.35, 

0.33,2.13,0.40, 

0.05,1.79,0.24, 

0.59,2.05,0.15, 

0.31,1.88,0.05, 

0.60,1.95,0.19, 
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0.46,2.33,0.13, 

0.56,1.80,0.25, 

0.90,1.30,0.20, 

0.11,1.75,0.16, 

0.15,0.54,2.00, 

0.05,0.25,2.00, 

0.19,0.30,1.80, 

0.13,0.0 I ,2.50, 

0.25,0.05,2.13, 

0.20,0.5.9,1.79, 

0.16,0.31 ,2.05 

),ncol=3,byrow=TRUE) #40 Variables 

a3.30=rnatrix( c( 

2.00,0.54,0.56, 

2.00,0.25,0.90, 

1.80,0.63,0.11, 

2.50",0.41,0.35, 

2.13,0.33,0.40, 

1.79,0.05,0.24, 

2.05,0.59,0.15, 

1.88,0.31,0.05, 

1.95,0.60,.0.19, 

2.33,0.46,0.13, 

1.80,()..56,0.25, 
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1.30,0.90,0.20 , 

l.75,0.11,0.16 , 

2.03,0.35,0.09 , 

3.50,0.40,0.18, 

0.54,2.00,0.56, 

0.25,2.00,0.90, 

0.30, l.80,0 11 . , 

0.01,2.50,0.35, 

0.33,2.13,0.40, 

0.05,1.79,0.24, 

0.59,2.05,0.15, 

0.31,1.88,0.05, 

0.60,1.95,0.19, 

0.46,2.33,0.13, 

0.15,0.54,2.00, 

0.05,0.25,2.00, 

0.19,0.30,1.80, 

0.13,0.01,2.50, 

0.25,0.05,2.13 

),ncol=3,byrow=TRUE) #30 Variables 

set.seed(2001 );data2=simdata( a=a3 .30,d=d30,N=200,itemtype=" gpcm ") 

#Data simulation 

set.seed(200 1 );data3=simdata( a=a3 .40,d=d40,N=200,itemtype=" gpcm ") 

25(} 
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#Factor Analyses 

FA30<-fa(r=data2,nfactors = 3,n.obs = 200,rotate = "varimax",fm="pa",cor = 

"poly") 

r=FA30$r 

print(r,digits=3,max=2000) 

print(F A30$loadings,digits = 3) 

print(F A30$fit) 

FA40<-fa(r=data3,nfactors = 3,n.obs = 200,rotate = "varimax",fm="pa",cor = 

"poly") 

r=FA40$r 

print(r,digits=3,max=2000) 

print(F A40$loadings,digits = 3) 

print(F A40$fit) 
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