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High mobility group box 1 (HMGB1) is constitutively expressed by many cells. In cells, HMGBI1 is a transcription
factor or transcription enhancer that is involved in nucleosome sliding, DNA repair, V(D)J recombination, tel-
omere homeostasis, autophagy and viral sensing. HMGB1 can also be secreted or released by stressed cells and
serves as an alarmin, cytokine or growth factor to activate the immune response. This protein facilitates CD4* T
cell differentiation and tissue repair through binding with its receptors, including toll-like receptors (TLRs) and
the receptor for advanced glycation end-products (RAGE). Recent works have established that HMGB1 plays

many vital functions in cardiac inflammatory injury, cardiac regeneration and remodelling. The present review
addresses the novel role of HMGB1 in secretion and cardiomyocyte senescence and in the dual faced roles of
HMGBI in cardiac inflammatory injury, inflammatory resolution and cardiac regeneration and remodelling

following cardiac injury.
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1. Introduction

High-mobility group box 1 (HMGB1) is a highly conserved DNA
shepherding protein that is ubiquitously expressed in almost all cells.
Generally, HMGBI is located in the nucleus, but it can also translocate
to the cytoplasm and the extracellular microenvironment during cell

activation, injury or death. Extracellular HMGB1 can be actively se-
creted from multiple cell types during stress, including macrophages,
monocytes, natural killer cells (NK), dendritic cells (DCs), endothelial
cells, fibroblasts, cardiomyocytes, cancer cells and platelets, or it be
passively released from necrotic or damaged cells [1]. However, the
biological activity of HMGB1 depends on its location, context and post-
translational modification [2]. For example, in the nucleus, it acts as a
nuclear DNA chaperone that takes part in DNA replication, transcrip-
tion, V(D)J recombination, repair, and chromatin stability, and it reg-
ulates the transcriptional activity of p53, nuclear factor (NF)-«B, steroid
hormone receptors and glucocorticoid receptors [3,4]. HMGB1 can
regulate the number of ribosomes and their activity [5]. In the cyto-
plasm, HMGBI1 regulates autophagy and apoptosis [6]. However, ex-
tracellular HMGBI1 can serve as a damage-associated molecular pattern
(DAMP) or alarmin to activate immune responses, play key roles in cell
differentiation and development, facilitate the development of in-
flammation, cancer and autoimmune disease and facilitate micro-
vascular rolling and adhesion through engagement with its cell-surface
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receptors on cells [7-9]. Additionally, HMGB1 can also promote tissue
regeneration [10] and organic fibrosis [11]. Furthermore, HMGB1 has
also been documented to play integral roles in the pathogenesis of
chronic inflammatory-mediated cardiac diseases including chronic
myocarditis, which is a chronic inflammatory disorder that involves
ventricular remodelling, hypertrophy and fibrosis (Fig. 1) [12]. How-
ever, there are some controversial data that indicate that HMGB1 has
cardioprotective properties [13]. Therefore, the present review will
focus on the recent research regarding HMGB1 secretion, HMGBI1 as a
determinant of cell fate and the dual faced roles of HMGB1 in cardiac
inflammatory injury, inflammatory resolution, and in cardiac re-
generation and remodelling after cardiac injury.

2. The general characteristics of HMGB1
2.1. HMGBI structure

HMGB1 contains 215 amino acids and has a tripartite structure
consisting of two DNA-binding domains, the A box (amino acid residues
9-79) and B box (amino acid residues 95-163), and a C-terminal tail
domain that is negatively charged and is composed exclusively of 30
glutamic and aspartic acids [14]. The A and B boxes can bind DNA, and
the C-terminal region can bind to histones; the C-terminal region can
also interact with the A and B boxes, modifying the 3-dimensional
structure of HMGB1 and its molecular interactions [15]. Additionally,
the C-terminal acidic tail is suggested to play an indispensable role in
regulating DNA binding and DNA damage repair and is responsible for
the inhibitory effects of HMGB1 on efferocytosis [16]. Unlike histones,
HMGB]1 binds to DNA with low affinity and can move from the nucleus
to the cytoplasm depending upon the cell cycle phase [17]. HMGB1
shows preferences for certain DNA structures, such as bends or cruci-
form, consistent with a role in modifying nucleosomal structure to
regulate transcription, recombination or repair [18].
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Fig. 1. The multiple roles of HMGBI.
HMGB]1 binds with RAGE, TLRs, CD24/Siglec-
10, Mac-1, thrombomodulin, CXCR4 or single
transmembrane domain proteins (e.g., synde-
cans). It activates NF-kB, mTOR and other
pathways and is involved in tissue regenera-
tion, organ fibrosis, immunoregulation, au-
tophagy and inflammatory disorders.

2.2. HMGBI isoforms

HMGBI contains three redox-sensitive cysteine residues (C23, C45,
and C106) in the A and B box. C23 and C45 can form an intramolecular
disulphide bond, whereas C106 is unpaired and is essential for inter-
action with ligands such as TLR2/4 [19]. According to the redox status
of the three cysteine residues, HMGB1 can be modified into three iso-
forms, termed all-thiol HMGB1, disulphide HMGB1 (partially oxidized),
and oxidized HMGB1 [20,21] (Fig. 2). All-thiol HMGBI1 is known to
bind to other chemokines (e.g., CXCL12) and stimulates leukocyte re-
cruitment via the CXCR4 receptor [22]. All-thiol HMGB1 can also
promote the regeneration of multiple tissues by transitioning stem cells
to GAlert or through the CXCR4 receptor pathway [10,23]. Disulphide
HMGB1 has the ability to activate immune cells to produce cytokines/
chemokines via TLR2/4 or other receptors such as RAGE [22,24], TLRY,
cluster of differentiation 24 (CD24)/Siglec-10 [24], Mac-1, thrombo-
modulin [25], or single transmembrane domain proteins (e.g., synde-
cans) (Fig. 1) [20]. Structure-function studies have shown that the ex-
tracellular cytokine activities of HMGB1 reside within the B box.
However, the cytokine role of the B box can be competitively inhibited
by the specific HMGB1 antagonist, truncated A box protein [26].

2.3. Regulation of HMGBI1 expression

As a housekeeping gene, HMGBI is ubiquitously expressed by al-
most all cells. However, the expression level correlates with the dif-
ferentiation stage of cells, such as low in differentiated cells, and high in
undifferentiated cells [27]. HMGB1 expression is regulated at three
levels: transcription, translation, stability of the mRNA and protein it-
self. HMGBI is a compact gene, its transcription is at the two-cell stage
in mice. HMGB1 has a TATA-less promoter in human, however, a si-
lencer target on upstream of the promoter will reduce HMGB1 tran-
scription. Conversely, the enhancer can increase HMGB1 transcrip-
tional activity [28]. Additionally, p53, CCAAT-binding transcription
factor 2 (CTF2) and JAK/STAT are also involved in regulation of
HMGBI1 expression [3,4].
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Fig. 2. The structure and isoforms of HMGB1. HMGBI contains three redox-sensitive cysteine residues (C23, C45, and C106) in the A and B box. According to the
redox status of the three cysteines, HMGB1 can be modified into three isoforms, which are termed all-thiol HMGBI1, disulphide HMGB1 (partially oxidized), and
oxidized HMGB1. The B box has cytokine activities; however, the A box can competitively inhibit B box activities. The C-terminal acidic tail is the transcriptional

modulation region.

3. HMGBI1 shuttle and cellular senescence

Interestingly, under stress, HMGB1 shuttles continually between the
nuclear and cytoplasmic compartments in a tightly regulated way
[29,30]. HMGB1 shuttling or translocation is linked with cellular se-
nescence. Cellular senescence is an irreversible arrest of the cell cycle
that occurs when cells are at the end of their replicative potential or
under stress, for example, oxidative stress, DNA damage, irradiation or
oncogenic activation.

Generally, cellular senescence is considered a protective response
that can inhibit cancer development and limit the extent of organic
fibrosis. However, excessive accumulation of senescent cells leads to
detrimental consequences, such as age-related disease [31]. HMGB1
plays multiple roles in the cell, such as contributing to nucleosome
formation, increasing the affinity of transcriptional factors for the
chromosome, and stabilizing DNA during replication and repair in
nucleus. However, HMGBI1 can redistribute or re-localize to the extra-
cellular milieu in senescent cells. The HMGBI1 shuttle induces a p53-
dependent cellular senescence. Therefore, the HMGB1 shuttle has been
considered a marker of senescent cells [31-33]. Furthermore, extra-
cellular HMGBI can stimulate inflammatory cytokine secretion through
TLR2/4 and NF-xB signalling and precedes senescence-associated se-
cretory phenotype (SASP) production, which is a hallmark of cellular
senescence [34,35].

4. HMGBI1 release
4.1. Active secretion of HMGBI is extensive existence

HMGB1 can be passively released by damaged, primary or sec-
ondary necrotic cells as well as apoptotic cells [36]. HMGB1 released by
necrotic cells has cytokine activity; however, if released by apoptosis, it
has a tolerogenic characteristic [37]. During apoptosis, HMGB1 is oxi-
dized by C106, which limits HMGBI1 binding to different partners and/
or receptors. Additionally, C106 locates the B box, which can also ex-
plain the lack of cytokine activity. Previous data demonstrated that
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HMGBI1 can also be actively secreted by macrophages or DCs [38].
However, many non-immune cells can also actively secrete HMGB1
under stress; for example, platelet-derived HMGB1 not only is a critical
mediator of thrombosis but also supports bacterial clearance [39,40].
MCF-7 cell-derived HMGB1 contributes to breast cancer development
by supporting M-MDSC differentiation from bone marrow progenitor
cells and facilitating conversion of monocytes into MDSC-like cells [41].
Furthermore, cardiomyocytes and cardiac fibroblasts can secrete
HMGB1, and HMGB1 can promote cardiac injury or cardiac fibrosis
[42,43]. The active secretion of HMGBI is extensive existence, and
HMGB1 derived from different cells has specific biological activities.

4.2. Post transcriptional modifications and active secretion of HMGB1

Active secretion of HMGB1 requires relocation of the protein from
the nucleus to the cytosol or lysosomal compartment and limitation of
newly synthesized HMGB1 nuclear re-entry by post-translational mod-
ifications, such as methylation, phosphorylation, and acetylation
[44-47]. HMGB1 does not contain a secretory leader peptide; therefore,
HMGBI1 secretion is not dependent on the classical endoplasmic re-
ticulum (ER)-Golgi pathway but instead on a dedicated unconventional
secretory pathway [48,49]. The active secretion of HMGBI1 requires
relocation from the nucleus, which is associated with post-translational
modifications of lysine or serine residues and prevents nuclear locali-
zation [45]. For example, calcium/calmodulin-dependent protein ki-
nase (CaMK) IV-dependent serine phosphorylation of HMGBI1 con-
tributed to the HMGB1 shuttle [50]. Acetylation of lysine residues also
plays a critical role in HMGB1 secretion, which facilitates HMGB1 ac-
cumulation in secretory lysosomes. Hyperacetylation of lysine residues
not only increases the activity of acetyltransferases but also decreases
the activity of deacetylase enzyme histone deacetylase (HDAC) 1, 4 and
5 [51,52]. Sirtuin-1(SIRT1) dissociates from HMGB1 during shuttling
from the nucleus to the cytosol and promotes the acetylation of HMGB1
[53,54]. Although the translocation of HMGBI into the cytosol requires
post-translational modifications, there are other factors involved in the
process. For example, following DNA-alkylating damage, poly(ADP)-
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Fig. 3. Secretion or release of HMGB1. HMGB1 can be passively released by apoptosis, necrosis or necroptosis. However, only HMGB1 from necrosis and ne-
croptosis can induce biological activities. HMGB1 can also be actively secreted by cardiac fibroblasts, cardiomyocytes, dendritic cells or macrophages, as well as
platelets. HMGB1 secreted by nucleated cells is mainly independent of the ER-Golgi pathway. Conversely, deacetylase enzymes HDAC 1, 4 and 5, SIRT1, and post-
translational modifications are involved in this process. However, the detailed mechanism of HMGBI1 secretion by platelets remains unclear.

ribose polymerase (PARP) is required for HMGBI1 to translocate from
the nucleus to the cytosol [55]. Of course, other secretion mechanisms
may be existence, such as platelet-derived HMGB1. As is known, pla-
telets do not have a nucleus; thus, there is no translocation from the
nucleus to the cytosol in these cells (Fig. 3).

5. HMGB1 and cardiac injury
5.1. HMGBI in inflammatory development following cardiac injury

HMGB1 was proposed to link cardiomyocyte necrosis, necroptosis
or apoptosis following cardiac injury in myocardial infarction induced
by ischaemia/reperfusion (I/R) injury and myocarditis [56]. However,
the effects of HMGB1 on cardiomyocyte necrosis, necroptosis and
apoptosis are still controversial. For example, some research has shown
that HMGB1-enhanced cardiomyocyte apoptosis contributed to myo-
cardial I/R injury and hyperglycaemia development [57,58]. Con-
versely, Narumi et al. showed that intracellular HMGB1 attenuated
doxorubicin-induced cardiomyocyte apoptosis [58]. Furthermore, Lin
et al. showed that HMGB1 cannot change the expression of total or
cytosolic Bax in cardiomyocytes, which indicates that HMGB1 does not
increase mitochondrial translocation of Bax or cardiomyocyte apoptosis
[59]. However, these differences may be caused by the HMGBI1 source
or HMGBI1 modification. Furthermore, research has also indicated that
HMGBI is an autophagy sensor [60,61]. ROS produced from heart in-
jury can increase HMGB1 translocation from the nucleus to the cytosol
and thereby enhance autophagic flux [60], which implies that HMGB1
translocation induces autophagy after prolonged cellular stress.
Therefore, we can speculate that HMGB1 is detrimental for cardio-
myocytes during initial stages of cardiac injury.

HMGB1, as a critical inflammatory factor, can promote in-
flammatory cytokine production, recruit inflammatory cell infiltration
and modulate lymphocyte activation, polarization or differentiation by
acting on potential receptors that result in tissue damage [62]. How-
ever, accumulating evidence shows that HMGBI1 plays a dual faced role
in cardiac injury and remodelling. Cardiomyocytes respond to different
pathological injuries in a coordinated multistep process. Basically, three
distinct events characterize the process of cardiac injury and sub-
sequent inflammation, as follows: (i) production of inflammatory
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mediators (mainly cytokines and chemokines) by stressed/damaged
cardiomyocytes; (ii) recruitment of inflammatory cells to the damaged
heart, leading to cytokine secretion that exacerbates cardiac injury, and
(iii) release of anti-inflammatory signals or factors to induce lympho-
cyte apoptosis or homing and inflammatory resolution, and (iv) oc-
currence of wound-healing processes and heart remodelling [63].

Cardiomyocytes produce DAMPs such as HMGB1. HMGBI1 activates
endothelial cells, expresses chemokine receptors, produces in-
flammatory factors, and induces cardiomyocyte necrosis or necroptosis.
Furthermore, HMGB1 promotes the recruitment of inflammatory cells,
such as macrophages and neutrophils, to the injured heart by CXCL12/
CXCR4. Macrophages are found extensively in all body tissues and ex-
hibit high plasticity and functional heterogeneity. Macrophages parti-
cipate in host defence against pathogens, foetal and tissue development,
metabolism, and wound healing [64]. In this milieu, macrophage dif-
ferentiation/polarization can be divided into two phenotypes, the
classical M1 and alternative M2 phenotypes, which mirror Th1-Th2
polarization and represent two extremes of macrophage activation state
changes [65]. The M1 phenotype is closely linked with tissue destruc-
tion and inflammation [66]. HMGB1 has been reported to transduce
signals by interacting with important receptors, including RAGE and
TLR2/4. TLR2/TLR4 and RAGE signalling induce NF-xB and extra-
cellular signal-regulated kinases (Erk)1/2 signalling, which trigger cy-
tokine production [67]. Alternatively, activated M2 macrophages are
stimulated by IL-4/13, which restricts inflammatory responses through
IL-10 secretion and mediates tissue repair [68]. It was previously de-
scribed that CD68™ macrophages accumulate during ischaemic heart
disease and idiopathic dilated cardiomyopathy and cause the release of
M1 macrophage-associated pro-inflammatory factors [69], such as IFN-
y, IL-6, IL-1B, and TNF-a [70]. Moreover, in ageing SAMP8 mice,
CD68™ cells accumulate in the heart with the upregulation of HMGB1,
IFN-y, IL-6, IL-1f3, TNFa, TNFR1 and COX2 expression [71].

The traditional hypothesis regarding tissue macrophage develop-
ment was that circulating monocytes differentiate into tissue macro-
phages. However, recently, tissue resident macrophages might be es-
tablished prenatally, persist through adulthood, and self-renew by
proliferation or by independent or partially dependent input from cir-
culating monocytes [72]. Cardiac resident macrophage renewal is de-
pendent on proliferation and input from -circulating monocytes.
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Following cardiac injury, cardiac resident macrophages home to per-
ipheral immune organs. HMGB1 and angiotensin II (ANG II) produced
by stressed cardiomyocytes or immune cells can recruit Ly6C* mono-
cytes into the injured heart [73] and reprogram the infiltrated mono-
cytes into M1 macrophages. The reprogrammed M1 macrophages can
promote CD4 " T cell expansion and promote cardiac injury in experi-
mental autoimmune myocarditis (EAM) (Fig. 4) [74].

CD4*T cells regulate appropriate cellular and humoral immune
responses in the progression of many diseases, including myocarditis.
We have previously reported that crosstalk between cardiomyocytes
and other CD4™ T cells is responsible for the pathogenesis of myo-
carditis [75]. Endogenous or exogenous HMGB1 is known to play a role
in DC activation and CD4* T cell polarization [76], and after priming,
CD4*T cells can differentiate into several major effectors subsets, in-
cluding Thl, Th2, Th9, Treg and Th17 cells. Emerging evidence has
demonstrated that several Th subsets, such as Th1, Th2, Treg, and Th17
cells, but not Th9 cells, are involved in the pathogenesis of myocarditis
[77]. Additionally, HMGBI1 can directly promote Th17 cell expansion or
can indirectly facilitate macrophage reprogramming to M1 phenotype.
Th17 cells produce IL-17, recruit neutrophils and accelerate cardiac
injury in an EAM model (Fig. 4) [78].

5.2. HMGBI and efferocytosis, cardiac inflammatory resolution

The removal of apoptotic cells, also called efferocytosis, is an im-
portant characteristic of immune responses and is essential for in-
flammatory resolution. Deficient clearance and impaired efferocytosis
are associated with an unfavourable outcome in acute and chronic in-
flammatory diseases [79]. HMGB1 diminishes phagocytosis of apop-
totic neutrophils by macrophages in vivo and in vitro via binding to
phosphatidylserine (PS) on the surface of apoptotic neutrophils [80].
Friggeri et al. demonstrated that the interaction of HMGB1 with avf33-
integrin on the macrophage surface abrogates the binding of milk fat
globule EGF factor 8 (MFG-E8) to these structures and thereby affects
opsonin activity [81]. Of course, the data also suggest that the HMGB1
C-terminal tail is responsible for the inhibitory effects of HMGB1 on
efferocytosis. All the data show that HMGB1 can prolong the in-
flammatory process by inhibiting efferocytosis of macrophages.
Therefore, HMGB1 blockade could significantly ameliorate
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Fig. 4. HMGB1 promotes EAM development
by facilitating Th17 expansion or benefiting
the polarization of monocytes/macro-
phages. In the EAM model, HMGB1 and an-
giotensin II (ANG II) are produced following
cardiac injury. On the one hand, HMGBI1 di-
rectly promotes Th17 cell expansion, and on
the other hand, HMGBI1 facilitates monocyte/
macrophage polarization into the M1 pheno-
type and then induces a Thl7-mediated im-
mune response. Furthermore, ANG II recruits
Ly6C* monocytes/macrophages from the
spleen into the heart, and angiotensin II in-
duces polarization of the cells into an M1
phenotype. Additionally, ANG II and HMGB1
can crosstalk and form a positive loop.

inflammatory progression.

Although immune activation and persistent inflammation are
thought to contribute to the progression of myocarditis, the specific
pathological mechanisms and exact cause of immune activation remain
unknown. The active inflammatory status during the pathogenesis of
myocarditis may cause increased levels of myeloid-derived suppressor
cells (MDSCs) that lead to the maintenance of immune homeostasis.
MDSCs, a heterogeneous population of cells, play a vital role in the
subversion, inhibition, and downregulation of the immune response to
cancer, autoimmune diseases, and inflammation-mediated diseases,
including myocarditis. Increases in the frequencies and suppressive
functions of circulating CD14*HLA-DR™/'°" MDSCs are found in di-
lated cardiomyopathy (DCM) patients compared with healthy controls,
indicating the participation of MDSCs in the immunomodulatory pro-
cess of DCM. As a defensive response to pathogens near or within
cardiac myocytes, activated monocytes and lymphocytes migrate to the
myocardium [82]. The presence of these cells induces the production of
inflammatory mediators, which activate MDSCs, drive their accumu-
lation, and strengthen their suppressive activity [83,84]. Zhang et al.
hypothesized that MDSCs may participate in the immunomodulatory
process through the suppression of uncontrolled T cell activation par-
tially via Arg-1, which further leads to myocardial injury and ag-
gravation of cardiac function, thereby preventing the development of a
more severe and fatal immune response in DCM patients [85].
Gr1*CD11b* MDSCs, especially Ly6C*CD11b* MDSCs, are upregu-
lated in the EAM mouse model [86]. Given these findings, we hy-
pothesize that the local contexts of inflammatory microenvironments
may greatly influence the tissue recruitment, retention, and im-
munomodulatory capabilities of MDSCs, which subsequently suppress
abnormal immune responses and prevent the development of a more
severe and possibly fatal immune response in cardiac patients. HMGB1
is likely to activate and drive MDSCs because it induces, chaperones,
and/or enhances the activity of several pro-inflammatory molecules
that regulate MDSCs [87]. For example, IL-1f drives MDSC accumula-
tion and T cell suppressive activity and is induced by HMGB1 [88].
Complexes of HMGB1 and IL-1p have increased pro-inflammatory ac-
tivity relative to either molecule alone [89]. Furthermore, HMGB1 from
cancer cells could promote M-MDSC differentiation from bone marrow
progenitor cells and facilitates conversion of monocytes into MDSC-like
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Fig. 5. Is HMGBI1 a great scourge or flowing water?

cells [41,87].

However, a novel family of innate immune cells (ILCs) has recently
been characterized and found to play an essential role in the initiation,
development and resolution of inflammation. ILCs include three sub-
sets, termed group 1, 2 or 3 ILCs, according to the expression of dif-
ferent surface markers, transcription factors and cytokines [90]. ILCs
are enriched at barrier surfaces, such as the skin, intestine, and lung, as
well as in adipose tissue and some mucosal-associated lymphoid tissues
[91-93]. ILCs also exist in the heart under cardiac stress (data un-
published). ILCs benefit the acute inflammatory response or the re-
sponse against pathogens. Furthermore, ILCs also directly contribute to
inflammatory resolution by repairing damaged tissues in the lung,
gastrointestinal tract and various lymphoid tissues, which is essential to
limit inflammation, prevent against re-infection, and remodel tissues.
All-thiol or disulphide HMGB1 could promote ILC3 expansion, and the
expanded ILC3 population produced high levels of IL-22 to ameliorate
EAM development (data unpublished). Therefore, results regarding the
pro-inflammatory or anti-inflammatory roles of HMGBI1 following car-
diac injury are controversial. One possible explanation is attributed to
different isoforms of HMGBI1, and the second is associated with the
stage of the disease development. Some factors are released during a
specific stage of disease development, and the specific factors may form
a complex with HMGB1 and play completely different roles. Of course,
the controversy may be caused by the different sources of HMGB1 used
by different research groups.

5.3. HMGBI in cardiac fibrosis and cardiac functional remodelling

Cardiac fibrosis is a common pathophysiologic companion of most
cardiac diseases and is usually associated with systolic and diastolic
dysfunction, arrhythmogenesis and other adverse outcomes [94]. Car-
diac fibrosis, which is characterized by over-accumulation of myofi-
broblasts and deposition of increasing amounts of extracellular matrix
(ECM) proteins in the myocardium, is defined as a key component of
heart failure [95]. In other words, activated myofibroblasts are effector
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cells in cardiac fibrosis. Several other cell types, including cardiomyo-
cytes, endothelial cells, pericytes, macrophages, lymphocytes, and mast
cells, contribute to the fibrotic process by producing proteases that
participate in matrix metabolism through the production of fibrogenic
mediators and matrix proteins [94]. The molecular mechanisms un-
derlying cardiac fibrosis are not clear, and the factors contributing to
cardiac dysfunction remain to be explored. Recently, HMGBI is upre-
gulated in the heart tissue and serum, and HMGB1 blockade can ame-
liorate cardiac fibrosis in EAM; however, it is unknown whether high
levels of HMGB1 in EAM can directly lead to cardiac fibrosis. Cardiac
endothelial cells, cardiomyocytes and cardiac fibroblasts/myofibro-
blasts can actively secrete HMGB1, and HMGB1 leads to cardiac fibrosis
via autocrine PKCP activation, HMGB1 blockade could efficiently
ameliorate cardiac fibrosis in EAM mice [42,43].

As is well-known, unlike during embryonic development, adult
mammalian cardiomyocytes fail to proliferate, replenish or regenerate
in the heart following injury, which is a leading cause of heart failure
and death worldwide. All adult mammals have limited cardiac re-
generation potential; in contrast, some vertebrates, such as the newt
and zebrafish, can regenerate their myocardium throughout life
[96,97]. However, some data indicate that mammals have cardiac re-
generation potential during their adult life, including humans [98,99].
Additionally, the neonatal mouse heart has a regenerative ability im-
mediately after birth [100]. Since the HMGB1 shuttle is considered a
key determinant of senescent cells [31-33], whether HMGB1 is asso-
ciated with cardiac regeneration has been an important question. Re-
cently, all-thiol, not disulphide, HMGBI1 orchestrates muscle and liver
regeneration via the CXCR4 pathway [10]. The mechanisms of cardiac
regeneration among model organisms or neonatal mice are similar.
Inflammation, ECM deposition, functional remodelling, and cardio-
myocyte proliferation are found in heart regeneration models, but why
adult mammals develop extensive scarring instead of undergo re-
generation remains a crucial question.
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6. Concluding remarks

Many studies have demonstrated that HMGBI1 plays different roles
in cardiac injury depending on localization, post-translational mod-
ifications and receptor binding, and the various mechanisms underlying
the activities of HMGB1 have also been described. In conclusion,
HMGBI plays a dual faced role in cardiac injury. HMGB1 can aggravate
inflammatory damage, but a timely HMGB1 blockade can effectively
ameliorate the progression of cardiac damage. In this regard, HMGB1 is
like a flood induced by the pouring rain; the correct guidance can ir-
rigate the field and moisturize the seedlings. Conversely, its action can
be like a great scourge, which can destroy a home (Fig. 5). Therefore,
we can speculate that HMGB1 is a potential checkpoint for cardiac

injury.
7. Remaining questions for the future

However, there are also many questions that need to be addressed,
including the following: 1) As a nuclear factor, how does HMGB1
modulate or control cardiomyocyte senescence? Is HMGB1 a check-
point of cardiomyocyte fate?; 2) As a cytokine, does HMGB1 benefit
cardiac regeneration?; 3) Since the resolution of inflammation is an
active process, does HMGB initiate the resolution of inflammation fol-
lowing cardiac injury? 4) There is undoubtedly that HMGB1 is a critical
effector molecule and plays an important role in cardiac injury, which
makes HMGBL1 as an attractive biomarker and therapeutic target. The
neutralizing anti-HMGBI1 antibodies and recombinant A box have been
used and shown success in animal models. Next, HMGB1 antagonists
will be used for cardiovascular diseases and safety will be an important
issue.
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