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Vector-borne disease control relies on efficient vector surveillance, mostly

carried out using traps whose number and locations are often determined

by expert opinion rather than a rigorous quantitative sampling design. In

this work we propose a framework for ecological sampling design which

in its preliminary stages can take into account environmental conditions

obtained from open data (i.e. remote sensing and meteorological stations)

not necessarily designed for ecological analysis. These environmental

data are used to delimit the area into ecologically homogeneous strata. By

employing Bayesian statistics within a model-based sampling design, the

traps are deployed among the strata using a mixture of random and grid

locations which allows balancing predictions and model-fitting accuracies.

Sample sizes and the effect of ecological strata on sample sizes are estimated

from previous mosquito sampling campaigns open data. Notably, we found

that a configuration of 30 locations with four households each (120 samples)

will have a similar accuracy in the predictions of mosquito abundance as

200 random samples. In addition, we show that random sampling indepen-

dently from ecological strata, produces biased estimates of the mosquito

abundance. Finally, we propose standardizing reporting of sampling

designs to allow transparency and repetition/re-use in subsequent sampling

campaigns.
1. Introduction
Sampling design is a crucial step in any survey as it affects the quality of data col-

lection and analysis [1]. Sampling strategies should therefore be designed to

maximize the effectiveness of the study, using any relevant preliminary and back-

ground data available [2]. Furthermore, because published sampling strategies

frequently inspire designs for future studies, both the design details and justifica-

tion should be rigorously reported. Despite improvement in recent years, both the
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use of available informative data and the rigour with which

sampling designs are reported continue to fall short of what

could be achieved [3]. Specifically, the amount of environ-

mental data available from open-data platforms is often

acknowledged but rarely exploited to support sampling

design, while the necessary information for study repeatability,

comparability or usability are often inadequately reported.

Such data, even when not collected for ecological analyses,

can support representativeness in investigations of population

dynamics, epidemiological processes and biological studies.

Here we use an example from malaria vector surveillance to

design a sampling strategy for collecting mosquitoes for

whole genome sequencing based monitoring and evaluation.

Genomic technologies are radically transforming our

understanding of vector-borne disease transmission dynamics

[4] due to the capacity to unveil complex interaction between

human, pathogen, vector and environment. Whole genome

sequencing projects have revealed novel genetic loci associated

with increased susceptibility to malaria in the human host

[5,6] and made major contributions to our understanding

of how anti-malarial and insecticide resistance evolves [6].

However, the impact of environment on genotype distri-

butions is much more poorly understood, reflecting at least

in part the use of insufficiently ecologically informed sampling

strategies. Much of the sampling conducted in vector surveil-

lance studies is opportunistic and lacks a rigorous sampling

framework. Often, ecological and entomological sampling

designs rely solely on resource availability rather than

aiming to maximize representativeness and precision of

the variable of interest, e.g. collectors target locations where

disease vectors are known to be abundant.

Designing a field sampling strategy requires three

decisions: what is the variable of interest (formally the

estimator, e.g. vector density), the sampling approach

(e.g. model-based or not) and sampling location distribution

(e.g. the number and spatial / temporal allocation of

sampling points). These decisions constitute the sampling

strategy trinity [7] in which each element strictly depends

on the other two. Sampling strategies are further complicated

by deterministic (e.g. due to age, environment, socio-

economic, etc.) and stochastic (i.e. spatio-temporal autocorre-

lation) factors. Our literature search in Web of Science on

spatial sampling of mosquitoes (search terms: mosquito OR

anopheles AND sampling AND spatial, in title/keywords/

abstract—last access in August 2018) shows that while all

studies provide a general description of the sampling

design, only a limited number of papers (i.e. [8–11]) give a

detailed description of the rationale, decisions and calcu-

lations related to the ‘Where, When, How and How many’

samples to collect (see for example the reviews from [12]

and [13]). In other literature, partial justification of the

sampling design is provided. For example, [14–22] used pre-

vious surveillance information and remote sensing data to

identify potential mosquito habitat types (or, in statistical

terms, ‘strata’). However, the method used or assumptions

made to choose the within-strata location and number of

traps were not described, perhaps because these were entirely

guided by practical considerations (i.e. [23]) or due to the

high level of complexity or uncertainty in the scope of the

sampling, which makes quantitatively-driven spatial

sampling design very difficult (for example when the scope

is describing a concurrent variety of species such as Ano-
pheles, Culex and Aedes) [24,25]. Conversely, descriptions of
sampling over time are often provided in detail, with explicit

information on the frequency and length of the sampling

campaign.

The picture that emerges from the literature is that using

habitat stratification to inform sampling is a common pro-

cedure in vector biology, but often based on subjective or

qualitative decisions. However, stratification has a fundamen-

tal role in describing and reducing the error in estimates of

mosquito variation, which in turn influences surveillance

success, assessment of epidemiological risk and genetic

diversity [26]. Identifying a set of (independent) environ-

mental variables homogeneous within strata allows a better

representation and representativeness of the environment

related to the property or properties under study (i.e. insect

abundance and insecticide resistance) [13]. Unless the spatial

or spatio-temporal autocorrelation of the property under

study is tested and found negligible [27], these approaches

often incorrectly assume independence between samples in

space and time [28], which is an unrealistic assumption for

most of the ecological processes. Spatial and spatio-temporal

heterogeneity can be accounted for in sampling design by

adopting a geostatistical model-based sampling design [8,29].

Ecological stratification of sampling designs is now facili-

tated by web-based open data providers, allowing rapid

access to large amounts of information on climate and land-

use, which are commonly associated with biogeographic

patterns of human and animal health and species distribution

[30]. This availability of open data (largely remote sensing)

for almost every global location, combined with appropriate

spatio-temporal algorithms [15], make quantitative ecological

stratification more accessible as a preliminary step to any

sampling programme. Nevertheless ‘very few studies propose,
at an early phase of research work, objective sampling strategies
that are consistent with both study goals and constraints’ [13].

In this work we propose a framework for optimizing the

sampling design of the spatial distribution of mosquito

populations using open data, which we hope will be relevant

to a wide range of ecological, disease monitoring and genomic

studies.

This paper describes the stages constituting our sampling

framework which is based on the following decisions:
1. The variable of interest. In our case is the presence of

insecticide resistance genes in the mosquito genomes. To

achieve this we will trap mosquitoes in areas with

known or suspected insecticide resistance.

2. The sampling approach. The sample size is calculated

based on previous mosquito surveys, and sample locations

are defined to balance prediction and parametrization, i.e.

the accuracy in predictions and the goodness of model

fitting when limited amount of information of the variable

of interest is available.

3. The stratification. The open data are used to ecologically

characterize the area(s) under study and inform the

location of each trap. The effect of ecological strata on

sampling size is estimated from a previous malaria control

surveillance campaign.
Finally, we discuss the necessity and benefits of a stan-

dardization of the sampling design procedures and reports

to make them repeatable and reusable.
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Figure 1. Location of the GAARDian sampling sites, shown on a land cover background (GlobeLand30 land covers). Map was made using ArcMap 10.4 (http://
desktop.arcgis.com/en/arcmap/). Source administrative limits: http://www.maplibrary.org/library/index.htm. (Online version in colour.)
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2. Materials
2.1. GAARDian project
The sampling design described in this work has been

developed within the UK-MRC-funded GAARDian

project (https://www.anophelesgenomics.org/gaardian).

The main objective of this project is to investigate the

spatial and temporal scale of variation in mosquito gen-

omes to improve our understanding of the processes

underlying the spread of insecticide resistance. Insecticide

resistance is a major threat to the sustained control of

malaria, as 260 million averted clinical cases of malaria

have been due to the use of insecticides that target the

mosquito vector [31].
2.2. Study area
Six sites were chosen based on suspected use of insecticide or

presence of insecticide resistance (figure 1) (see electronic

supplementary material, appendix A, for detailed description

of each site). Around each site, an operable area was deter-

mined as the largest area where traps can be deployed and

routinely checked by two operators. The operable area was

a 60 � 60 km square centred on the site.
2.3. Environmental data
We used open data information from several sources to

stratify the ecological variations of each study site. These

data include land cover, climate and topography [32].
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GlobeLand30 (http://www.globallandcover.com/

GLC30Download/index.aspx) is a global land cover map of

30 m resolution produced by the National Geomatics

Center of China and containing 10 land cover classes (full

description of classes in [33]). The images used for

GlobeLand30 classification are multispectral images,

including the TM5 and ETMþ of America Land Resources

Satellite (Landsat) and the multispectral images of China

Environmental Disaster Alleviation Satellite (HJ-1). Globe-

Land30 raster adopts WGS84 coordinate system, UTM

projection, 6-degree zoning and the reference ellipsoid is

WGS 84 ellipsoid.

The moderate-resolution imaging spectroradiometer

(MODIS) satellite products are provided in monthly time-

series at 0.05 degree (approx. 5 km) resolution from

observations by the MODIS sensor on Terra (AM) for the

period February 2000 to December 2013 inclusive and

available at (https://ora.ox.ac.uk/objects/uuid:896bf37f-

a56b-4bc0-9595-8c9201161973) [34]. The following MODIS

products were used:

— MODIS Enhanced Vegetation Index (EVI) from the

MOD13C2 product comprises monthly, global EVI. This

resource provides consistent spatial and temporal compari-

sons of vegetation canopy greenness, a composite property

of leaf area, quantity of chlorophyll and canopy structure.

EVI improves sensitivity over dense vegetation conditions

or heterogeneous landscapes when compared to Normal-

ized Difference Vegetation Index (NDVI).

— MODIS Air Temperature (Temp) from the MOD07_L2

Atmospheric Profile product comprises monthly, global

temperature at the closest level to the earth’s surface.

— MODIS Evapotranspiration (ET) from the MOD16 Global

Evapotranspiration product is calculated monthly as the

ratio of Actual to Potential Evapotranspiration (AET/PET).

Precipitation was obtained from WorldClim v. 2

as average annual precipitation from 1970 to 2000 at 30

arcseconds (1 km2 ca) (http://worldclim.org/version2) [35].

Finally, elevation was obtained from the NASA Shuttle

Radar Topographic Mission (SRTM) 90 m Digital Elevation

Database v. 4.1. The SRTM 90 m DEM’s have a resolution

of 90 m at the equator. The DEM is available in geographical

coordinate system—WGS84 datum (https://drive.google.

com/drive/folders/0B_J08t5spvd8VWJPbTB3anNHamc).
3. Methods
Defining a standard spatial sampling design does not affect the

multitude of choices necessary for each different problem, but

it requires that three elements are fully described: sample size;

stratification (if stratification is performed) and geographical

allocation of the sampling points. A description of each element

optimization is given below.

3.1. Sampling size optimization
For one of the collection areas (Migori, Kenya, location 4 in

figure 1), additional data were available from entomological sur-

veillance carried out from December 2015 to September 2017 as

part of indoor residual spraying (IRS) (Abong’o et al. 2018,

unpublished; http://www.africairs.net/about-airs/), which we

will refer to as AIRS data hereafter. As in the GAARDian project,

collections were made using CDC light traps [36], hung in each
house over the sleeping area, approximately 1.5 m from the

ground, adjacent to an occupied bed net. The traps were run

from 18.00 and mosquitoes were collected at 07.00 the next morn-

ing. Placing the trap near sleeping space facilitates sampling

female mosquitoes that are actively seeking a blood meal. We

used this preliminary information about mosquito abundance

to estimate the optimal sample size (in terms of mosquito

distribution) to be used in all sites.

From the AIRS data, we first estimated the spatial covariance

function (via maximum-likelihood estimation, [37]) that was

used to simulate a log Gaussian Cox process (LGCP) [38]

mimicking the mosquito spatial distribution process found

in Migori. This can be translated in lay words as a process

(mosquito catches) that is environmentally driven but producing

values of catches that can be considered independent (i.e. catch

on one occasion does not predict subsequent catches in the

same or nearby locations) although the average process is

spatially dependent (hence the necessity to estimate the spatial

covariance function above).

The Gaussian random field is of the form [39]

y(l) ¼ m(l)þ Z(l)þ 1, ð3:1Þ

where l is the location, m is the mean, Z is the Gaussian process

with Matern correlation function, and 1 is the error term (noise

or nugget).

The Matern correlation function has the general form

Z(l) ¼ 1

2h�1G (h)

2l
ffiffiffi
h
p

r

 !h

Kh
2l

ffiffiffi
h
p

r

 !
, ð3:2Þ

where Kh(.) is the modified Bessel function of order h and r is the

spatial range [40]. Both h and r must be positive and different

from 0.

Finally the Poisson LGCP can be written as [41]

Y(l) � P(l(l)) ð3:3Þ

and
l(l) ¼ exp(y(l)), ð3:4Þ

where Y is the mosquito density point process and l is the

conditional mean. As can be easily noted, equation (3.4) links

directly to equation (3.1).

From the LGCP we predicted the estimated variance in the

parameters of the spatial covariance function and the prediction

error for a set of sample sizes (15, 30, 75, 150, 200 and 300)

assumed randomly allocated in the area of Migori.

This will allow the allocation of the (limited) resources to

obtain the sample size that will produce the desired prediction

error and variance in the spatial covariance parameters (if this

is an objective of the sampling design).
3.2. Stratification (ecological delineation)
In many areas of physical, engineering, life and social sciences,

inferential and predictive classification are prevalent tools to

discriminate between classes and to interpret the differences.

Examples range from identification of ecological niches to brain

and bone anomalies. While the growing amount of open access

information enables discrimination among a large number of

ecological classes, many traditional algorithms fail for these

data because of decreased classification performance (leading

to overfitting) and mathematical/practical limitations [42]. One

method is to describe ecological strata in terms of transformed

environmental variation (i.e. factorial analyses) [13], but the

results can be difficult to interpret. By contrast, discriminant

analysis (DA) requires less computational time and resources

because no parameter tuning is required [43]. Discriminant

analysis [44] is a common multivariate statistical approach for

data classification (for example, in 2017 2026 scientific articles

http://www.globallandcover.com/GLC30Download/index.aspx
http://www.globallandcover.com/GLC30Download/index.aspx
http://www.globallandcover.com/GLC30Download/index.aspx
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https://ora.ox.ac.uk/objects/uuid:896bf37f-a56b-4bc0-9595-8c9201161973
http://worldclim.org/version2
http://worldclim.org/version2
https://drive.google.com/drive/folders/0B_J08t5spvd8VWJPbTB3anNHamc
https://drive.google.com/drive/folders/0B_J08t5spvd8VWJPbTB3anNHamc
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http://www.africairs.net/about-airs/
http://www.africairs.net/about-airs/
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Figure 2. Example of lattice with close pairs design adopted in this work.
Black dots, sampling locations in regular grid (the 4 rows x 5 column grid
at the centre of the figure); red dots, sampling locations allocated randomly
(noticeable because they don’t follow the grid); and green dots are the
households identified sufficiently close to the sampling locations (V) (ident-
ified with the three clustered dots at each grid and random sampling
location). Plot was made using R-cran 3.5.0 (http://r-project.org). (Online ver-
sion in colour.)
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were published on the use or improvement of discriminant

analysis—search terms used in Web of Science: ‘discriminant

analysis’, in title/keywords/abstract).

The simplest forms of DA are linear (LDA) and quadratic

(QDA). LDA can be seen as a regression line whose orientation

divides a high-dimensional space, reducing the dimensionality

while keeping each class separate from the other classes. In

practice, the optimal orientation is the one that minimizes the

within-class variance and maximizes the between-class variance

[45]. The main assumption of LDA is that all the classes have

a common variance–covariance matrix, i.e. the relationships

between classes and explanatory variables are independent

from class membership, while the differences between classes

are dependent only on the mean.

When the variance–covariance matrices are not homo-

geneous for two or more classes, linear discriminant analysis

cannot be applied. Instead the QDA can be employed. The

QDA discriminant function is

fQ
i ¼ �

1

2
logjSij �

1

2
((X� mi)

TS�1
i (X� mi))þ log( pi), ð3:5Þ

where X is the matrix of variables, m the vector containing the

mean of each variable and S is the variance–covariance

matrix, and pi the ‘prior’ probability of each point to belong to

the class i. i is the subscript for class i, with i ¼ 1, . . ., N where

N is the total number of classes.

f is calculated based on a training dataset (class memberships

are known). The larger the f value, the higher the probability

that the point belongs to that group. For a training dataset, the

pi can be calculated in several ways, usually by ‘equal priors’

method: each class has a prior probability equal to 1/N. In

this analysis, and in order to take into account the spatial proxi-

mity of the classes, a local frequency prior method was used. It

estimates the class pi prior probability as the relative frequency

of i labels in the neighbourhood. Similarly, predicting a label

for a new point means looking at the local proportion of each

class (as classified from the training dataset) around the new

point.

Once f is maximized with the training dataset, a new data

point can be classified by calculating f for the new point and

for each class (equivalent to calculating the position of a point

with respect to all available class centroids), and assigning to it

the class index at which corresponds the maximum f.
The QDA has been embedded into an algorithm that

determines the optimal number of ecological classes and

their geographical delimitation for each area (see electronic

supplementary material, appendix B, for further details).

The analysis was carried out taking all the environmental

variables at their original spatial resolution, and providing the

output (classification) at 30 m resolution (the same as the land

cover resolution).
3.3. Spatial allocation of the sample households
For the present study the malaria vector species we are targeting,

within the Anopheles gambiae species complex, are usually highly

anthropophilic and commonly found in houses. Therefore, the

traps are located inside households.

Locations of the sampling points, in each sampling site

(figure 1), follow a ‘lattice plus close-pairs’ design [46] which

combines regular lattice (efficient for predictions) and random

points as close pairs (efficient for parameter estimation) [47].

For an easier understanding of the sampling design, we

refer to the six locations distributed in West and East Africa as

sampling sites (shown in figure 1). Each sampling site will con-

tain M sampling points. Each sampling point contains V
households. Therefore, the total number of households sampled

per sampling site is M � V.
For all sites except Migori, the distribution of M sampling

points are realized under two conditions: (i) 70% of sampling

points are in grid (lattice) and 30% close-pairs randomly

allocated (a proportion usually applied in simulation analyses,

i.e. [46] and [48]) (figure 2); (ii) each stratum must contain a

number of points proportional to the stratum size [49]:

ni ¼M
Ai

AT
, ð3:6Þ

where ni is the number of points for class i; Ai the area of class

i; and AT is the total area. The term ‘close pairs’ here is used

loosely, since not all the points in the grid will have a close

pair, and some close pairs may be shared between points.

In Migori alone (where a previous sampling campaign, AIRS,

took place) an adaptive sampling design was trialled in which

AIRS sampling served to inform the location of the M sampling

points. From the LGCP model (see above), we estimated the predic-

tion variances at each grid cell, and attributed the M locations to

the cells with highest prediction variance (uncertainty) [29,50–52].
3.4. Effect of stratification on sample size and
improvement of mosquito abundance models

In order to evaluate the effect of stratification:

(a) on the ratio between the Poisson rate parameter of mosquito

counts from a survey (l1) and the Poisson rate parameter of

mosquito count from a sub-sample of it (l2) (random

versus stratified);

(b) and on the goodness of fitting of mosquito abundance

models;

we have considered a mosquito sampling campaign from

Uganda. This data is from 104 health subdistricts (HSD) where

estimates of A. gambiae and Anopheles funestus densities (as

determined by a standard collection method) for both male

and female mosquitos are available. The sampling design was

based on a cluster randomized trial with 10 houses selected at

http://r-project.org
http://r-project.org


Table 1. Total variance in the parameters of the Gaussian process
(intercept, sill, nugget, range) and standard errors for the predictions at
different sample sizes.

sample
size

total variance in the
parameter of the
Gaussian process

standard error
in predictions

15 8034 194

30 4726 93

75 454 44

150 71 31

200 14 22

300 0.86 9

Table 2. Total variance in the parameters of the Gaussian process
(intercept, sill, nugget, range) and standard errors for the predictions at
different number of households at each sampling point, with 30 sampling
points.
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random from each HSD, and mosquito collection was made

every six months for 2 years (http://www.isrctn.com/

ISRCTN17516395).

For objective (a) we have employed a Poisson exact text on

the null hypothesis that the ratio between l1 (obtained from

the entire Uganda mosquito collection data) and l2 (obtained

from a sub-sample of mosquito collections of the Uganda data)

is equal to 1, i.e. the two conditional means are not different

[53]. The test is performed by first randomly sampling 2, 3, 4

and 5 mosquito collection locations from each strata. For each

of these sample sizes the l2 is calculated and the test performed.

The process has been repeated 999 times, to randomize the

location selection, and 95% confidence interval from the all

bootstrapping are estimated. The procedure above was then com-

pared with a sampling design that randomly extracts the same

amount of locations from the entire dataset but independently

from the strata to which they belong.

For objective (b) we fitted the total number of mosquitoes for

each species and at each location (over the two years of collec-

tion) using the ecological strata produced by performing the

same methodology described in the above section ‘Stratification’.

The model fitting employs a Poisson generalized linear model

[53] and model comparison against the null model is performed

using a MANOVA test [18].
number of
households at
each sampling
point

total variance in
the parameter of
the Gaussian
process

standard
error in
predictions

2 5207 71

3 2073 61

4 1851 22

5 701 19

6 605 19

7 118 18

41
4. Results
4.1. Sample size
In order to estimate the impact of sample size on model

fitting and predictions, we simulated a log Gaussian Cox

Process with known covariance function. The latter has

been parametrized with the AIRS mosquito surveillance

data via maximum-likelihood estimation. The obtained

LGCP parameters were: intercept of 21.77, spatial variance

(sill—i.e. the amount of variance dependent on distance) of

14 478, spatial range of 16 km (i.e. the maximum distance

at which variance increases with distance) and 0 nugget

(variance independent of distance that can be due to

measurement errors or un-explained factors). Therefore,

according to the model, all the variation is considered to

be spatially-dependent up to a 16 km range. Finally, the

Matern kappa parameter (shape parameter) was 1.5 (see

electronic supplementary material, appendix C).

The simulation results of the above model with different

sample size are reported in table 1. With 30 sampling

locations, the prediction error and the total variance in the

LGCP parameters was halved compared to 15 locations,

and 20 times less when using 75 locations. The standard

error in predictions is the maximum number of mosquitoes

predicted in excess or in deficiency to the true mean.

Therefore with 30 traps it is estimated a maximum error of

93 mosquitoes around the real mean and with 200 locations

an error of 22 mosquitoes.

In order to improve local estimates, more than one house-

hold within 2.5 km from each sampling point can be

employed. Therefore if we take two households for each of

the 30 sampling points, the total number of households is

60. The effect of the use of more than one household in

model fitting and prediction is shown in table 2.

With four households and 30 sampling points we expect

the same prediction error as using 200 random sampling

points distributed across the entire area and each containing

a single household (comparison of standard errors in
tables 1 and 2) but higher variance in the parameters.

Using between five and seven households has little impact

on the standard error in the predictions, although there is a

significant improvement in the model fitting as the number

of households increases (see total variance column in

table 2). Consequently, the sampling design was chosen

with 30 locations and four households which was considered

a good balance in terms of standard errors, model fitting and

economic feasibility.

4.2. Ecological classification
The stratification identified two ecological classes for Migori,

Obuasi, Muleba and Aboude; three ecological classes in

Malindi and four in Grand Popo. The Wilk’s criterion,

measured as Wilk’s Lambda, for Malindi is shown in

figure 3; for other sites, they are provided in the electronic

supplementary material (appendix D). The biggest improve-

ment (i.e. largest decrease of the Wilk’s Lambda) is in the

change from 2 to 3 classes (figure 3).

A hierarchical numerical classification of the sites and

classes is shown in figure 4. This dendrogram was obtained

from the agglomerative method (classes are aggregated into

progressively larger groups) group average [54]. The latter

accounts for the average distances or similarities between

all the members of the new group and those of the others.

http://www.isrctn.com/ISRCTN17516395
http://www.isrctn.com/ISRCTN17516395
http://www.isrctn.com/ISRCTN17516395
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The heights in figure 4 represent the dissimilarities between

classes (classes full description reported in electronic

supplementary material, appendix E), which are very small

for some intra-location comparisons (mg10 and mg55 in

Migori (Kenya); and gp10 and gp35 in Grand Popo (Benin))

and indeed some inter-country comparisons (ob20 in

Obuasi (Ghana) with ab85 in Aboude (Cote d’Ivoire)). The

classification suggests geographical homogeneity for most

of the sites, since close locations looks more similar (Migori

and Muleba, Obuasi and Aboude) than same classes far

apart. For example, Malindi and Grand Popo classes (with

exception of class 95 in Grand Popo) form their own clusters.

Both Grand Popo and Malindi are coastal sampling locations,

albeit on opposite sides of the African continent.

Figure 5 shows the ecological classification and its

uncertainty for the Malindi area. The same maps for the

rest of the sites are shown in the electronic supplementary

material (appendix F).
4.3. Sample locations
In figure 5 the sampling locations for Malindi are shown

overlaid on the ecological classes. These locations are

obtained from the lattice with close pairs sampling design,

with a batch of four households (not shown in figure 5) at

each sampling point. In this lattice with close pairs sampling

design, 20 of the 30 locations are deployed in a 4 � 5 regular

grid, and the rest allocated randomly as described in the

methods. This general objective was modified to weight

the number of locations by ecological classes; thus some of

the points in the grid may have been adjusted slightly to

be contained in the new class. In all the sites, each of these

30 locations constitutes a cluster of four households as

in figure 2.

The sampling location in Migori followed an adaptive

sampling design, in which only class 10 was sampled (see

electronic supplementary material, appendix F) because of

the constraint that previous samples (AIRS) only targeted

this class. The allocation of 30 samples and households in

class 10 in Migori were based on the prediction variance,

i.e. new sampling points are allocated at the centre of 30

pixels with largest prediction variance [52] (figure 6).

4.4. Effect of stratification on sample size and
improvement of mosquito abundance models

For this objective we have used the Uganda dataset (see

methods), which contains a large mosquito sampling cam-

paign (104 districts, 1040 households) carried out over for

2 years. The first step was to identify the ecological strata

for each cluster (of households) location. By applying the

same stratification method described for here (see methods)

we identified four ecological zones.

The stratification was first used to evaluate if a sub-

sample (up to 20% of the full dataset) of the mosquito

collections, extracted from each strata, is still representative

of the full mosquito collection obtained in Uganda. Stratifica-

tion produced ratios that are not significantly different from 1

(i.e. l1 and l2 are not significantly different) for any sample

size (see electronic supplementary material, appendix G,

table G1). In contrast for random sampling all ratios between

the two rate parameters are significantly higher than 1 for all

the sample sizes (i.e. l1 and l2 are significantly different).

Finally stratification improves the model fitting of mosquito

counts when compared to a null model (see electronic sup-

plementary material, appendix G, table G2).
5. Discussion
Vector-borne disease control and monitoring rely on vector

surveillance, mostly carried out using trap-based indices

and, more recently, remote sensing data [13,26]. Trap-based

indices (density, population changes, distribution, etc.) are cal-

culated from mosquito catches and require a system of traps

dispersed in the field in sufficient numbers to represent mos-

quito population ecology and dynamics. Conversely, remote

sensing data can be used to define the ecological level of dis-

ease risk based on mosquito ecological suitability [49]. This

is a cheaper and quicker option, but may not have the spatial

and temporal resolution necessary for practical interventions

[55]. In a sampling design, trap-based indices and remote sen-

sing analyses must be seen as complementary tools, since

http://r-project.org
http://r-project.org
http://r-project.org
http://r-project.org
http://r-project.org
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remote sensing data contain the information necessary to

define location and distance between sampling points.

Sample size, location, estimator and strategy (i.e. model

based or not, adaptive or not) are the fundamental character-

istics of a study design [27], which affect the likely success

of describing the studied process (e.g. disease or organism

distribution and abundance), its stochasticity, and, conse-

quently, the accuracy of the estimates.

Ecologists are now equipped with algorithms, open infor-

mation and datasets that enable a better understanding of the

biology and spatial distribution of populations, which allows
optimization of collection site placement to best describe

natural processes. Ecological/environmental classification is

now possible for every region in the world [55]. Failure

to exploit these data in ecological and genomic sampling

frameworks ignores the spatial variability of favourable,

unfavourable or neutral habitats, therefore random or trans-

ect sampling designs may or may not be representative of

the ground conditions and characteristics [56]. Even a grid

design can be biased towards larger ecological classes

and may miss linear features (i.e. a river passing between

collection points) [1]. The consequence of which could be

an over- or under-estimate of the true abundance, even

when the population phenology is correctly delineated [56].

In some cases, however, a quantitatively determined

sampling design may not be necessary, especially if the

study intends to survey the entire area under study (as for

example in [57,58]), or if it is a consequence of interventions

recommended by national or international authorities

[58,59] (i.e. WHO guidelines [60]).

In the illustrative example presented we demonstrate

how these approaches may be used to develop an a priori
sampling strategy to sample malaria vectors for genomic

and ecological studies. The ecological classification presented

for each site returned a maximum uncertainty ranging

from 0.37 to 0.44 depending on the site (figure 5 for Malindi

and electronic supplementary material, appendix F, for

the other sites), which can be interpreted as the probability

that a grid node belongs to a different class. This level of

uncertainty shows that classification identified dominant

classes. In addition, the ecological classification also shows

that areas (the six sampling sites) with putatively the

same land cover are still ecologically different when consider-

ing the full set of environmental variables (temperature,

precipitation, elevation, evapo-transpiration and vegetation),

http://desktop.arcgis.com/en/arcmap/
http://desktop.arcgis.com/en/arcmap/
http://www.maplibrary.org/library/index.htm
http://www.maplibrary.org/library/index.htm
http://r-project.org
http://r-project.org
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and that geographical proximity is a dominant factor in

ecological clustering [61] (figure 4). It is therefore not

surprising that sites cluster much more strongly within

country than within ecotype; e.g. forest (class 20) in Malindi

(Kenya) is not equivalent to forest in Obuasi (Ghana) or

Grand Popo (Benin). The ecological classes, while not

often used in modelling mosquito populations and commu-

nities for medium- and large-scale analyses, represent the

complex interaction of environmental and socio-economic

conditions [23].

Another factor that we accounted for during our

sampling design is the spatial autocorrelation of mosquito

catches (model-based sampling design) [12]. The effect of

strong autocorrelation can reduce the overall statistical

power (and the overall biological significance of the study)

as it results in effectively a lower sample size (because the

assumption of independence is violated), underestimates

of variance, and increases in type I error [10]. Geostatistical

approaches, such as the one applied here, can lead to

unbiased estimates of population parameters and avoid the

risks and limitations of random, or haphazard, selection

of sampling locations. Given the requirements to satisfy

both parametrization and predictions [47], the simulated

inhibitory design adapted from [50] in order to contain

clusters of households at each sampling point, has shown

that with 120 sampling houses for each site distributed

across 30 sampling points, we achieve the same prediction

error (main goal) as from 200 points allocated at random,

albeit at the expense of parameter accuracy. However, there

were important limitations in the sample size/location

calculation. Firstly, they are based on limited pre-existing

mosquito surveillance data from Migori, which may not

describe the different spatial scales of the mosquito abun-

dance distribution [26]. This is a concern due to the large

variation in abundance levels observed throughout the

period, but that can be solved by deploying an adaptive

sampling design, i.e. concentrating the new samples where

we have the largest uncertainties (our knowledge is poor)

in the process of interest (abundance or a level of abundance).

In addition, we are assuming that the mosquito population

dynamics in Migori are similar to those in the other sites.

The ecological classification has the advantage of correcting

for local mosquito population dynamics although this is

not a full solution. Ideally, Migori could have been used

to analyse the effect of the ecological classification on mos-

quito estimates. Unfortunately, the pre-existing surveillance

samples are located in the same ecological zone (electronic

supplementary material, appendix F) making it impossible

to simulate the effect of the ecological classification on the

sample size/location optimization. For this reason we evalu-

ated the effect of stratification on sample size using a different

dataset (Uganda). This shows that 10–20% of mosquito col-

lections randomly selected from strata are representative of

the full survey. This result shows that stratification can be

applied at any stage of the sampling campaign, and even if

it was not considered at the initial (planning) phase, it can

adaptatively inform the subsequent sampling phases or

collections and optimize the sampling costs (subsequent

sub-sampling of each strata). In addition, using the Uganda

dataset, we have also shown that the ecological stratification

improves model fitting, again representing a model feature

that can be applied in both pre-analysis and post-analysis

of sampling campaigns.
An element not considered in this analysis but that

requires discussion is the temporal frequency and length of

the sampling campaign. Designs for temporal sampling

raise the same challenges as spatial designs, along with

additional considerations. These include:
is it better to trap six times in each of two houses, or twice in each of six
houses, or four times in each of three houses? And in the latter case, is it
necessary that the nights should be at weekly intervals, or would the
easier task of sampling over four consecutive nights yield a similar
amount of information? Should the same ‘fixed’ houses be sampled
on each occasion, or should a new set be chosen randomly on each
occasion? (extracted from [62])
Answering these questions requires relatively lengthy longi-

tudinal studies and a knowledge of Anopheles population

dynamics. Fortnightly collections are common in mosquito

sampling designs, and enable cost-effective descriptions of

seasonality and variation in mosquito abundance [18]. On

the other hand, positioning traps during peaks of mosquito

abundance can significantly overestimate the rate of popu-

lation increase and the level of abundance, and only

sampling over two or more years may accurately account

for cyclical fluctuations in vector abundance [62].

Our analysis provides an example of how to fully describe

the assumptions, conditions and constraints of sampling

strategies. We do not expect other researchers to precisely

replicate our methodology, e.g. the use of four houses in

30 sampling locations depends on previous abundance analy-

sis and may change when more information will be available

(adaptive sampling). Instead we have shown how open-data

sources and ecological information can be implemented in

the initial steps of sampling design. Our literature review

shows that the specifics of sampling design are poorly

reported and we therefore suggest that even when sampling

is based on expert-opinion decisions, a full description of the

sampling design should be provided to make the sampling

repeatable or comparable or usable for subsequent similar

studies. For example, field constraints such as presence of

the disease or vector or host, vegetation type and density,

elevation, field hostility, logistic feasibility, potential interfer-

ence, human proximity, breeding sites, and risk of trapping

material theft [13] or the type of trap used [63], which

often are the major influences in the sampling design, need

to be declared and described. In fact, previous sampling cam-

paigns are often used to inform future sampling design, and

therefore standardization of sampling designs and protocols

are now a priority.

Not only malaria studies lack sampling design infor-

mation. For mosquito-borne arboviruses such as Dengue

and West Nile Virus, or indeed other vectors such as ticks

[64], sample size and locations can be solely based on

economic and environmental constraints and/or expert-

based decisions (see for example [65,66]), including national

and sub-national sampling campaigns. In the Netherlands a

national mosquito surveillance campaign [67] did stratify

the sampling area based on land use and public health

concerns (i.e. preferential sampling by oversampling urban

areas) with number of locations depending on the pre-

determined scale of the analysis. A similar, although less

detailed, approach was taken in North Italy [68] for West

Nile Virus. However, a recent study [69], employed an a
priori G*Power analysis to determine the sample size, and

then allocated the samples to (a) maximize the spatial spread-

ing of mosquito sample sites, and (b) to sample at locations
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that would reflect a large range of socioeconomic conditions,

since the objective was to estimate the effect of socio-

economic drivers in Aedes albopictus distribution. While

conceptually similar to the one proposed here (although

our goal was to find ecological homogeneous areas instead

of mapping socioeconomic differences), the authors do not

consider the spatial autocorrelation in their sample size and

design (which for diseases transmission by Aedes species is

very important, see for example [27] and [70]), although

they do use a maximum coverage approach.

Finally, our framework can be applied to other ecological

studies. For example, Wang and colleagues [71] included

a spatial autocorrelation index to improve the sampling

design for crop acreage. This approach, however, does not

model the spatial autocorrelation that is necessary to allocate

spatial samples but simply tries to achieve independence

between samples. Our framework may support systematic

sampling when affected by spatial autocorrelation [72] or

when geostatistical mapping is required [73].

In conclusion, big and open data and research outputs

could enhance the power of ecological and genomic studies

[3], facilitating the growth of complex and multidimensional

algorithms. In the specific field of vector biology and

genomics, there is an urgent need to establish standards

for mosquito sampling design and description in scientific
reports. One of the first steps is to facilitate training and

workshops [11] but also the improvement of publishing stan-

dards (i.e. requiring authors to fully disclose the sampling

design) in order to produce a collection of high quality and

usable sampling designs along with their results.
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