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Abstract

We use Krasnoselskii’s fixed point theorem to obtain sufficient conditions for
the existence of a positive periodic solution of the neutral delay difference equation

x(n + 1) = a(n)x(n) + c∆x(n− τ) + g(n, x(n− τ)).
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1 Introduction

In this paper we use Krasnoselskii’s fixed point theorem to study the existence of posi-
tive periodic solutions of a certain type of difference equation with delay which appear
in ecological models. The existence of positive periodic solutions of functional differ-
ential equations has gained the attention of many researchers in recent times. We are
mainly motivated by the work of the first author [5] and the references therein on neutral
differential equations.
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Let τ be a nonnegative integer and consider the neutral delay difference equation

x(n+ 1) = a(n)x(n) + c∆x(n− τ) + g(n, x(n− τ)), (1.1)

whereg is continuous inx. The operator∆ is defined as∆x(n) = x(n+ 1)− x(n). In
this paper, we denote byE the shift operator defined asEx(n) = x(n + 1). Also, the

product ofx(n) fromn = a ton = b is denoted by
b∏

n=a

x(n). For more on the calculus of

difference equation we refer the reader to [1] and [2]. In the continuous case, equations
in the form of 1.1 have applications in food-limited populations, see biological [5] and
the references therein. In [3], the first author considered a more complicated form of 1.1
and analyzed the existence of periodic solutions. On the other hand, the second author
studied the boundedness of solutions and the stability of the zero solution. In [4], using
cone theory, the first author obtained sufficient conditions that guaranteed the existence
of multiple positive periodic solutions for the nonlinear delay difference equation

x(n+ 1) = a(n)x(n)± λh(n)f(x(n− τ(n))).

2 Preliminaries

We begin this section by introducing some notations. LetPT be the set of all realT -
periodic sequences, whereT is an integer withT ≥ 1. ThenPT is a Banach space when
it is endowed with the maximum norm

‖x‖ = max
n∈[0,T−1]

|x(n)|.

It is natural to ask for the periodicity condition

a(n+ T ) = a(T ), g(n+ T, ·) = g(n, ·), (2.1)

to hold for alln ∈ Z. In addition to (2.1), we assume that

0 < a(n) < 1. (2.2)

Let

G(n, u) =

∏n+T−1
s=u+1 a(s)

1−
∏n+T−1

s=n a(s)
, u ∈ [n, n+ T − 1]. (2.3)

Note that the denominator inG(n, u) is not zero since0 < a(n) < 1 for n ∈ [0, T − 1].
Also, let

m := min{G(n, u) : n ≥ 0, u ≤ T} = G(n, n) > 0, (2.4)

M := max{G(n, u) : n ≥ 0, u ≤ T} = G(n, n+ T − 1) = G(0, T − 1) > 0. (2.5)



Delay Difference Equations 125

Lemma 2.1. Suppose(2.1) and (2.2) hold. If x(n) ∈ PT , thenx(n) is a solution of
(1.1) if and only if

x(n) = cx(n− τ) +
n+T−1∑

u=n

G(n, u)
[
g(u, x(u− τ))− c(1− a(u))x(u− τ)

]
, (2.6)

whereG(n, u) is defined by(2.3).

Proof. Rewrite (1.1) as

∆

[
x(n)

n−1∏
s=0

a−1(s)

]
= [c∆x(n− τ) + g(n, x(n− τ))]

n∏
s=0

a−1(s). (2.7)

Summing (2.7) fromn to n+ T − 1, we obtain

n+T−1∑
u=n

∆
[
x(u)

u−1∏
s=0

a−1(s)
]

=
n+T−1∑

u=n

[c∆x(u− τ) + g(u, x(u− τ))]
u∏

s=0

a−1(s),

i.e.,

x(n+ T )
n+T−1∏

s=0

a−1(s)− x(n)
n−1∏
s=0

a−1(s)

=
n+T−1∑

u=n

[c∆x(u− τ) + g(u, x(u− τ))]
u∏

s=0

a−1(s).

Sincex(n+ T ) = x(n), we obtain

x(n)

[
n+T−1∏

s=0

a−1(s)−
n−1∏
s=0

a−1(s)

]

=
n+T−1∑

u=n

[c∆x(u− τ) + g(u, x(u− τ))]
u∏

s=0

a−1(s).

But
n+T−1∑

u=n

c∆x(u− τ)
u∏

s=0

a−1(s) = c

n+T−1∑
u=n

E
[ u−1∏

s=0

a−1(s)
]
∆x(u− τ)

= cx(n− τ)
[ n+T−1∏

s=0

a−1(s)−
n−1∏
s=0

a−1(s)
]
− c

n+T−1∑
u=n

x(u− τ)∆
[ u−1∏

s=0

a−1(s)
]

= cx(n− τ)

[
n+T−1∏

s=0

a−1(s)−
n−1∏
s=0

a−1(s)

]

−
n+T−1∑

u=n

x(u− τ)c[1− a(u)]
u∏

s=0

a−1(s).



126 Y. N. Raffoul and E. Yankson

Thus (2.7) becomes

x(n)

[
n+T−1∏

s=0

a−1(s)−
n−1∏
s=0

a−1(s)

]
= cx(n− τ)

[
n+T−1∏

s=0

a−1(s)−
n−1∏
s=0

a−1(s)

]

−
n+T−1∑

u=n

x(u− τ)c [1− a(u)]
u∏

s=0

a−1(s) +
u∏

s=0

a−1(s)
n+T−1∑

u=n

g(u, x(u− τ)).

Dividing both sides of the above equation by
n+T−1∏

s=0

a−1(s) −
n−1∏
s=0

a−1(s) completes the

proof.

Now for n ≤ 0, Equation (1.1) is equivalent to

∆
[
x(n)

0∏
s=n−1

a−1(s)
]

= [c∆x(n− τ) + g(n, x(n− τ))]
0∏

s=n+1

a−1(s).

Summing the above expression fromn to n + T − 1, we obtain (1.1) by a similar
argument.

We next state Krasnoselskii’s theorem in the following lemma.

Lemma 2.2 (Krasnoselskii).Let M be a closed convex nonempty subset of a Banach
space(B, ‖ · ‖). Suppose thatC andB mapM into B such that

(i) x, y ∈ M impliesCx+By ∈ M;

(ii) C is continuous andCM is contained in a compact set;

(iii) B is a contraction mapping.

Then there existsz ∈ M with z = Cz +Bz.

3 Main Results

In this section we obtain the existence of positive periodic solution of (1.1). For some
nonnegative constantL and a positive constantK we define the set

M = {φ ∈ PT : L ≤ φ ≤ K}, (3.1)

which is a closed convex and bounded subset of the Banach spacePT . In addition we
assume that for allu ∈ Z andρ ∈ M,

(1− c)L

mT
≤ g(u, ρ)− c[1− a(u)]ρ ≤ (1− c)K

MT
, (3.2)
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wherem andM are defined by (2.4) and (2.5), respectively. We will treat separately the
cases0 ≤ c < 1 and−1 < c ≤ 0. Thus, for our first theorem we assume

0 ≤ c < 1. (3.3)

To apply the theorem stated in Lemma 2.2, we will need to construct two mappings; one
is contraction and the other is compact. In view of this we define the mapB : M → PT

by

(Bϕ)(n) = cx(n− τ).

In a similar way we define the mapC : M → PT by

(Cϕ)(n) =
n+T−1∑

u=n

G(n, u) [g(u, x(u− τ))− c(1− a(u))x(u− τ)] .

It is clear from condition (3.3) thatB defines a contraction map under the supremum
norm.

Lemma 3.1. If (2.1), (2.2), (3.2) and (3.3) hold, then the operatorC is completely
continuous onM.

Proof. Forn ∈ [0, T − 1] and forϕ ∈ M, we have by (3.2) that

|(Cϕ)(n)| ≤

∣∣∣∣∣
n+T−1∑

u=n

G(n, u)[g(u, x(u− τ))− c(1− a(u))x(u− τ)]

∣∣∣∣∣
≤ TM

(1− c)K

MT
= (1− c)K.

From the estimation of|Cϕ(n)| it follows that

‖Cϕ‖ ≤ (1− c)K ≤ K.

This shows thatC(M) is uniformly bounded. Due to the continuity of all terms, we
have thatC is continuous. Next, we show thatA maps bounded subsets into compact
sets. LetJ be given,S = {ϕ ∈ PT : ‖ϕ‖ ≤ J} andQ = {(Cϕ)(t) : ϕ ∈ S}. ThenS
is a subset ofRT which is closed and bounded and thus compact. AsC is continuous
in ϕ, it maps compact sets into compact sets. ThereforeQ = C(S) is compact. This
completes the proof.

Theorem 3.2.Suppose that(2.1), (2.2), (3.2)and(3.3)hold. Then equation(1.1)has a
positive periodic solutionz satisfyingL ≤ ‖z‖ ≤ K.
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Proof. Let ϕ, ψ ∈ M. Then, by (3.2), we have that

(Aϕ)(n) + (Cψ)(n)

= cϕ(n− τ) +
n+T−1∑

u=n

G(n, u)
[
g(u, ψ(u− τ))− c(1− a(u))ψ(u− τ)

]
≤ cK +M

n+T−1∑
u=n

[
g(u, ψ(u− τ))− c(1− a(u))ψ(u− τ)

]
≤ cK +MT

(1− c)K

MT
= K.

On the other hand,

(Aϕ)(n) + (Cψ)(n)

= cϕ(n− τ) +
n+T−1∑

u=n

G(n, u)
[
g(u, ψ(u− τ))− c(1− a(u))ψ(u− τ)

]
≥ cL+m

n+T−1∑
u=n

[
g(u, ψ(u− τ))− c(1− a(u))ψ(u− τ)

]
≥ cL+mT

(1− c)L

mT
= L.

This shows thatAϕ+Cψ ∈ M. All the hypotheses of the theorem stated in Lemma 2.2
are satisfied and therefore equation (1.1) has a positive periodic solution, sayz, residing
in M. This completes the proof.

For the next theorem we substitute conditions (3.2) and (3.3) with

−1 < c ≤ 0 (3.4)

and for allu ∈ R andρ ∈ M

L− cK

mT
≤ g(u, ρ)− c[1− a(u)]ρ ≤ K − cL

MT
, (3.5)

whereM andm are defined by (2.4) and (2.5), respectively.

Theorem 3.3. If (2.1), (2.2), (3.2), (3.4) and (3.5) hold, then Equation(1.1) has a
positive periodic solutionz satisfyingL ≤ ‖z‖ ≤ K.

Proof. The proof follows along the lines of Theorem 3.2, and hence we omit it.
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4 Example

The neutral difference equation

x(n+ 1) =
1

8
x(n) +

1

10
∆x(n− 4) +

1

x2(n− 4) + 100
+

7

80
x(n− 4) +

1

20
(4.1)

has a positive periodic solutionx of period4 satisfying
1

18428
≤ ‖φ‖ ≤ 2. To see this,

we have

g(u, ρ) =
1

ρ2 + 100
+

7

80
ρ+

1

20
,

a(n) =
1

8
, c =

1

10
, and T = 4.

A simple calculation yieldsM =
4096

4095
andm =

8

4095
. LetK = 2, L =

1

18428
, and

define the set

M =

{
φ ∈ P4 :

1

18428
≤ φ ≤ 2

}
.

Then forρ ∈
[

1

18428
, 2

]
we have

g(u, ρ)− c[1− a(u)]ρ =
1

ρ2 + 100
+

7

80
ρ+

1

20
− 1

10

[
1− 1

8

]
ρ

≤ 1

100
+

5

20
= 0.26 <

K(1− c)

MT
.

On the other hand,

g(u, ρ)− c[1− a(u)]ρ =
1

ρ2 + 100
+

7

80
ρ+

1

20
− 1

10

[
1− 1

8

]
ρ

>
7

80
ρ+

1

20
− 7

80
ρ

>
7

20

1

18428
+

1

20
− 7

80
2 >

L(1− c)

mT
.

By Theorem 3.2, equation (4.1) has a positive periodic solutionx with period4 such

that
1

18428
≤ ‖x‖ ≤ 2.
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