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ABSTRACT 

 
Landscape pattern is spatially correlated and scale-dependent. Thus, multiscale analysis is 
imperative for understanding the structure, function and dynamics of landscape. In this study, 
we employed two complementary, yet parallel approaches (the direct and indirect approaches) 
to multiscale analysis of landscape maps from northern Ghana. First, moving window analysis 
was conducted to investigate the data sets for heteroscedasticity and proportional effect. In the 
direct approach, the Maximal Overlap Discrete Wavelet Transform was used for a wavelet-
based analysis of variance of the Normalized Difference Vegetation Index (NDVI) and the 
Digital Elevation Model (DEM). Also, an orthogonal and compactly supported wavelet was 
applied through seven levels of dyadic decompositions of each data set into large- and small 
scale features in the horizontal, vertical and diagonal directions. The small-scale features were 
analyzed with moments and scale plots to investigate statistical self-similarity in the three 
directions. In the indirect approach, 18 commonly used landscape metrics were used to 
investigate (1) the effects of changing grain size and (2) the effects of changing extent on the 
metrics. In case (1), the grain size of each original data set was systematically changed using 
the majority, mean and median rules through 18 separate aggregation levels; while the extent 
was kept constant. The values of the 18 metrics were then computed for each resampled data 
set. In case (2), we systematically increased the extent of the maps (starting from each of the 
four corners) from 56 km2 to 5,633 km2; while keeping the grain size constant.  

The results of moving window analysis showed that the local means of the NDVI data 
sets in some regions were more variable than in others, while their corresponding standard 
deviations remained fairly constant over the study area. Both local means and standard 
deviations of DEM remained fairly constant. Thus, estimates from any particular sector of the 
study area will be as good as estimates elsewhere. No proportional effect was observed 
between local means and corresponding standard deviations for all three data set. The change in 
the wavelet variance of the NDVI data sets was not a simple function of resolution. For DEM, 
however, the wavelet variance varied linearly with its resolution. The dominant scale for the 
NDVI data sets was found to be 240 meters; however, DEM did not exhibit a dominant scale. 
The small-scale features of the NDVI data sets were shown to be self-similar over the 120 
meter to 3.84 kilometer scales in all the three directions; while those of DEM were self-similar 
over the 3.6 kilometer to 11.52 kilometer scales in all the three directions. The scaling 
exponents were different in the three directions for all the data set, indicating the anisotropic 
nature of the landscapes. Again the scaling exponents were all negative, indicating increasing 
variability with decreasing scales. The large magnitudes of the slopes indicated long range 
behavior and may imply a methodology for statistically assimilating remotely sensed data set 
into large-scale meso and global climate models.  

Changing grain size and extent both had significant effects on landscape metrics, and 
the effects in each case could be grouped into three main types: Type I – simple scaling 
relationships; Type II – unpredictable behavior and Type III – fixed responses. In general, the 
effects of changing grain size were more predictable than those of changing map sizes. It was 
also revealed that the direction of analysis in the case of changing extent had significant effects 
on landscape pattern analysis, as did the method of aggregation in the case of changing grain 
size. A comparison of the effects of changing grain size and extent on landscape metrics 
showed that our results are consistent with the statistical correlations that exist among the 
metrics. The findings from this study corroborate the general notion: there is no single 
“correct” or “optimal” scale for characterizing and comparing landscape patterns. Therefore, 
landscape metric scalograms should be used for characterizing, comparing and monitoring 
landscape patterns instead of using single value. 



 

Multiskalische Analyse von Landschaftsdaten aus dem Norden 
Ghanas: Wavelets und Strukturmetrik 
 
KURZFASSUNG 

 

Landschaftsmuster sind räumlich korreliert und maßstabsabhängig. Daher ist die 
multiskalige Analyse Voraussetzung für das Verständnis von Struktur, Funktionen und 
Dynamik einer Landschaft. In der vorliegenden Studie wurden zwei komplementäre, 
jedoch parallele Ansätze zur multiskaligen Analyse von Karten der Landschaft im 
Norden Ghanas eingesetzt: der direkte bzw. indirekte Ansatz. Zunächst wurde eine 
„moving window“–Analyse zur Untersuchung der Daten hinsichtlich 
Heteroskedastizität und proportionaler Wirkung durchgeführt. Beim direkten Ansatz 
wurde die Maximal Overlap Discrete Wavelet Transform für eine auf Wavelet 
basierende Varianzanalyse des Normalized Difference Vegetation Index (NDVI) und 
des digitalen Höhenmodels (DEM) angewendet. Außerdem wurde eine orthogonale 
bzw. compactly supported wavelet durch sieben Ebenen von dyadischen Zerlegungen 
für jeden Datensatz in groß- bzw. kleinskalierten Eigenschaften in horizontale, 
vertikale und diagonale Richtungen angewendet. Die kleinskalierten Eigenschaften 
wurden mit Momenten und Skalenplots analysiert, um statistische Selbstähnlichkeit in 
den drei Richtungen zu untersuchen. Beim indirekten Ansatz wurden 18 üblicherweise 
benutzte Landschaftsmetriken eingesetzt, um (1) die Wirkung von sich verändernde 
Korngrößen bzw. (2) die Wirkungen von sich verändernden Untersuchungsbereichen 
auf die Maße zu untersuchen. Im Falle (1) wurde die Korngröße von jedem originären 
Datensatz systematisch anhand der Regeln für Modal- und Mittelwerte bzw. den 
Median durch 18 einzelne Aggregationsebenen verändert, wobei die Abgrenzung 
konstant gehalten wurde. Die Werte der 18 Metriken wurden dann für jeden einzelnen 
Datensatz berechnet. Im Falle (2) wurden die Untersuchungsbereiche der Karten 
systematisch vergrößert (beginnend an jeder der vier Ecken der Karten) von 56 km2 bis 
5,633 km2 unter Beibehaltung einer konstanten Korngröße. 

Die Ergebnisse der „moving window“-Analyse zeigen, dass die örtlichen 
Mittelwerte der NDVI-Daten in manchen Regionen variabler waren als in anderen, 
während die entsprechenden Standardabweichungen über das Untersuchungsgebiet 
ziemlich konstant blieben. Sowohl die örtlichen Mittelwerte als auch die 
Standardabweichungen des DEM blieben ziemlich konstant. Daher werden Werte aus 
einem zufällig gewählten Abschnitt des Untersuchungsgebiets genauso gut sein wie die 
aus einem anderen. Eine proportionale Wirkung zwischen den örtlichen Mittelwerten 
und entsprechenden Standardabweichungen wurde für keine der drei Datengruppen 
beobachtet. Die Veränderung in der Wavelet-Varianz der NDVI-Daten beruhte nicht 
auf einer einfachen Funktion der Auflösung. Für das DEM jedoch variierte die 
Wavelet-Varianz linear mit der Auflösung. Der vorherrschende Maßstab für die NDVI-
Daten war 240 m; das DEM zeigte jedoch keinen vorherrschenden Maßstab. Die 
kleinskalierten Eigenschaften der NDVI-Daten waren selbstähnlich über die 120-m bis 
3.84-km Maßstäbe in allen drei Richtungen, während dies beim DEM für die Maßstäbe 
3.6 km bis 11.52 km zutraf. Die Skalenexponenten waren in den drei Richtungen für 
alle Daten unterschiedlich; dies deutet auf die anisotropische Natur der Landschaften 
hin. Außerdem waren die Skalenexponenten alle negativ; dies deutet auf eine 



 

zunehmende Variabilität mit abnehmenden Skalen hin. Die hohen absoluten Werte der 
Steigung deuten darauf hin, dass die statistische Selbstähnlichkeit für einen großen 
Bereich gültig ist, und könnten eine Methode für die statistische Assimilierung von 
Fernerkundungsdaten in großskalierten meso- bzw. globalen Klimamodellen 
implizieren. Unterschiedliche Korngrößen bzw. Untersuchungsbereiche zeigten eine 
signifikante Wirkung auf Landschaftsmetriken. Die Wirkungen konnten in drei 
Hauptgruppen eingeteilt werden: Typ I - einfache Skalenverhältnisse, Typ II - 
unvorhersehbares Verhalten und Typ III - feste Reaktionen. Im Allgemeinen waren die 
Wirkungen der unterschiedlichen Korngrößen besser vorhersagbar als die der 
unterschiedlichen Kartengrößen. Es zeigte sich ebenfalls, dass die Richtung der 
Analyse bei den unterschiedlichen Untersuchungsbereichen signifikante Wirkungen auf 
die Analyse der Landschaftsmuster hatte; dies traf auch bei der Aggregationsmethode 
bei unterschiedlichen Korngrößen zu. Ein Vergleich der Wirkungen der 
unterschiedlichen Korngrößen und Untersuchungsbereiche auf Landschaftsmetriken 
zeigt, dass die Ergebnisse der vorliegenden Studie mit den statistischen Korrelationen, 
die innerhalb der Metriken existieren, übereinstimmen. Die Ergebnisse untermauern die 
allgemeine Auffassung: es gibt keinen „korrekten“ bzw. „optimalen“ Maßstab für die 
Charakterisierung oder für den Vergleich von Landschaftsmustern. Skalogramme von 
Landschaftsmetriken sollten daher an Stelle von einzelnen Werten für 
Charakterisierung, Vergleich und Beobachtung von Landschaftsmustern eingesetzt 
werden. 
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1 INTRODUCTION 

 

1.1 Background  

Spatial heterogeneity is ever-present at all scales and its formation and interactions with 

ecological processes are central to landscape ecology (Wu et al., 2000; Wu, 2004; Shen 

et al., 2004; Wu et al., 2002). In order to understand how landscapes affect and are 

affected by ecological processes, one must be able to quantify spatial heterogeneity and 

its scale dependence (i.e. how patterns change with scale). The scale dependence of 

spatial heterogeneity has long been recognized in both ecology and geography. There 

are two different but related connotations of spatial heterogeneity being scale 

dependent. The first implies that spatial heterogeneity exhibits various patterns at 

different scales, or patterns have distinctive “operational” scales (Lam and Quattrochi, 

1992) at which they can be best characterized.  This connotation is consistent with the 

concept of characteristic scale and hierarchy that have appeared in ecological literature 

since the 1980s (Allen and Starr, 1982; Allen et al., 1984; O’Neil et al., 1986; Urban et 

al., 1987; Wu and Loucks, 1995; Wu, 1999). The second connotation means the 

dependence of observed spatial heterogeneity on the scale of observation and analysis – 

often discussed in terms of scale effects on image classification and spatial analysis 

(Wu, 2004).  

Recent studies have shown that an important and universal characteristic of 

spatial heterogeneity is its scale multiplicity in space (e.g., Miller 1978, Kolasa and 

Pickett, 1991; Wu and Loucks, 1995; Cullinan et al., 1997; Werner, 1999). The scale 

multiplicity of landscapes has important ecological implications: (1) landscapes may be 

hierarchically structured; (2) landscapes exhibit distinctive spatial patterns at different 

scales which may be caused by different processes, and thus the scale of observation 

significantly influences what is to be observed; (3) understanding landscape 

functioning requires a multiple-scale characterization of spatial pattern and processes, 

and single-scale descriptions are highly likely to be partial and misleading; and (4) 

models developed at one particular scale are not likely to apply at other scales, thus we 

need to either link models developed at different scales, or develop multiple-scaled or 

hierarchically structured models.  
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The process of relating the different observations across scales (or scaling) is 

a fundamental challenge in both theory and practice in all earth sciences. In particular, 

scaling is essential for addressing a wide range of ecological and environmental issues 

concerning biodiversity loss and global change in part because most ecological studies 

to date have been carried out at very local scales in both time and space (van Gardingen 

et al., 1997; Wu, 1999). Scaling is often a difficult task due primarily to landscape 

heterogeneity and nonlinearity, and understanding the scale multiplicity in pattern and 

process is a key to the success of scaling (Wu, 1999). See Chapter 2 for comprehensive 

discussion of scaling.  This study employs two approaches to multiscale analysis of 

landscape pattern: the direct and indirect approaches. Specifically, we employ wavelets 

and landscape metrics as methods for detecting and describing multiple-scale or 

hierarchical structures in landscapes from northern Ghana. 

 

1.2 Motivation 

In order to quantify the multiple-scale characteristics of landscapes, a multiscale or 

hierarchical method must be employed. By definition, a hierarchical method is 

multiple-scale. However, a multiple-scale method may not necessarily be hierarchical 

in the sense of a nested hierarchy (Wu 1999). There are two general approaches to 

multiscale analyses: (1) the direct approach which involves inherent multiple-scale 

methods, and (2) the indirect approach which involves repeated use of single-scale 

methods at different scales. Commonly used multiscale methods in landscape ecology 

include semivariance analysis (Robertson and Gross, 1994; Burrough, 1995), spectral 

analysis (Platt and Denman, 1975; Ripley, 1978), fractal analysis (Krummel et al., 

1987; Milne, 1991; Nikora et al., 1999), lacunarity analysis (Plotnick et al., 1993; 

Henebry and Kux, 1995), blocking quadrat variance analysis (Greig-Smith, 1983; Dale, 

1999), scale variance analysis (Townshend and Justice, 1988, 1990; Wu et al., 2000) 

and wavelet analysis (Bradshaw and Spies, 1992; Saunders et al., 1998; Brunsell and 

Gillies, 2003; Hu et al., 1998; Kumar and Foufoula-Georgiou, 1993a,b). The 

mathematical formulation or processes of each of these methods involve multiple-scale 

components, and are therefore either hierarchical or multiscaled. The indirect approach 

to multiscale analyses, on the other hand, involves methods that are designed for single-

scale analysis. Appropriate methods are used to estimate a wide variety of landscape 
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metrics (e.g., diversity, contagion, edge density, relative richness) as well as statistical 

measures (e.g., mean, variance, variance-mean ratio, and coefficient of variation). The 

scale multiplicity in the indirect approach is realized when a landscape data set is 

resampled at different scales according to grain size or extent, and then the landscape 

metrics or statistical measures computed for the resampled data at the different scales. 

A common way to resample data is to systematically aggregate the original fine 

resolution data set to produce a hierarchically nested data set.   

 There are two related, yet distinct goals for conducting a multiscale analysis 

of an ecological landscape. The first goal involves characterizing the multiple-scale 

structure of a landscape, while the second involves detecting or identifying "scale 

breaks" or hierarchical levels in a landscape. In both cases, the researcher obtains a 

better understanding of how spatial heterogeneity changes with scale. However, a 

description of landscape pattern at different scales may be necessary or desirable even 

if scale breaks do not exist or the landscape is not hierarchical. On the other hand, scale 

breaks often lead to the identification of characteristic scales of patterns which may 

frequently facilitate understanding underlying processes. Thus, one may view the two 

goals as complementing each other. This is one of the researcher’s motivations for 

employing both approaches to multiscale analysis of landscape data sets. 

 Recent research (e.g. Bradshaw and Spies, 1992; Kumar and Foufoula-

Georgiou, 1993a, 1993b; Hu et al., 1998; Saunders et al., 1998; Brunsell and Gillies, 

2003) suggests that wavelet transforms are powerful tools for analyzing the scaling 

behavior of remotely sensed and other geophysical data sets. Like Fourier transforms, 

wavelet transforms are series of expansions of a function using orthonormal basis. The 

rational and motivation for choosing wavelets over other inherent multiscale methods 

lies in the fact that wavelet transforms possess the following remarkable and unique 

properties (among others) that make them most attractive for this research. Wavelet 

transforms are based on multi-resolution analysis. In other words, wavelet 

multiresolution decomposition allows the separation of functions into multiresolution 

components: large-scale and small-scale components. This property allows for the 

separate study of both large-scale behavior and small-scale behavior. Wavelets are 

localized in both time/space and scale/frequency domains. They have compact support 

(they are zero everywhere outside the domain of finite size) which enables their 
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localization in time or space. Also, the wavelet basis are dilates and translates of a 

“mother wavelet” which enable their localization in frequency or scale such that the 

size of the support is proportional to the “size of the feature” it represents. There is 

small support for high-frequency features and large support for low-frequency features. 

These properties allow for zooming into the irregularities of a function and characterize 

them locally. Furthermore, fluctuations at different scales can be obtained due to the 

multiscale transform properties of wavelets. Another property of wavelets which is 

useful for this research is that, two-dimensional wavelet transforms enable the 

decomposition of a process into spatially oriented frequency components. Thus, 

features with dominant frequencies in different directions are extracted as separate 

components. This property is exploited to study the anisotropic behavior of our data. 

 Scale effects have been studied using landscape metrics in ecology, remote 

sensing, and geography in the past two decades (Meentemeyer and Box, 1987; Turner 

et al., 1989, 2001; Bian and Walsh, 1993; Moody and Woodcock, 1994; Benson and 

Mackenzie, 1995; Wickham and Riitters, 1995; Jelinski and Wu, 1996; O’Neill et al., 

1996; Qi and Wu, 1996; Wu et al., 2002). Scale effects on spatial pattern analysis may 

be observed in each of the following three situations: (1) changing the size of the 

smallest observable measurement (grain) within the landscape data only, (2) changing 

the size of the study area (extent) only, and (3) changing both the grain size and extent. 

In the first situation, scale effects may occur as a result of the effect of changed grain 

size as well as the method employed to effect the change. The extent may also be 

changed in different ways: e.g. by carving out from the center of a map or by starting 

from one corner and moving in along a diagonal. Studies have shed new light on the 

problems of scale effects in pattern analysis as well as the multiscale nature of spatial 

heterogeneity. However, most studies considered only a few landscape metrics over a 

narrow range of scales. Also, the landscape data sets used in all of these studies 

emanated from Europe and North America. In this study, the researcher will consider 

several commonly used landscape metrics over a very wide range of scales. It is also 

the researcher’s belief that differences in composition and configuration of landscape 

data sets could affect the outcome. The researcher, therefore, wishes to investigate the 

scaling relations exhibited by the landscape data from northern Ghana and compare the 

results with those from related studies.  
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1.3 Objectives  

The main objective of this research is to employ direct and indirect approaches to 

multiscale analysis of landscape data from northern Ghana. In particular, we shall use 

the wavelet transform as a direct approach to detecting and describing the multiple-

scale nature of landscape data sets from northern Ghana. In the indirect approach, 

several landscape metrics will be computed over a wide range of grain sizes (with 

different aggregation methods) and spatial extents (with different direction of analysis). 

Scaling relations would then be constructed for the landscape metrics whose change 

with grain size or extent is consistent among different landscape data sets.  

 The specific objectives include: 

1. To investigate the land use and land cover maps for heteroscedasticity and 

proportional effect. 

2. To determine the dominant scales of NDVI and DEM through wavelet-based 

analysis of variance. 

3. To employ orthogonal wavelets in detecting and describing multiple-scale patterns 

in landscape data sets. 

4. To investigate how commonly used landscape metrics change over broad ranges of 

grain sizes or spatial extents, and assess how these changes differ among distinctive 

landscapes.  

5. To formulate general scaling relations for landscape metrics whose change with 

grain size or extent are consistent across landscapes. 

6. To compare the effects of changing grain size and extent in respect of statistical 

correlations that exists among landscape metrics. 

 

1.4 Organization of thesis 

The entire thesis is partitioned into five broad chapters under the headings: 1. 

Introduction, 2. Literature Review, 3. Datasets and Methods, 4. Results and Discussion 

and 5. Summary and Conclusion.  

 The introduction chapter gives a brief background to the study – discusses 

what the problems are and the attempts that have been made at solving them. It also 

mentions the researcher’s motivation for outlining his research objectives and describes 

how he hopes to achieve them. Chapter 2 is a detailed review of the term scale and 
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associated issues, the theory of wavelets, and a description of landscape pattern metrics. 

The chapter discusses the sources of ambiguity of the term scale and explains its 

meaning as used in this thesis. Relevant scaling issues are also mentioned and 

discussed. The chapter also describes the theories behind wavelet analysis, and 

highlights the strengths and weaknesses of other direct multiscaling methods. Finally, 

the chapter describes the 18 metrics selected for this study. 

 The source of the landscape data sets used in the research, the data sets, the 

problems associated with the data sets and how the problems are resolved are discussed 

in chapter 3. The chapter also discusses the theories behind the methods used in the 

various analyses and gives detailed descriptions of the important steps involved. 

Chapter 4 is on results and discussion. In this chapter, summaries of results of all the 

analyses conducted in this study are presented in the form of tables and/or graphs. The 

major findings in the study are then discussed in relation to result from similar and 

related research. Chapter 5 is the final chapter of this thesis. It summarizes all the major 

findings and discusses them concisely vis-à-vis the set objectives of the research. 

Conclusions that may be derived from the findings of the study are outlined. 

Recommendations are also made on issues that require further study. 
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2 LITERATURE REVIEW  

 

2.1 Scale and scaling effects  

With modern advances in spatial information technologies which include geographical 

information systems (GIS) and remote sensing (RS), enormous amounts of data set on 

the earth’s surface exist in local, regional and global scales. The existence of abundant 

RS and related GIS data at various scales offers new potential and challenges in the 

development and implementation of techniques for dealing explicitly with scale 

(Goodchild and Quattrochi, 1997). Literature shows that data measurements and 

models of most phenomena are scale-dependent. Thus the evaluation of errors related 

to scale and the validation of models require particular attention (Arbia, 1989; 

Ehleringer and Field, 1993; Foody and Curran, 1994). In other words, the issue of scale 

plays an important role in RS and GIS research (Cao and Lam, 1997). In this section, 

we shall explain the term scale and outline the issues associated with scaling that may 

be relevant to this study.  We shall also outline and briefly discuss some of the well-

known methods for scaling. We begin with an explanation of our adopted meaning of 

scale. 

 

2.1.1 The meaning of scale 

The term scale is used by several different specialists including remote sensing 

specialists, ecologists, cartographers, mathematicians, geographers, spatial and 

geostatisticians. Its various and often conflicting meanings depend on the context and 

the disciplinary perspective of the user. The different definitions of scale are often used 

interchangeably and it is not always clear which one is being used. To avoid ambiguity 

in its usage, it is prudent and helpful to clarify the meaning of scale and other related 

terms in any scale-oriented research work like ours.  

 One definition which can be applied to all forms of scale namely spatial, 

temporal, quantitative and analytical is that “scale denotes the resolution within the 

range of a measured quantity” (Schneider, 1994). This is an effective definition because 

it encompasses two interacting and very important facets of scale: resolution and range. 

Resolution (also known as grain) refers to the finest distinction that can be made in an 

observation set. In raster lattice data, the resolution is represented by the cell size; in 
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field sample data, it is represented by the quadrat size; in imagery, by the pixel size and 

in vector GIS data, by the minimum mapping unit. On the other hand range, which is 

also known as extent, refers to the scope or domain of the data set. Typically, it is 

defined as the size of the study area (Allen and Hoekstra, 1991). It is worth mentioning 

that as a result of logistical constraints in measurements, resolution and extent are 

negatively correlated. Thus, in sampling we sacrifice fine resolution for large extent or 

we narrow the extent of our data set when we require fine resolution. Nature itself, of 

course, has fine resolution and large extent. Another important point to note is that 

more detailed information is obtained at finer resolutions.  

 Another potential source of confusion in terminology associated with scale is 

the various meanings of the adjectives small and large. To remote sensing specialists, 

small and large scales refer to the relative relationship between the dimensions of a 

map or an image and their correspondence on the earth’s surface. To them, small scale 

infers relatively larger extent (and therefore less detail) than large scale. We shall, 

however, adopt the usages by ecologists and other scientists which have reversed 

meanings. That is, a small scale study relates to an analysis performed in relatively 

great spatial detail (usually over a small area). Similarly, a large scale analysis relates 

to a large area (usually with less spatial detail).  Note also that by our adopted 

definition, high (or fine) resolution is associated with relatively small scales, while low 

(or coarse) resolution is related to analysis performed at large scales.  

 

2.1.2 Scaling issues 

Scaling is different from scale. Scaling focuses on what happens to the characteristics 

of an object when its scale (size/dimension) is changed. To explain the scaling issue, 

consider a side of length 1 meter and use it to build up a square and a cube. Then the 

square will have a surface area of 1 square meter and cube will have a volume of 1 

cubic meter. When we double the length of the side, the square will have a surface area 

of 4 square meters and the cube will have a volume of 8 cubic meters. This clearly 

shows that when the scale of the side changes by a factor of 2, the surface area changes 

by a factor of 4 and the volume by a factor of 8. It portrays a nonlinear scaling among 

the length of the side, the surface area of the square and the volume of the cube. 

Research has shown that reducing the resolution of a raster land cover map (going to 
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larger cells) can increase the dominance of the contiguous classes, but decrease the 

amount of small and scattered classes in the representation (Turner et al., 1989). Faced 

with scaling issue in hydrology, for example, we have to find out how topographic 

attributes change if we change the spatial resolution of a topographic map, or how the 

drainage area changes if we change the length of a stream (Dodds and Rothman, 2000). 

In a broad context, scaling requires the identification of process nonlinearities with 

change in scale, the range of scales for which linearity may hold, and the properties that 

may be coherent between scales (Wessman, 1992). While it is inaccurate to state that a 

process is restricted to any particular scale, it is possible to point to specific time and 

space scales at which one process prevails over another (Schneider, 1994). 

 There are two forms of scaling: upscaling and downscaling. Upscaling refers 

to any resampling techniques that are designed to transform an image data set collected 

at a high spatial resolution to a lower spatial resolution representation of the same 

image. Downscaling is the direct opposite and refers to any techniques that transform 

image data sets from a lower spatial resolution to a higher spatial representation of the 

same image (Strahler et al., 1986). Figure 2.1 illustrates the concepts of upscaling and 

downscaling. 
 

   fine resolution    coarse resolution 
 

 

downscaling 
 
 
 
 

upscaling 

 

 

downscaling 
 
 
 

 
upscaling 

 

 

  
Figure 2.1 An illustration of upscaling and downscaling 
 

 From this point on, we shall dwell on upscaling issues which are the main 

focus of this study. Ideally, an upscaling technique is intended to reduce the size of a 

data set of a high resolution image while maintaining its inherent information contents 

at a lower spatial resolution. Unfortunately, this goal is somewhat contradictory as 

upscaling involves generalization techniques which tend to produce more 

homogeneous, variance reduced, thus inherently lower information content data sets 

(Wieczorek, 1992). 
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Why scaling?  

It is commonly acknowledged that the only way to capture scale dependent spatial 

processes is to make correct observations at the scales at which the processes and 

physical laws are taking place (Wood and Lakshmi, 1993; Harvey, 1997). However, for 

the majority of cases, available databases are limited to much smaller spatial scales 

than those at which the actual processes occur. Despite rapid advances in data 

extraction methods, the acquisition of spatial data sets at large scales and in great 

details still remains the most expensive and difficult part of any GIS (Burrough and 

McDonnell, 1998). Upscaling has become a topical issue in environmental science in 

recent years because  
  

1. it has become evident that most environmental and resource management 

problems can only be dealt with effectively at broad scales; 

2. ecologists are now acutely aware that in order to unravel how nature works, 

they must have an understanding of broad-scale patterns and processes; and   

3. transfer of information between scales is indispensable. There is the need to 

integrate data from various sources and at different scales for problem solving. 

 

Consequences of scaling 

The effects of scale on the analysis of spatial pattern may occur in each of the 

following three situations: (1) changing the size of the grain (or resolution) only, (2) 

changing the extent only, and (3) changing both grain and extent. In general, much 

more research has been done into the effects of changing the size of the grain than 

those of changing the extent. A quantitative understanding of these two kinds of scale 

effects across different systems and methods is still lacking. Scale effects do not 

necessarily have to be considered as problems because they can be used for 

understanding the multiple-scale characteristics of landscapes (Jelinski and Wu, 1996; 

Wu et al., 2000 & 2002). In principle, the relevant pattern is revealed only when the 

scale of analysis approaches the operational scale of the phenomenon under study 

(Allen et al., 1984; Wu and Loucks, 1995; Wu, 1999). In practice, however, not all 

scale breaks revealed in multiscale analysis by resampling data correspond to actual 

operational scales or hierarchical levels due to inaccuracies caused by the methods of 

data aggregation and analysis (Wu et al., 2000; Hay et al., 2001). 
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As one increases the scale of a system, fine scale processes may average away 

and become constants. For example, at the scale of a forest sample quadrat (say, 0.01 

ha), it is reasonable to ignore larger-scale variability in soil parent material: the trees on 

the quadrat all see the same type of soil. Similarly, from the time-scale of years to 

decades, long-term trends in the climate may not be apparent even though fluctuations 

in the weather might have occurred. Another consequence of scaling is that as we 

increase the extent of our analysis, parameters that were constant now become variable. 

For example, if we were to extend the forest sampling to cover a large watershed or 

basin, soil types would indeed vary. Also, new interactions may arise as one increases 

the extent of inquiry. At the scale of a landscape mosaic, interactions among forest 

stands, such as via dispersal of plant or animal species, emerge as new phenomena for 

study.  Statistical relationships may change. The magnitude and/or sign of correlations 

may change with spatial extent. At the scale of a single habitat patch, abundances of 

different species might be negatively correlated due to interspecific interactions; but if 

one considers a set of these habitat patches in a heterogeneous landscape, any species 

inhabiting similar habitat types will be positively correlated.  

Variability relationships may change dramatically with a change in resolution 

or extent. Prediction may change. Important variables come and go with changes in 

scale. Potential evapotranspiration (PET) depends on physical parameters such as 

temperature, vapor pressure deficit, wind speed, and soil moisture status as well as 

biological parameters such as stomatal conductance and surface roughness. At very fine 

scales, one might include many of these factors to predict PET or actual 

evapotranspiration (Monteith, 1965). At sub-continental scales, PET can be predicted 

adequately by temperature and latitude (Thornthwaite and Mather, 1955). The nature of 

the process does not change with scale, but the relative contribution of explanatory 

variables does, and so does our ability to measure all the variables over a large extent.  

 

2.1.3 Methods of scaling 

While a host of different scaling techniques exists in the literature (Meentemeyer and 

Box, 1987; Turner et al., 1991), only a few are readily available to probable users, and 

very little instructions regarding the appropriateness of these techniques to different 

types of data sets exist. For instance, the only available resampling algorithms for 
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remotely sensed data have been directly copied from classic image processing 

interpolation techniques and included in commercial remote sensing image analysis 

packages, even though they are not theoretically developed for remotely sensed 

imagery (Moreno and Melia, 1994). This often leads to an inappropriate use of these 

routines by inexperienced users. In fact, as no proven theory of spatial scaling exists 

(Schneider, 1994), the tendency to produce large volumes of non-representative data 

sets is enormous. A typical example is the upscaling which is routinely performed on 

Advanced Very High Resolution Radiometer data, where pixels representing an 

integrated spectral response from a nominal one square kilometer area extent are 

aggregated to 20 2km  pixels, for weekly use as a global vegetation index (Justice et 

al., 1989). 

 The commonly used aggregation techniques include the scale variance, local 

variance, the local Gi*(d) statistic, Fourier analysis, variogram analysis, simple and 

multi-fractal dimension and spectral analysis. Among these, multiscale variance, local 

variance and local Gi*(d) statistic methods were suggested and used much earlier in 

scale related research. The Fourier analysis has become a routine method in image 

processing (Jansen 1996), while the local Gi*(d) is a distance based measure of spatial 

association (Getis and Ord, 1992). The variogram method which is the core of 

geostatistics (Cressie, 1991) is the most popular method used to identify the effective 

range of spatial scales within which image variations are spatially dependent. The use 

of the fractal techniques in analyzing remotely sensed images has been explored by 

several authors (De Cola, 1994; Cao and Lam, 1997; Quattochi et al., 1997). We shall 

review some of these methods and discuss their strengths and limitations.  

 

The scale variance method 

Scale variance analysis is a hierarchical analysis that was first developed by Moellering 

and Tobler (1972). To conduct scale variance analysis, one needs to systematically 

aggregate spatial data set by increasing the size of the grain progressively so that a 

nested data hierarchy is formed. The size of each grain is called the scale level 

(Moellering & Tobler, 1972). The statistical model of scale variance is expressed as: 
 

zijkijkijizijkX KK K ωγβαµ +++++= , 
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where zijkX K  is the value of a spatial unit (e.g., a pixel) at the hierarchical level that 

corresponds to the finest grain size; µ  is the mean of the entire data set; iα  is the 

effect of levelα , ijβ  is the effect of levelβ , ijkγ  is the effect of level γ  and zijkKω  is 

the effect of level ω . From the above model, the total variance of the landscape can be 

partitioned hierarchically at different grain sizes. For example, the scale variance 

components for a 3-level ),,( γβα  hierarchy will be as follows. The total variation of 

the system is expressed as the total sum of squares: 
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where I is the number of α level units, iJ  is the number of β  level units in each ith  α  

level unit, and ijK  is the number of γ  level units in each ijth β  level unit. The total 

sum of squares can then be partitioned into parts attributable to the scale levels 

, and,, γβα  so that the total sum of squares will be the sum total of the sum of squares 

due to α  and β  and γ . That is .γβα SSSSSSSSTotal ++=  The formulae for the 

various sums of squares are 
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Dividing the partitioned sums of squares by their respective degrees of freedom, we 

obtain the corresponding estimators for mean sum of squares.  
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For regular lattice data sets, the scale variance components are simply given by  
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 Scale variance analysis starts with the construction of nested data hierarchies 

after which the above equations are used to compute the total sum of squares, 

partitioned sums of squares, mean sum of squares and scale variance at each scale 

level. Finally, the percent total sum of squares is plotted against scale levels to give the 

scale variance graph. From this graph, one can readily visualize the presence of peaks 

or the lack of them. A peak implies that high variability occurs at the corresponding 

scale level, which is indicative of the average size of dominant patches in the 

landscape. The height of the peak reflects the relative contribution of that particular 

scale level to the total variability of the landscape. This method is a simple and easy to 

understand. But as Cao and Lam (1997) pointed out, the validity of the assumption that 

the operational scale of geographical processes coincides with the level of maximum 

variability is not clear. The decomposition of variance is based on the averaging and 

other aggregation methods which may bring change in the performance of the model. 

Also, the requirement of hierarchical data limits its application in remote sensing 

applications. 

 

The local variance method 

The local variance method was first suggested by Woodcock and Strahler (1987) to 

measure the relationship between the size of the objects in the scene and spatial 

resolution. The local variance calculates the mean value of the standard deviation by 

passing an n pixel by n pixel moving window for each pixel, and then takes the mean of 

all local variance over the entire image as an indication of the local variability in an 
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image. Woodcock and Strahler (1987) used a 33×  window and upscaled the images to 

coarser scales to examine the change in local variance with pixel size. Pixel sizes were 

plotted on the x-axis and local variance on the y-axis, depicting the change in variance 

with pixel size. By examining a single image, several window sizes and orientations 

could be utilized to establish the scale and form of autocorrelation based on changes in 

variance levels. Instead of changing pixel sizes, window sizes could be changed. The 

local variance method is similar to the covariance portion of traditional measures of 

autocorrelation for short distances (Cliff and Ord, 1981). A serious limitation of this 

method is that it is dependent on the global variance in the image, so the values of local 

variance for one image can only be compared with those from the same images 

upscaled to different resolutions.  

 

The Gi*(d) statistic method  

Since the ground scene is not random, the brightness value of one pixel carries some 

information about its neighborhood. In this sense, the Gi*(d) statistic was designed to 

establish if clusters of high or low data values occur around a pixel within the specified 

distance (Anselin, 1995). The local Gi*(d) could be computed for an image at 

progressively increasing values of d or by defining a set of neighbors for each pixel. 

Resulting values of the Gi*(d) statistic at varying distances of d may be presented in the 

form of a spatial correlogram, a positive peak indicates spatial clustering of high 

values, whereas a negative troughs indicates clusters of low pixel values. Getis and Ord 

(1992) have applied Gi*(d) in high resolution image analysis and the result showed the 

Gi*(d) map had a good match with the patch clustering. Unlike the local variance, the 

Gi*(d) method considers the local spatial association, and is a good added information 

component compared to the variogram and local variance windows. Also it can be 

compared among different images. But it is a complicated measurement and requires a 

large amount of computation time even for a moderate image.  

 

The variogram analysis method 

Since Jupp et al. (1988a, 1988b) and Curran (1988) introduced the theory of 

autocorrelation and regularization in digital images, variogram analysis has widely 

been adopted for modeling the scale variation in remote sensing application, such as 
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soil mapping (Dubayah et al., 1997), biomass estimation (Atkinson and Curran, 1995) 

and landscape pattern (Turner et al., 1991). The variogram for lag distance h is defined 

as the average square difference of values separated approximately by h: 
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where n is the number of pixel pairs separated at distance h.  The terms )(iX  and 

)( hiX +  represent the pixel values at i and hi + , respectively. Empirically in some 

plots, the semivariance is normalized by the global variance. The shape of a 

semivariogram may be fitted with a model (such as linear/sill, exponential, spherical 

and Gaussian). Typically the range and sill are two parameters of semivariograms used 

to describe data. If there is no nugget effect, which, when it occurs, is expressed as a 

finite limit for the variogram at the distance of zero, the semivariance is zero when lag 

is zero. With the distance increasing, the difference between the compared pixels 

becomes larger. At some distance, the semivariogram develops a flat region called sill. 

The distance (or lag) at which the sill is reached is called range. The range generally 

indicates the extent to which values sampled from spatial process are similar. The 

height of sill often infers the variability of images.  

 Variogram analysis is the core of Geostatistics, and more detailed theoretical 

and mathematical exploration of variogram is presented in Geostatistic (Cressie, 1991). 

It is regarded to provide "a concise and unbiased description of the scale and pattern of 

variability in a data set" (Curran, 1988). But mathematically, two assumptions are 

required to use variogram: spatial stationarity, that assumes the mean and variance do 

not vary with spatial location, and ergodicity, which assumes that spatial statistics taken 

over the area of the images as a whole are unbiased estimates of those parameters. If 

these assumptions are broken, semivariogram can’t be used.  

 

Fractal analysis 

Fractal analysis was developed mainly because of the difficulty in analyzing spatial 

forms and processes by classic geometry. The key concept underlying fractals is self-

similarity (Lam and Quattrochi, 1992), that means the curve or surface is made up of 
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copies of itself in a reduced scale. This simulation capability of fractals makes it a 

promising tool for detecting scale tendency embedded in remotely sensed images. It has 

been used to characterize surface shapes (Rees, 1992), land cover patterns (De Cola, 

1989), image texture (Henebry and Kux, 1995), and scaling properties of terrain feature 

(Xia and Clarke, 1997). Xia and Clarke (1997) have given a detail review on the 

application of fractals. There are several algorithms to measure fractal dimension. Xia 

and Clarke (1997) summarized seven most commonly used algorithms including the 

walking division method, variogram method, box-counting method, power spectrum 

method, area-perimeter method, size-frequency method and the stream number-stream 

length method.  

 The selection of these methods differs among geographical features and 

subjects of interest, and often involves many subjective decisions, which often have 

significant effect on the final results of fractal computation. It is often common that 

different researchers would produce quite different results for the same data sets 

(Klinkenberg and Goodchild, 1992). Since the true fractal with self-similarity at all 

scales is infrequent, the simple fractal model was limited in a certain range of scales. 

Instead of the simple fractal model, multifractal model can be thought of as a hierarchy 

of sets each with its own fractal dimension, so the scaling properties of data is a scaling 

exponent function (Pecknold et al., 1997). Pecknold et al., (1997) used multifractal 

model to illustrate the scaling properties of landscape topography, cloud radiance and 

aeromagnetic anomaly, their results shows that multifractal model provide a more 

realistic framework and is seen to hold great promise for systematic treatment of scale 

issue. But the present techniques of multifractal model are insufficient to deal with 

multiple satellite images, and remain inaccessible to the average researcher. 

 

Spectrum analysis 

Similar to semivariogram, the spectrum analysis also concerns itself with pixels at 

constant intervals. It has been used to describe pattern (Cullinan and Thomas, 1992). 

To use this method, image intersections lengths collected along transect are expressed 

as linear equations of sine and cosine functions known as Fourier transform. Smoothed 

periograms are generated by plotting the information 
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as a function of the sine and cosine coefficients )( fC  and )( fQ  with neighbors 
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where m is the total number of block units (or periodgrams), f is the period. )( fC  is 

proportional to the reduction in the sum of squares associated with fitting the sine and 

cosine waves of period )( fm . Depending on whether plots are against the period or 

block size, the result is an estimate of scales of pattern, or patch size for one or more 

scales of heterogeneity (Ripley, 1978). The period is defined by the length of transect 

required to complete a full cycle of wave, and the pattern size is estimated as one half 

of the period. If plots are made against the period, the location of the resulting peaks 

should indicate the scale of pattern. Alternatively, if plots are made against the block 

size, the location of the resulting peaks can be multiplied by two to estimate the period. 

Spectrum analysis is sensitive to the block size; often the spectrum plots have spurious 

peaks that make interpretation difficult. It is argued whether it should be used widely. 

Also, many software packages do not provide the spectrum function to estimate 

confidence levels, which also largely limits its use (Cullinan and Thomas, 1992). 

 Recent research (Kumar and Foufoula-Georgiou, 1993a & 1993b; Hu et al., 

1998) suggests that wavelet decompositions are powerful tools in analyzing the 

variation in signal properties across different resolutions of geophysical variables. Due 

to the preservation qualities of wavelet transforms, they allow for the analysis of the 

fluctuations between spatial resolutions within data sets. A key advantage of wavelet 

transforms over other forms of analysis is that they allow for the breakdown of a signal 

into a scale frequency space. This permits the determination of the relative 

contributions of the different spatial scales present within an image. An additional 

benefit of wavelet analysis is that, if a process exhibits self-similar scaling behavior, the 

wavelet coefficients obtained through a wavelet transform preserve that self-similarity 

(Kumar and Foufoula-Georgiou, 1993a & 1993b). If a process does not show self-

similar behavior, this methodology still permits analysis of the actual scaling behavior 

through a multi-scaling framework. Hu et al., (1998) used multiresolution wavelet 
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analysis to study the scale variation of soil moisture. In that study, soil moisture images 

were decomposed into large scale and small scale wavelet coefficients. The results 

suggested that the variation in soil moisture could be analyzed at large- and small-

scales, independent of each other. The small-scale coefficients were analyzed with 

moments and scale plots. A surprising result of the research was that small-scale 

coefficients exhibited simple scaling, while the large-scale coefficients exhibited 

multiscale characteristics. Kumar and Foufoula-Georgiou (1993a, b) used 

multiresolution wavelets to analyze the spatial characteristics of precipitation. Their 

results were consistent with those of Hu et al., (1998): that the small scale coefficients 

exhibited simple scaling over a small range of scales, while large scale coefficients 

exhibited multiscale.  

 The application of wavelet transforms to the study of scaling effects, this 

researcher believes, will produce results the will complement those from indirect 

multiscale analysis of landscape pattern. In the following section, we shall describe 

what wavelets are, how they work and why they are useful for upscaling.  

 

2.2 The theory of wavelets  

It is well known from Fourier theory that a signal can be expressed as a Fourier series 

expansion, which is the sum of a series of sines and cosines. A major disadvantage of a 

Fourier expansion, however, is that it has only frequency resolution and no time 

resolution (Misiti et al., 2001; Daubechies, 1992). This means that although we might 

be able to determine all the frequencies present in a signal, we do not know when 

exactly they occur. To overcome this problem, several solutions were developed which 

are able to represent a signal in the time and frequency domain at the same time. The 

idea behind these time-frequency joint representations is to cut the signal of interest 

into several parts and analyze them separately. Although analyzing a signal in this way 

will give more information about the location of different frequency components and 

when they occur, we are faced with a fundamental problem: how do we cut the signal?  

Wavelet analysis is probably the most recent solution to overcome the 

shortcomings of the Fourier transform. In wavelet analysis, the use of a fully scalable 

modulated window solves the signal-cutting problem. The window is shifted along the 

signal and for every position the spectrum is calculated. This process is repeated many 
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times with a slightly shorter (or longer) window for every new cycle. In the end the 

result will be a collection of time-frequency representations of the signal, all with 

different resolutions. If we look at a signal with a large "window," we would notice 

gross features. Similarly, if we look at a signal with a small "window," we would notice 

small features. Because of this collection of representations, we can speak of a 

multiresolution analysis. In the case of wavelets, we normally do not speak about time-

frequency representations but about time-scale representations.  

 

2.2.1 What are wavelets? 

Wavelets are functions that are defined over a finite interval. Within an interval, they 

wave above and below the horizontal axis, integrate to zero and are square integrable. 

Wavelets are alternatives to other basis functions like sine and cosine, orthogonal 

polynomials, Walsh functions, etc., Morretin (1997). Therefore, the basic idea in 

wavelet analysis is to represent any arbitrary function by a linear combination of a set 

of wavelets or basis functions. These basis functions or wavelets are obtained from a 

single prototype wavelet called the mother wavelet, by dilations or contractions 

(scaling) and translations (shifts). The wavelet transform carves up functions, operators, 

or data into various components at different scales, allowing one to study each 

component separately. 

 

2.2.2 A brief history of wavelets 

Wavelets were developed from concepts and theories that already existed in various 

fields and also from a couple of bright discoveries. The first known connection to 

modern wavelets dates back to Jean Baptiste Joseph Fourier, 1768-1830 (Vidakovic, 

1999). In 1807, Fourier’s study of frequency analyses led to what we now call Fourier 

analysis.  He decomposed a continuous and periodic function )(xf  defined on the 

interval [ ]ππ  ,−  into the series 
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where the coefficients nn ba  and  ,  are defined, respectively, as 
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By this, a signal is decomposed into complex exponential functions of different 

frequencies and a frequency versus amplitude plot is obtained.  The plot indicates how 

much of each frequency exists in a signal. Although the Fourier transform provides 

how much of each frequency exists in a signal, it does not indicate when in time these 

frequency components exist.  This is a major obstacle because most signals, especially 

in the areas of biomedicine are non-stationary as the frequency content of the signal 

changes with time.  The electroactivity of the heart, brain and muscles, for example, are 

all non-stationary signals. 

 According to Vidakovic (1999), the first mention of wavelets appeared in an 

appendix to the thesis of Alfred Haar in 1909. In 1910, Alfred Haar discovered the first 

wavelet basis when he showed that any continuous function f(x) on [ ]1 ,0  can be 

approximated by  
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and that when ,∞→n  nf  converges to f uniformly (Haar, 1910). The approximation 

above is equivalent to an approximation by step functions whose values are the mean 

values of the function over appropriate dyadic intervals. One property of the Haar 

wavelet is that it has compact support, which means that it vanishes outside of a finite 

interval. Unfortunately, it does not have good time-frequency localization and the 

resulting wavelet basis functions have the additional disadvantage of being 

discontinuous which makes them unsuitable as a basis for smoother functions. 

 In the 1930s, several independent researches continued on the representation 

of functions using scale-varying basis functions.  By using scale-varying basis 

functions, a 1930s physicist called Paul Levy investigated Brownian motion (Meyer, 

1993). He found that the Haar basis function is superior to the Fourier basis functions 

for studying small complicated details in the Brownian motion. Fifty years later, 
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Grossman and Morlet defined wavelets in the context of quantum physics.  They stated 

that by the Heisenburg Uncertainty Principle, one could not know the exact time-

frequency representations of a signal.  The only information one can obtain is the time 

intervals in which certain band frequencies exist.  This assertion provided a way of 

thinking about wavelets based on physical intuition. In 1985, Stephane Mallat made a 

huge leap in the field of wavelet analysis by discovering the relationship between 

pyramid algorithms and orthonormal wavelet bases.  Soon after Mallat’s work, Yves 

Meyer constructed the first non-trivial wavelets. Unlike the Haar wavelets, the Meyer 

wavelets are continuously differentiable; however they do not have compact support. A 

couple of years later, Ingrid Daubechies used Mallat’s work to construct a set of 

wavelet orthonormal basis functions that are perhaps the most elegant, and have 

become the cornerstone of wavelet application today.  

 

2.2.3 Why do we employ wavelet methods? 

Wavelet transforms are so remarkable and useful due to certain peculiar characteristics. 

We list and explain some of the characteristics below.  
 

1. Wavelets are based on multi-resolution analysis. Functions, operators, or data are 

separated into multiresolution components. The fine resolution components capture 

the fine scale features in the signal, while the coarse resolution components capture 

the coarse scale features in the signal. This characteristic allows for the separate 

study of the various components at different scales.  

2. Wavelets are localized in both space/time and scale/frequency domains. Hence they 

are good building blocks for a variety of signals. They can easily detect and 

preserve important local structural features such as discontinuity, trends, etc., in 

data sets. A Fourier series approximation is not well suited to these types of signals. 

3. Wavelets are smooth, which is a necessary condition for efficient representation of 

the characteristics of data for many applications. This smoothness can be measured 

by the number of derivatives and/or the number of vanishing moments that exist for 

that wavelet. A function defined on the interval [ ]ba,  has n vanishing moments if  
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,0)(∫ =
b

a

idxxxf   for  1 , ,2 ,1 ,0 n-i K= . 

The higher the number of vanishing moments, the better smooth signals can be 

approximated in a wavelet basis. 

4. The wavelet approximation can compact the energy of a signal into a relatively 

small number of wavelet functions. This data compression feature of wavelets is 

valuable for applications such as nonparametric statistical estimation and 

classification. 

5. There exists fast ))(( nO  and stable algorithms to calculate the discrete wavelet 

transform and the inverse discrete wavelet transform.     
   

2.2.4 Wavelets and multiresolution analysis 

The Haar basis functions (see Example 2) are discontinuous and therefore unsuitable 

for representing smooth functions. However, it is possible to construct a variety of 

wavelet bases with better approximating properties such as good time-frequency 

localization, various degrees of smoothness and larger vanishing moments which 

enable parsimonious representation of different classes of functions. The concept of 

multiresolution analysis provides the mathematical framework for the construction of 

such orthonormal basis functions.  

 

Multiresolution analysis 

Multiresolution analysis is the process of decomposing a complex function to lower 

level resolutions. Consider the space ,2L  the vector space of square integrable 

functions in :ℜ  
 

.)(: 22

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∞<= ∫
∞

∞−

dxxffL  

 

In a multiresolution analysis (Mallat, 1989), we decompose ,2L  in nested subspaces jV   
 

KK 21012 VVVVV ⊂⊂⊂⊂ −−  
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such that closure of their union is ,2L  
 

i.e. , 2LV
j

j =
∞

−∞=
U  

 

and their intersection contains only the zero function 
 

{ }.0=
∞

−∞=
I
j

jV  

 

[Note: A  denotes the closure of the set A]. In the dyadic case, that is when each 

subspace jV  is twice as large as ,1−jV  a function )(xf  that belongs to one of these 

subspaces jV  has the following properties: 
 

 ,)2(dilation    )( 1−∈⇔∈ jj xfxf VV  (2.1) 

 

 .)1(tion    transla)( 00 VV ∈+⇔∈ xfxf  (2.2) 
 

If we can find a function 0)( V∈xφ  such that the set of functions consisting of )(xφ and 

its integers translates  
 

{ } Z∈− kkx )(φ  
 

form basis for the space ,0V we call it a scaling function or father function. For the 

other subspaces )0(with  ≠jjV we define: ).2(2)( 2
, kxx jj
kj −= φφ  

 

Wavelet functions 

Because the subspaces jV are nested: 
 

,1+⊂ jj VV  
 

we can decompose 1+jV  in jV and jW  (the orthogonal complement of jV  in 1+jV ): 
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jj

jjj

VW

VWV

⊥

=⊗ +1

. 

 

The direct sum of the subspaces jW  is equal to ,2L : 
 

.2Lj
jj

j == ⊕
∞

−∞=

∞

−∞=
WVU  

This means that jV  is a coarse resolution representation of 1+jV , while jW  carries the 

high-resolution difference information between 1+jV  and jV . If we can find a function 

0)( W∈xψ  that obeys the translation property 
 

 )( 0 ⇔∈Wxψ translation ,)1( 0W∈+xψ  
 

and such that the set of functions consisting of )(xψ and its integer translates  
 

{ } Z∈− kkx )(ψ  
 

form a basis for the subspace 0W , we call it a wavelet function or mother function. For 

the other subspaces jW  (with 0≠j ) we define: 
 

).2(2)( 2
, kxx jj
kj −= ψψ  

 
2.2.5 The Wavelet transform 

The wavelet transform is a form of a frequency transform. The transform uses wavelets as 

basis functions. The transformation of a function into its wavelet components has 

common background with the transformation of a function into its Fourier components. 

We shall begin the discussion of wavelets with a brief overview of Fourier transforms, 

highlighting only the concepts that are important to the development of wavelets. 
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The Fourier series expansion 

Here, we adopt the approach by Ogden (1997), and only consider functions defined on 

the interval [ ]ππ  ,− . If a function g, say, is defined instead on a different finite interval 

[ ]ba  , , then it can be transformed via 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

−
−

=
)(

)(
)(

2)(
ab

ba
ab
tgtf ππ . 

 

Let [ ]baL  ,2  be the space of all square-integrable functions: 
 

∫ ∞<
b

a

dttf .)(2  

 

Then any function [ ]baLf  ,2∈  of period π2 can be written as a linear combination of 

dilated sine and cosine functions: 
 

 ( )∑
∞

=

++=
1

0 ,sincos
2
1)(

n
nn ntbntaatf  (2.3) 

 

where nn ba  and  are the Fourier coefficients given by 
 

 ∫ ≥=
π

π
π

-

,0     cos)(1 nntdttfan  (2.4) 

 

and  
      

 ∫
−

≥=
π

π
π

.1     sin)(1 nntdttfbn  (2.5) 

 

The coefficients are said to measure the frequency content of the function f at the 

resolution level n. The equality in Equation (2.3) is understood to mean 
 

( )∫ ∑
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⎡
⎟
⎟
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⎞
⎜
⎜
⎝

⎛
++−

π

π

,0sincos
2
1)(

2

1
0 dtntbntaatf

n
nn  

 

and the summation can well be approximated by the finite sum with limit index N: 
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 ( )∑
∞

=
++=

1
0 .sincos

2
1)(

n
nnN ntbntaatS  (2.6) 

 

Equation (2.6) is called the Fourier series expansion of ).(xf  Note that the set of 

functions  
 

{ }, ,3 ,2 ,1   );cos(  ),sin( K=⋅⋅ nnn  
 

form an orthogonal basis for the space [ ]ππ  ,2 −L . Thus the Fourier series is the 

expansion of a function in terms of sine and cosine functions of differing frequencies, 

which form a set of orthogonal basis functions. 

 

 Suppose f is a periodic linear function defined on the interval [ ]ππ  ,−  by 
 

⎪
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⎩
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Then the Fourier coefficients for )(tf  computed from Equations (2.4) and (2.5) are 

summarized in Table 2.1. 
 

Table 2.1  Fourier coefficients for f(t) in Example 1 
 

n 0 1 2 3 4 5 6 7 8 9 

na  
4

3π
π
2  

π
1−  

π9
2  

0 
π25

2 0 
π49

2 0 
π81

2  

nb  - 0 0 0 0 0 0 0 0 0 
 

It is observed from Table 2.1 that all the s'nb  corresponding to the sine basis functions 

are zero, and in general, na  decreases as n increases. This indicates that most of the 

frequency contents are concentrated at low frequencies. The graph of )(tf and its 

representations by Equation (2.6) for 3 and  ,2 ,1=N  are shown in Figure 2.2. 
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Figure 2.2 Graph of f(t) in Example 1 and its Fourier series expansion for 

1,2,3=N  
 

It can be observed from the graph that as the summation limit N gets larger, the 

resulting Fourier sum approximates )(tf  better. Infact, the approximation of )(tf  is 

fairly good using the first 3 pairs ( )3 i.e. =N  of basis functions.  

 

The wavelet series expansion 

The Fourier series expansion is a tool widely used for many scientific purposes, but it is 

best suited to the study of stationary signals where all frequencies have an infinite 

coherence time. The Fourier analysis brings only global information which is not 

sufficient to detect compact patterns. In 1993, Gabor introduced a local Fourier 

analysis, taking into account a sliding window which leads to a time frequency-

analysis. This method is only applicable to situations where the coherence time is 

independent of the frequency. Morlet introduced the wavelet transform in order to have 

a coherence time proportional to the period (Meyer, 1993). 
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 By analogy with Fourier analysis, let us consider the space )(2 ℜL  of all 

square-integrable functions onℜ . In this case, the basis functions that generate ( )ℜ2L  

must not be only orthonormal, but must decay rapidly to zero as ∞→t .  The wavelet 

series expansion for any continuous time function )(2 ℜ∈ Lf  can be written as a linear 

combination: 
   

 ∑∑∑∑ ++++≈ −−
k

kk
k

kJkJ
k

kJkJ
k

kJkJ tdtdtdtstf )()()()()( ,1,1,1,1,,,, φψψφ K ,    (2.7) 

where J is the number of multiresolution components (scales) and k ranges from 1 to 

the number of coefficients in the specified component. The terms kkJkJ dds ,1,,  , , , K  are 

the wavelet coefficients and are given approximately by the integrals 
 

  dtttfs kJkJ )()( ,, ∫≈ φ  (2.8) 
 

  Jjdtttfd kjkj  , 2, ,1             )()( ,, K=≈ ∫ ψ . (2.9) 
 

Their magnitude gives a measure of the contribution of the corresponding wavelet 

function to the approximating sum. The functions )(, tkjφ  and )(, tkjψ  are the 

approximating wavelet functions and are generated from φ  and ψ  through scaling and 

translation as follows: 
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The wavelet series expansion in Equation (2.7) is orthogonal since the basis functions 

)(, tkjφ  and )(, tkjψ  are orthogonal: 
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The simplest and oldest example of a wavelet is the Haar function, a piecewise function 

defined on the interval [ ]1 ,0  by 
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For this wavelet function, the scaling function is 
 

  ;
2
1t0     ,1)( <≤=tφ  

 

and the wavelet basis functions are given by 
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The graph of the Haar wavelet function is shown in Figure 2.3. 

 

 
 

Figure 2.3 Graph of the Haar wavelet function 
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The 2-D wavelet series expansion 

We have so far discussed the wavelet representation of one-dimensional (1-D) 

functions (see Equation (2.5)). The 2-D wavelet series expansion is a straight forward 

generalization of the 1-D expansion. A 2-D function ),( yxF can be written as a sum of 

2-D wavelets at different scales and locations: 
 

  

             .),(                
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 (2.13) 

 

Analogous to the 1-D series, ),( yxF is decomposed into a sum of coarse resolution 

(level J) smooth coefficients and a sum of fine to coarse resolution (levels 1 to J) detail 

coefficients. However, there are three types of detail coefficients in the 2-D series: the 

vertical detail, horizontal detail and diagonal detail. There are three types of 2-D basis 

functions which are generated from the father wavelet Φ  and the mother wavelets vΨ , 
hΨ , dΨ  by scaling and translation as follows: 
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The 2-D wavelet transform coefficients are given approximately by the integrals 
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The discrete wavelet transform 

The task of calculating wavelet coefficients at every possible scale is an arduous one, 

and results in enormous amounts of data. It has been established that if scale and 

positions are chosen based on powers of 2, then the analysis is much more efficient and 

as accurate as using the entire data. This is what the discrete wavelet transform (DWT) 

does.  The DWT calculates the coefficients of the wavelet series expansion (Equation 

2.7) for a discrete signal nffff  , , , , 321 K  of a finite extent. The DWT maps the vector 
  

( )T321  , , , , nffff K=f  
  

to a vector of n wavelet coefficients  
 

( )T1210  , , , , −= nwwww Kw . 

 

The vector w  contains the wavelet coefficients Jjds kjkJ , 2, ,1  ,  and ,, K=  the 

wavelet series expansion. The kJs ,  are called the smooth coefficients and are thought 

to represent the underlying smooth behavior of the data set at the coarse scale J2 . The 

kJd ,  are called the detail coefficients and represent progressively finer scale deviations 

from the smooth behavior. Mathematically, the DWT is equivalent to ,Wfw =  where 

w  is an 1×n  vector of length Jn 2=  comprising both the discrete scaling coefficients 

kJs ,  and the discrete wavelet coefficients kJd , . The term W  is an nn×  real-valued 

orthogonal matrix defining the DWT and satisfying nIWW =T . The orthogonality of 

W  implies that wWf T=  and .22 fw =  Hence 2
nw  represents the contribution to 

the energy attributable to the DWT coefficients with index n. 

 In practice, the DWT is implemented using filters which were developed by 

Mallat (Mallat, 1998). This practical filtering algorithm yields a fast wavelet transform 

– a process through which a signal (data set) passes, and out of which wavelet 

coefficients quickly emerge. This algorithm consists of a sequence of low-pass and 

high-pass filters, and requires only order n operations. An outline of Mallat’s algorithm 

is given in the sections following.  
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The inverse discrete wavelet transform 

An original signal vector f can be recovered from the DWT coefficients by applying 

the inverse discrete wavelet transform (IDWT). Because of the orthogonality of the 

matrix W  associated with the chosen wavelet basis, the IDWT is given mathematically 

by .TwWf −=  Often, the reconstructed signal is not identically equal to the original 

signal. This is due to round-off error. To assess the round-off error of the reconstructed 

signal vector f̂ , we compute the 2L  relative error, which is given by  
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The IDWT is achieved through the inverse fast wavelet transform.  

 

Mallat’s pyramid algorithm 

The DWT and IDWT are computed through Mallat’s forward and backward pyramid 

algorithms, which are remarkably fast algorithms.  Each algorithm uses low-pass and 

high-pass filters, along with a down-sampling (decimation) or up-sampling (zero-

padding) operator.  

 

The forward algorithm 

The DWT algorithm is shown in Figure 2.4. There are two analysis filters – a low-pass 

filter and a high-pass filter – at each stage of the pyramid as well as a decimation-by-

two operation. 
 

 
 

Figure 2.4 A 3-level DWT pyramid algorithm for 1-D data 
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 The decimation operation is indicated by the symbol  and consists of 

deleting every other value of the filter output, thereby reducing the length of each 

component by half. The input signal ( ) ,,,, T
,02,01,00 nssss K=  consists of the values of 

the discrete signal: .,,2,1     ,0 nifs ii K==  Suppose  
 

.
2 jj
nn =  

 

Then the output of the algorithm is the set of DWT detail coefficients   
 

( )  ,,, T
,2,1, jnjjjj ddd K=d  

 

at levels ,,,2,1 Ji K=  which corresponds to scales ,2,,8,4,2 JK  along with the DWT 

smooth coefficients 
 

( )  .,,, T
,2,1, JnJJJJ sss K=s  

 

 The algorithm can be iterated, using successive smooth coefficients as input 

signals at subsequent levels. In practice, one has to decide on the number of iterations 

needed. This is usually referred to as the number of levels, depending on the nature of 

the signal, or on any suitable criterion such as the entropy. Given a signal of length N, 

the algorithm consists of a maximum of N2log  levels. By performing a number of 

iterations, the original signal is broken down into many lower components. For 

example, Figure 2.4 shows a 3-level iteration algorithm for 1-D signal. 
 

The backward algorithm 

The backward algorithm shown in Figure 2.5 inverts the forward algorithm to 

reconstruct the original signal.  
 

 

 

Figure 2.5 A 3-level IDWT pyramid algorithm for 1-D data 
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As in the case of the forward algorithm, there are two synthesis filters – a low-pass 

filter and a high-pass filter ( ) H and L ** at each stage of the pyramid as well as an up-

sample-by-two operation, indicated by the symbol  The up-sample operation 

consists of inserting zeros between every other value of the filter input, thereby 

doubling the length of each component. 

 

The 2-D discrete wavelet transform 

The properties which make wavelets attractive for analyzing 1-D data sets also hold for 

images, matrices and other 2-D data sets. In particular, wavelets have proven very 

effective and efficient for image analysis. In order to apply wavelets to images, an 

extension is made to the DWT to obtain the 2-D DWT. The 2-D DWT computes the 

coefficients of the 2-D wavelet series expansion (Equation 2.13) for an nm×  image 

.m,nF  The 2-D DWT maps the image m,nF  to an nm×  matrix of wavelet coefficients 

nm,w . The 2-D DWT is implemented by an extension of Mallat’s forward pyramid 

algorithm.  This algorithm consists of passing the 1-D low-pass and high-pass filters 

through the rows of the image data set, while retaining every other column. The same 

filters are then passed through the columns of the resulting data set, while retaining 

every other row. Figure 2.6 illustrates an S-PLUS output of a 3-level 2-D DWT 

indicating the various wavelet coefficients.  
 

 

 

 
 

Figure 2.6 Wavelet coefficient matrices of a 3-level 2-D DWT 

s1-d1 d1-d1 

s2-d2 d2-d2 

s3-d3 d3-d3

s3-s3 d3-s3 
d2-s2 

d1-s1 
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The coefficient matrix ( nms ,,3 ), located in the lower left-hand corner shows the smooth 

wavelet coefficients which approximates the original image. The coefficients ,33 sd −  

,22 sd −  and 11 sd −  (representing ,3,2,1for   ,, =jd v
nmj  see Equation (2.14)), located 

along the axis−x , corresponds to the vertical edges of the image. The coefficients 

,33 ds −  22 ds −  and 11 ds −  (representing h
nmjd ,, ), located along the y-axis, 

corresponds to the horizontal edges. The coefficients ,33 dd −  22 dd −  and 11 dd −  

(representing d
nmjd ,, ), located along the diagonal, corresponds to diagonal edges.  

 

The 2-D inverse discrete wavelet transform 

Analogous to reversing the DWT to obtain an original signal from its wavelet 

coefficients, the 2-D DWT algorithm can be reversed to obtain an original image from 

its wavelet coefficients. This process is called the 2-D inverse discrete wavelet 

transform (2-D IDWT). To assess the round-off error of the reconstructed image ,m,nF  

we compute the 2L relative error which is given by  
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Orthogonal wavelet families 

Only very special pairs or families of functions ψφ  and  can produce an orthogonal 

wavelet series expansion. Here, we discuss briefly the four commonly used types of 

orthogonal wavelet families. 
 

Haar: The Haar wavelet is the first known wavelet and was proposed in 1909 

by Alfred Haar. It is the simplest possible wavelet. The Haar wavelet has 

compact support, that is, it is zero outside a finite interval. It is a square 

wave and the only compact orthogonal wavelet which is symmetric. The 

Haar wavelet is not continuous and therefore not differentiable, thus it is 

unsuitable as a basis for classes of smoother functions. 
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Daublets: The daublets or Daubechies wavelet were the first continuous orthogonal 

wavelets with compact support. They were constructed by and are named 

after Ingrid Daubechies who is one of the pioneers in wavelet research. It 

has varying widths 

Symmlets: The symmlets also have compact support and were also constructed by 

Daubechies. While the daublets are quite asymmetric, the symmlets were 

specifically constructed to be as nearly symmetric (least asymmetric) as 

possible. 

Coiflets: The coiflets were also constructed by Daubechies to be nearly symmetric 

and also have vanishing moments for both the mother and father 

wavelets.  

 

2.2.6 Summary of properties of wavelet families 

Although the wavelet families described above have different characteristics and 

varying functionality, there are no hard and fast rules for selecting one for a given 

analysis (Bruce and Gao, 1996). In selecting a wavelet for an analysis, it is reasonable 

to examine its properties against the data to be analyzed and the overall aims of the 

study. Wavelet families have many different properties such as smoothness, 

temporal/spatial localization, vanishing moments, frequency localization, symmetry 

and orthogonality.  The properties are described below: 
 

• Smoothness – The smoothness of a wavelet approximation is generally inversely 

related to the support width of the wavelet – very compact wavelets are less 

smooth. Another measure of smoothness for a wavelet is given by the number 

derivatives which exist for that wavelet.  For many applications, the wavelet 

function must be sufficiently smooth to efficiently represent the characteristics of 

the underlying data. 
 

• Temporal/Spatial Localization – The most important feature of wavelet analysis is 

the ability to localize data features in time and space. The support width of a 

wavelet is directly related to its ability to localize features in time and space. Very 

compact wavelets, such as the Haar, are very well localized in time and in space. 
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• Vanishing Moments – A wavelet with higher number of vanishing moments can 

better represent higher degree polynomial signals. The number of vanishing 

moments is also closely related to the smoothness of a wavelet. A mother wavelet 

ψ  with M vanishing moments satisfies 
 

.1,,2,1     0)( −==∫ Mmdttt m Kψ  
 

• Frequency Localization – Wavelets localize features not only in time and space, but 

also in frequency. Smoother wavelets have better frequency localization properties. 

• Symmetry – Symmetric wavelets have the advantage of avoiding any phase shifts; 

the wavelet coefficients do not drift relative to the original signal. With the 

exception of the Haar wavelet, the orthogonal wavelets which have compact 

support are not symmetric; the daublets are highly asymmetric and the symmlets 

and coiflets are nearly symmetric.  

• Orthogonality – The orthogonality of the wavelet transform is central for most 

applications of wavelets.  

 

Comparison of wavelet families 

Table 2.2 shows a summary of the comparison of three kinds of wavelets. The 

Daubechies and Haar wavelets have orthogonality, which has some nice features. For 

example, the scaling and wavelet functions are the same for both forward and inverse 

transform. Also, the correlations in the signal between subspaces are removed. 

 

Table 2.2  Comparison of properties of three kinds of wavelets 
 

Property Haar Daubechies Biorthogonal Spline  
Explicit function yes no yes 
Orthogonal yes yes no 
Symmetric yes no yes 
Continuous no yes yes 
Compacted support yes yes yes 
Vanishing moments no yes yes 
Fast algorithm yes yes yes 

 

Among the three wavelets, the Haar wavelet transform is the simplest and fastest to 

implement. The major disadvantage of the Haar wavelet is that it is discontinuous, 
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which makes it difficult to simulate a continuous signal. It is also noteworthy that both 

the Haar wavelet and the biorthogonal spline are symmetric, while Daubechies is not. 

The advantage of symmetry is that the corresponding wavelet transform can be 

implemented using mirror boundary conditions that reduce boundary artifacts. The 

scaling function of the biorthogonal spline is a B-spline. The B-spline of degree N is 

the shortest possible scaling function of order 1−N  and B-splines are smoothest 

scaling functions for a filter of a given length. Because splines are piece-wise 

polynomials, they are easy to manipulate. For example, it is very easy to obtain 

derivatives and integrals of splines. 

 

2.3 Description of landscape metrics  

Several landscape metrics will be studied in this research. They include total area, 

number of patches, patch density, total edge, edge density, largest patch index, mean 

patch area, patch area standard deviation, patch area coefficient of variation and 

landscape shape index. The rest are mean shape index, area-weighted mean shape 

index, mean fractal dimension index, area-weighted mean fractal dimension index, 

contagion, patch richness, patch richness density and Shannon’s diversity index. For each 

metric we provide a mathematically definition, its unit of measurement and a range of 

values for which it is defined. The description of all these metrics is based on the 

notations and formulations by McGarigal and Marks (2002). 

 

2.3.1 Total area  

Total area (TA) equals the total area (in square meters) of the landscape, divided by 

10,000 to convert to hectares. That is, 
 

⎟
⎠

⎞
⎜
⎝

⎛
=

10,000
1ATA , 

 

where A is the total area minus the area of any background patches within the 

landscape. It is measured in hectares and has range 0>TA  with no upper limit. 
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2.3.2 Largest patch index  

Largest patch index (LPI) equals the area (in square meters) of the largest patch in the 

landscape divided by total landscape area, multiplied by 100%. In other words, LPI 

equals the percent of the landscape that the largest patch represents. Mathematically, 

LPI is given by 
 

%)100(
)(max

1

TA

a
LPI

ij
n

j== , 

 

where ija  is the area of patch ij, mi ,,1K=  is the number of patch types and 

nj ,,1K=  is the number of patches. It is expressed as a percentage and therefore lies 

between 0 and 100%. LPI approaches 0% when the largest patch in the landscape is 

increasingly small. It approaches 100% when the entire landscape consists of a single 

patch; that is, when the largest patch comprises 100% of the landscape. 

 

2.3.3 Number of patches  

Number of patches (NP) equals the number of patches in the landscape. It, however, 

does not include any background patches within the landscape or patches in the 

landscape border. NP is computed as  
 

NNP = , 
 

where N is the total number of patches in the landscape, excluding any background 

patches. NP has no unit of measurement and 1≥NP .  

 

2.3.4 Patch density  

Patch density (PD) is equal to the number of patches in the landscape divided by total 

landscape area. It is given as  
 

)100)(00010( ,
 TA
NPD = , 

 

where N is the total number of patches and TA is the total area of the landscape. It is 

measured in number per 100 hectares and 0>PD  without an upper limit.  
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2.3.5 Mean patch area  

Mean patch area (MPA) is equal to the total area of the landscape divided by the total 

number of patches, and divided by 10,000 to convert to hectares. It is given by the 

equation 
 

⎟
⎠

⎞
⎜
⎝

⎛
=

000,10
1

N
TAMPA , 

 

where TA and N are the total area and total number of patch respectively, in the 

landscape. It is measured in hectares and has range of 0>MPA  without an upper limit.  

 

2.3.6 Patch area standard deviation  

Patch area standard deviation (PASD) equals the square root of the sum of the squared 

deviations of each patch area from the mean patch area, divided by the total number of 

patches, divided by 10,000 to convert to hectares. Note that this is the population 

standard deviation, not the sample standard deviation. Mathematically,   
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where ija  is the area of patch ij , mi ,,1K=  is the number of patch types and 

nj ,,1K=   is the number of patches, TA is the total area of the landscape and N is the 

total number of patches in the landscape. It is measured in hectares and 0>PASD  with 

no upper bound. 0=PASD  when all patches in the landscape are of the same size or 

when there is only one patch, in which case there is no variability. 

 

2.3.7 Patch area coefficient of variation  

Patch area coefficient of variation (PACV) is given by the standard deviation of the 

patch area (PASD) divided by the mean patch size (MPA), multiplied by 100 to convert 

to percent. That is, the variability in patch area relative to the mean patch area. This is 

the population coefficient of variation and not the sample coefficient of variation.  

Mathematically, it is given by  
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%).100(
MPA
PASDPACV =  

 

It is measured in percent and so 1000 ≤≤ PACV . It is 0 when all patches in the 

landscape are of the same size or when there is only one patch.  

 

2.3.8 Total edge  

Total edge (TE) equals the sum of the lengths of all edge segments in the landscape. If 

a landscape border is present, TE includes landscape boundary segments representing 

true edge only. If a landscape border is absent, TE includes a user-specified proportion 

of the landscape boundary. Regardless of whether a landscape border is present or not, 

TE includes a user-specified proportion of background edge. It is given by  
 

ETE = , 
 

where E is total length of edge in landscape. The unit of measurement is meters and has 

range of values greater or equal to 0. TE is 0 when there is no edge in the landscape; 

that is, when the entire landscape and landscape border, if present, consists of a single 

patch and the user specifies that none of the landscape boundary and background edge 

be treated as edge. 

 

2.3.9 Edge density  

Edge density (ED) equals the sum of the lengths of all edge segments in the landscape, 

divided by the total landscape area multiplied by 10,000 to convert to hectares. If a 

landscape border is present, ED includes landscape boundary segments representing 

true edge only. If a landscape border is absent, ED includes a user-specified proportion 

of the landscape boundary. Regardless of whether a landscape border is present or not, 

ED includes a user-specified proportion of background edge. Mathematically, it is 

given by  
 

)000,10(
TA
EED = , 

 

where E is total length of edge in landscape and TA is the total area of the landscape. It 

is measured in meters per hectare and has values ranging from 0 and above. 0=ED  

when there is no edge in the landscape. 
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2.3.10 Landscape shape index  

Landscape shape index (LSI) equals the sum of the landscape boundary (regardless of 

whether it represents true edge or not) and all edge segments within the landscape 

boundary, divided by the square root of the total landscape area, adjusted by a constant 

for a square standard. It is given by  
 

TA
ELSI (0.25)

= , 

 

where E is total length of edge in landscape and TA is the total area of the landscape. 

LSI has no units and has range of 1≥LSI ; it is 1 when the landscape consists of a 

single square patch. LSI increases without limit as landscape shape becomes more 

irregular and/or as the length of edge within the landscape increases. 

 

2.3.11 Mean shape index  

Mean shape index (MSI) is given by the sum of the patch perimeter divided by the 

square root of patch area for each patch in the landscape, adjusted by a constant for a 

square standard, divided by the number of patches. In other words, MSI equals the 

average shape index of patches in the landscape. Mathematically, it is given by  
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where ijp  is the perimeter of patch ij in meters,  ija  is the area of patch ij , mi ,,1K=  

is the number of patch types, nj ,,1K=  is the number of patches and NP is the total 

number of patches in the landscape. MSI has values greater or equal to 1; it is 1 when 

all patches in the landscape are square. MSI increases without limit as the patch shapes 

become more irregular. 

 

2.3.12 Area-weighted mean shape index  

The area-weighted mean shape index (AWMSI) equals the sum, across all patches, of 

each patch perimeter divided by the square root of patch area, adjusted by a constant to 

adjust for a square standard, multiplied by the patch area and divided by the total 
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landscape area. In other words, AWMSI equals the average shape index of patches, 

weighted by patch area so that larger patches weigh more than smaller ones. It is given 

by the equation 
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where ijp  is the perimeter of patch ij,  ija  is the area of patch ij , mi ,,1K=  is the 

number of patch types , nj ,,1K=   is the number of patches and TA is the total area of 

the landscape. AWMSI is without units and have values greater or equal to 1.  

1=AWMSI  when all patches in the landscape are square. It increases without limit as 

the patch shapes become more irregular. 

 

2.3.13 Mean fractal dimension index  

Mean fractal dimension index (MFDI) equals the sum of two times the logarithm of 

patch perimeter, divided by the logarithm of patch area for each patch in the landscape, 

divided by the number of patches. MFDI is given by the equation 
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where ijp  is the perimeter of patch ij and i, j, and N have their usual meanings.  It has a 

range of 21 ≤≤ MFDI  but no units. A fractal dimension greater than 1 for a 2-

dimensional landscape mosaic indicates a departure from a Euclidean geometry. The 

value of MFDI approaches 1 for shapes with very simple perimeters such as circles or 

squares, and approaches 2 for shapes with highly convoluted, plane-filling perimeters. 

 

2.3.14 Area-weighted mean fractal dimension index  

Area-weighted mean fractal dimension index (AWMFDI) equals the sum, across all 

patches, of two times the logarithm of patch perimeter divided by the logarithm of 

patch area, multiplied by the patch area divided by total landscape area. In other words, 

AWMFDI equals the average patch fractal dimension of patches in the landscape, 

weighted by patch area. Mathematically, it given by  
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Its range of values is given as 21 ≤≤ AWMFDI  and has no units of measurement. 

Estimated values of AWMFDI share similar characteristics as those of MFDI. 
 

2.3.15 Shannon’s diversity index  

Shannon’s diversity index (SHDI) equals the negative of the sum, across all patch 

types, of the proportional abundance of each patch type multiplied by that proportion. It 

is given by  
 

( )∑
=

⋅=
m

i
ii PPSHDI

1
ln- , 

 

where iP  is the proportion of the landscape occupied by patch type i and mi ,,1K=  is 

the number of patch types. SHDI is greater or equal to 0 with no units. It is 0 when the 

landscape contains only one patch (or no diversity). SHDI increases as the number of 

different patch types increases and/or the proportional distribution of area among patch 

types becomes more equitable. 
 

2.3.16 Patch richness  

Patch richness (PR) equals the number of different patch types present within the 

landscape boundary. That is,  
 

mPR = , 
 

where m is the number of patch types present in the landscape, excluding the landscape 

border if present. The range of values is given as 1≥PR  with no units. 
 

2.3.17 Patch richness density  

Patch richness density (PRD) equals the number of different patch types present within 

the landscape boundary divided by total landscape area, multiplied by 10,000 and 100 

to convert to 100 hectares. It is given by the mathematical expression 
 

)100)(000,10(
TA
mPRD = . 
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Unit of measurement is number per 100 hectares and has positive values with no upper 

bound. 

  

2.3.18 Contagion  

The contagion index (CONTAG) equals the negative of the sum of the proportional 

abundance of each patch type multiplied by the number of adjacencies between cells of 

that patch type and all other patch types, multiplied by the logarithm of the same 

quantity, summed over each patch type; divided by 2 times the logarithm of the number 

of patch types; multiplied by 100. Note, CONTAG considers all patch types present on 

an image and considers like adjacencies. All background edge segments are ignored, as 

are landscape boundary segments if a border is not provided, because adjacency 

information for these edge segments is not available. It is given by the equation 
 

 
 

where iP  is the proportion of the landscape occupied by patch type i, kg i  is the  

number of adjacencies between pixels of patch types i and k, and m,,1, K=ki  is the 

number of patch types. It has values 1000 ≤≤ CONTAG  and has % as its unit of 

measurement. It approaches 0 when the distribution of adjacencies among unique patch 

types becomes increasingly uneven. It is 100% when all patch types are equally 

adjacent to all other patch types.  CONTAG is undefined if the number of patch types is 

less than 2. 
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3 DATA SETS AND METHODS 

 

3.1 Description of data sets 

In this section, we shall briefly describe the study area and the data sets used in this 

research. Data summaries will be computed and discussed. Also, problems associated 

with the data sets as well as their solutions will be explained. 

 

3.1.1 The study area 

The study covers an area of about km100km100 ×  (or approximately 2km000,10 ) in 

the Northern Region of Ghana. It lies between latitudes '508°  and N10° , and between 

longitudes '300° and W301 '° . The Northern Region is one of the ten administrative 

regions, and has 18 of the 138 districts in Ghana. It is bounded on the north by the 

Upper East and Upper West regions of Ghana, on the west by Cote D’Ivoire, on the 

east by Togo and on the south by Brong Ahafo and Volta regions of Ghana. Although 

the Northern Region covers about 31% of the total size of Ghana, its population in 

2000 was about 1.8 million which is equivalent to only about 10% of the total 

population of Ghana. The population density in northern Ghana ranges from the lowest 

of 10 2persons/km  to the highest of 150 2persons/km , with an average of 26 
2persons/km . The rate of growth of the population is about 2.5% (Ghana Statistical 

Service, 2002). The main ethnic groups are Dagomba, Nanumba, Mamprusi, Gonja and 

Komkomba.  

 The geographical features of the Northern Region are mostly low lying, 

except in the north- eastern corner which has the Gambaga escarpment. The land is 

drained by the tributaries of the Volta Lake: rivers Nasia, Daka, Oti, the Black Volta 

and the White Volta; covering over a third of the total land mass.  There are two main 

seasons in the study area: rainy and dry seasons. The rainy season is between May and 

October each year, followed by a dry season from November to April. The dry season 

peaks in December and January with dry harmattan winds from the Sahara Desert. Year 

round temperatures are generally high, averaging about C27° . Maximum temperatures 

of around C38° occur between March and April each year, while minimum 

temperatures of about C19° occur in January (Fact File, 2003). Between April and 
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October, relative humidity is highest in the night (about 95%), dropping to about 70% 

during day time (Overseas Development Institute, 1999). At other times of the year, 

relative humidity in the night is less than 80% and drops to as low 25% in January.  

 Latest characterization of the soils in northern Ghana shows the following: 

soil pH values range between 4.5 and 6.7, organic matter content range from 0.6% to 

2.0%, total nitrogen ranges from 0.02% to 0.05%, available phosphorous varies 

between 2.5 and 10.0 P/kg mg of soil, and available calcium ranges between 45 and 90 

mg/kg of soil (Soil Research Institute, 2001). Soil fertility in the study area has 

declined in the last two decades (Abatania and Albert, 1993; Gordon and Amatekpor, 

1999). The causes are attributed mainly to bush burning, continuous cropping, mono 

cropping and overgrazing. The consequence of the decline in soil fertility is lower 

yields in maize, sorghum and groundnuts which are the crops commonly grown in the 

area. The tropical climate sustains the Guinea Savanna vegetation made up of 

grassland, clusters of shrubs, short trees and such big trees as mahogany, Shea butter, 

Dawadawa, Mango and Baobab (Kipo, 1993). The main land use changes are 

intensification of land use and the expansion of agricultural land into previously 

forested areas. 

 

3.1.2 The data sets 

Five large secondary data sets were used in this research. They included two land use 

and land cover (LULC) maps, two normalized differential vegetation index (NDVI) 

maps and one digital elevation model (DEM) data set. The LULC maps were acquired 

in November 1984 and November 1999; they are therefore called LULC84 and 

LULC99 respectively in this study. The NDVI maps were produced from the LULC 

maps, and are consequently named NDVI84 and NDVI99. Each of the LULC and 

NDVI data sets is stored in 20103114×  pixels with a grain size of m 30m 30 × and 

covers an area of about km 60km 93 × (approximately 2km 5,600 ). The DEM data set 

is of lower detail and stored in 12021202×  pixels with a grain size of m 90m 90 ×  and 

covers an area of approximately km 081km 108 × . Classification of the LULC maps 

was carried out using the maximum likelihood algorithm (Braimoh, 2004). The map 

was classified into six land use and land cover types based on the scheme in Table 3.1. 
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Table 3.1  Classification scheme for assigning codes to land use and land cover types  
 

Land use and land cover type Code 
LULC84 LULC99 

1 Cropland Built-up area 
2 Built-up area Water 
3 Closed woodland Cropland 
4 Water Closed woodland 
5 Open woodland Grassland 
6 Grassland Open woodland 

 

A brief description of each land use and land cover type is given below: 

 

Land cover type Description 
Closed woodland Mainly trees over 5 m high, riparian vegetation ( 150>  

trees/ha) 

Open woodland Mainly trees (75-150 trees/ha) with shrub undergrowth 

Grassland Mainly combination of grasses and shrubs with or without 

scattered tress ( 10<  trees/ha) 

Cropland Agricultural land with crops, harvested agricultural land 

Built-up area Settlements, airports and roads 

Water Rivers, inland waters, reservoirs 

 

Figure 3.1 shows the LULC maps for 1984 and 1999. 
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Figure 3.1 Land use and land cover maps of the study area in 1984 and 1999 
 

The NDVI maps are a measure of biomass distribution over the study area. They are 

continuous data sets with each value indicating the relative amount of vegetation 

present per pixel. NDVI is calculated by subtracting the red from the near-infrared 

surface reflectance values to generate a vegetation index, and then dividing by their 

sum to normalize the values. Thus 
 

rednir

rednirNDVI
ρρ
ρρ

+
−

= , 

 

where redρ  and nirρ  corresponds to red and near-infrared surface reflectance values, 

respectively. NDVI data values range between 1−  and 1; with 0.5 indicating dense 
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vegetation and values less than zero indicating absence of vegetation. Water, typically, 

has NDVI value of less than zero; bare soils have values between 0 and 0.1; and 

vegetation has values over 1.0  (Grimes et al., 2003). Table 3.2 shows typical red and 

near-infrared reflectance values and corresponding NDVI for certain land cover types.  

 

Table 3.2  Typical red and near-infrared reflectance values and corresponding NDVI 
values for certain land cover types  

 

Land cover type Red Near-infrared NDVI 
Dense vegetation 0.100 0.500 0.667 
Dry bare soil 0.269 0.283 0.025 
Clouds 0.227 0.228 0.002 
Snow and ice 0.375 0.342 -0.046 
Water 0.022 0.013 -0.257 
Source: Holben, 1986 

 

Figure 3.2 shows the NDVI maps for 1984 and 1999. 
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Figure 3.2 Normalized difference vegetation index maps of the study area
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The DEM data set was processed by the Shuttle Radar Topography Mission global 

processor. It consists of terrain elevations in meters for ground positions at regularly 

spaced horizontal intervals of the study area. The DEM data set is shown in Figure 3.3. 
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Figure 3.3 Digital elevation model of the study area 
 

3.1.3 Data summaries 

In this section, we compute summary statistics and construct descriptive graphs for 

members of each group of data set. These statistics will inform us about the central 

values, the spread and the shape of each of our research data sets. Table 3.3 shows 

summary statistics for the two NDVI data sets. For example, the minimum and 

maximum pixel values of NDVI84 are 4583.0−  and 0124.0 , respectively. NDVI84 

has a mean value of 2507.0− , with a standard deviation of 0109.0 . Fifty percent of the 

pixel values lie between 2571.0−  and 2437.0− ; while 25% lie below 2571.0−  and 

another 25% above 2437.0− . The kurtosis value of 6757.7  indicates that the 

distribution of the pixel values of NDVI84 is more outlier prone than the normal 

distribution (kurtosis of a normal distribution is 3). The skewness value of 2059.0  

indicates that the distribution of NDVI84 is skewed to the right of the mean value of 

2507.0−  (skewness for a normal distribution is 0). NDVI99 is also more outlier prone 

than the normal distribution. However, it is more spread out than NDVI84.  
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Table 3.3  Summary statistics of the pixel values of the NDVI and DEM data sets 
 

Statistic NDVI84 NDVI99 DEM 
Minimum value 4583.0−  6230.0−  0 
First quartile 2571.0−  3210.0−  107 
Median 2498.0−  2667.0−  125 
Mean 2507.0−  2623.0−  128 
Third quartile 2437.0−  2111.0−  145 
Maximum value 0124.0  5259.0  279 
Standard deviation 0.0109 0.0909 28 
Coefficient of variation 0435.0−  3465.0−  0.2215 
Skewness 0.2059 1.5034 0.6243 
Kurtosis 7.6757 8.5559 0.7087 

 

It was observed from scatter plots of NDVI84 and NDVI99 that most of the values of 

NDVI84 lie between 35.0−  and 15.0− , with only a few lying outside this range. 

NDVI99 appeared to have fewer outliers compared to NDVI84. The minimum value as 

well as larger values ( 200> m) of DEM appears to be outliers as shown in box plot in 

Figure 3.4. The mean elevation is 128 meters with a standard deviation of 28. The 

distribution of DEM is slightly skewed to the right of the mean and less outlier prone 

compared to the normal distribution.  
 

 
 
Figure 3.4 Box plot of the digital elevation model data set 
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Table 3.4 is a frequency table of the LULC data. It shows the number of cells of each 

land cover type and the percentage of the total number of cells in each data it represent. 
 

Table 3.4  Frequency of classes in the land use and land cover maps 
 

Frequency  in LULC84  Frequency in LULC99  Land use land 
cover type Count % Count % 
Closed Woodland 1,765,008 28.20 1,106,936 17.69 
Open Woodland 1,565,005 25.00 1,702,071 27.19 
Grassland 1,449,563 23.16 899,604 14.37 
Cropland 1,407,994 22.50 2,473,423 39.52 
Built-up Area 32,224 0.51 35,680 0.57 
Water 39,346 0.63 41,426 0.66 

 

 

For both LULC84 and LULC99, Built-up Area is the least abundant class. It represents 

less than 1% of the total number of cells. Water also represents less than 1% of the cells 

in both LULC84 and LULC99. Closed Woodland is the most abundant in the LULC84, 

representing over 28% of the total number of cells; whilst Cropland is the most 

abundant in the LULC99, representing almost 40% of the total number of cells. From 

Figure 3.5, we observe that the proportions of Closed Woodland and Grassland in 

LULC84 exceed those in LULC99; while the proportions of Open Woodland and 

Cropland in LULC99 exceed those in LULC84. The differences in the portions of 

Built-up Area and Water in the two data are not significant. 
 

 
 
Figure 3.5 Bar chat of land use and land cover types of LULC84 and LULC99 
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3.1.4 Problems with the data sets 

Though very large, the volume of each data set did not pose much problems in the 

research; rather it is their dimensions that posed problems in the sections on wavelet 

analysis. By definition, an orthogonal wavelet transform requires that the size N of the 

data is a power of two: JN 2=  for some integer 0>J  (Vidakovic and Mueller, 1994; 

Ogden, 1997). To employ the orthogonal wavelet transform, therefore, requires that 

each data set is a square matrix whose side is a power of two. Unfortunately, the size of 

our data sets did not meet this requirement; they are either 20103114×  data matrices 

(in the case of LULC and NDVI maps), or 12021202×  data matrix (in the case of 

DEM). 

 In practice, a common way to precondition data sets to meet the orthogonal 

wavelet transform requirement is to “pad with zeros”, that is, to increase the size of the 

data set to the next larger power of two (Ogden, 1997). This would mean that each of 

the 20103114×  data sets would now become ,40964096×  with several row and 

column entries all being zeros. Though some researchers prefer this remedy, we shall 

not use it for the following reasons: 
 

1. To some extent the scheme “dilutes” the data sets near its boundaries, since 

wavelet coefficients will have zeros averaged into their computations. 

2. Orthogonality of the wavelet transform is not strictly maintained; because the 

filters are not applied evenly (multiplying a signal element of magnitude zero is 

equivalent to omitting the filter coefficient). 
 

Rather than padding the original data sets with zeros, some rows and columns at the 

edges were “cut off” to obtain 10241024×  (i.e. 1010 22 × ) dimension data sets. Thus, 

throughout the sections on wavelet analysis, the term data set is used to mean 

10241024×  portion of an original data set. 

 

3.2 Analysis of moving window statistics of NDVI and DEM data sets 

It is common with large environmental data sets such as ours, that data values in some 

regions are more variable than in others. Statistically, such an anomaly in the variability 

of a data set is called heteroscedasticity (Isaaks and Srivastava, 1989). Such anomalies 

may have serious implications on estimations from the data sets, and so need to be 
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identified. The computation of summary statistics within moving windows is frequently 

used to investigate anomalies both in the average value and in variability. The area 

under study was divided into several local neighborhoods of equal sizes and then 

summary statistics within each local neighborhood were computed for analysis.  

 

3.2.1 Size of the moving window 

The size of the moving window depends on the coefficient of variation of the data set. 

If the coefficient of variation is very large, more data points will be required to obtain 

reliable statistics. For example, if the coefficient of variation is greater than 1, then 

perhaps as many as 20 to 50 data points per window may be required to compute 

reliable statistics. The size of the moving window also depends on the average spacing 

between data points and on the overall dimensions of the study area. There is the need 

to have relatively large windows to allow enough data points within each window to 

facilitate computation of reliable statistics. On the other hand, if the size of the 

windows is too large then there will not be enough of them to identify anomalous 

localities (Isaaks and Srivastava, 1989). There is, therefore, the need to find a 

compromise between the need for large windows (to ensure reliable statistics) and the 

need for enough number of windows (to help identify local anomalies). This 

compromise is usually found in overlapping the windows so that two adjacent 

neighborhoods have some data values in common. Overlapping is useful for small data 

sets or data sets which do not have uniform spacing; however, it is not necessary for 

large and regular grid data sets such as ours.  

 To determine the appropriate size of moving windows for investigating 

heteroscedasticity, the coefficient of variation for each data set was computed. The 

magnitude of the coefficient of variation for both NDVI data sets was greater than 1, 

indicating the need for several data points for the estimation of reliable statistics. By 

experimenting with different sizes, we decided on moving windows of size 5 km long 

and 5 km wide in a 1219×  grid data layout. This dimension allows for an average of 

approximately 27,452 data points in each window, enough for the computation of 

reliable statistics. The dimension also leads to 228 moving windows, enough for the 

identification of local anomalies. 
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3.2.2 Proportional effect 

Anomalies in the local variability have an impact on the accuracy of estimates from the 

entire data set. The prospects for accurate estimates are quite good if the data points in 

the study area are uniform. On the other hand, local estimates are likely to be poor if 

the data points fluctuate wildly in the study area. This will be the case irrespective of 

the estimation method one chooses; estimates from any reasonable method will benefit 

from low data variability and suffer from high data variability. There are four possible 

relationships that can occur between the local average and the local variability. 
 

1. The local average and the local variability are both constant. 

2. The local average changes while the local variability remains constant. 

3. The local average remains constant while the local variability changes. 

4. The local average and the local variability both change together. 
 

For purposes of estimation, the first two cases are ideal. Estimates from any particular 

locality will be as good as estimates from elsewhere, if the local variability remains 

constant. In most environmental data sets, however, variability changes from one 

locality to the other. It is therefore preferable to have the fourth scenario; where the 

local variability is related to the local average and is, therefore predictable. If a 

relationship exists between the local average and the local variability, it is generally 

referred to as a proportional effect. In this section, we wish to investigate anomalies in 

the average value and in the variability, as well as the presence or absence of a 

proportional effect in the study area. To investigate the data sets for heteroscedasticity 

and proportional effects, the mean and standard deviation of the pixel values in each of 

the 228 local windows were computed for analysis.  The results and discussion of the 

analysis are presented in Section 4.1. 

 

3.3 Analysis of wavelet variance  

In many areas of scientific research, investigators determine to a large extent how 

research data sets are collected. However, in the field of satellite remote sensing the 

resolution of a given sensor is fixed a priori; thereby making the scale of measurement 

inflexible (Brunsell and Gillies, 2003). This poses some difficulty when the dominant 

scales for a given process are not known. It is, therefore, necessary and important to 
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estimate and investigate what the dominant scales within an image are. Also, the first 

step toward examining the scaling characteristics of a data set is to calculate the length 

scale, which is defined as the scale with the highest wavelet variance (Kumar and 

Foufoula-Georgiou, 1997). These reasons warrant wavelet variance analysis of the data 

sets. 

Wavelet variance analysis is a method for the partitioning of the sample 

variance of an image data set into portions that are associated with the different scales 

of the image. This type of analysis tells us what scales are important contributors to the 

overall variability of an image data set (Constantine and Percival, 2002). The wavelet 

variance is of interest for the following reasons. 
 

1. The wavelet variance offers a scale-by-scale decomposition of the variability in a 

data set, therefore, it has considerable appeal for researchers studying processes that 

exhibit fluctuations over a range of different scales. The square root of the wavelet 

variance has the same units as the original data, which make its more easily 

interpretable. 
 

2. For certain stationary processes, the sample variance of a time series, namely, 
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can grossly underestimate the process variance 2
Xσ  even when the sample size N is 

quite large. For such processes, the wavelet variance is a useful substitute because it 

replaces the problematic notion of a ‘global’ variance with a sequence of variances 

over particular scales, for which we can readily formulate unbiased estimators. In 

addition, the wavelet variance is well-defined and can be easily estimated for 

certain nonstationary processes for which the variance is either infinite or an ever 

increasing function of the sample size. In this section, we explore this wavelet-

based analysis of variance of the NDVI and DEM data sets by estimating and 

investigating their wavelet variances. We begin with a formal definition and a brief 

review of the background theories for the estimation of wavelet variance. 
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3.3.1 Definition of wavelet variance 

We adopt the definition by Percival and Walden, 2000. Let  
  

}1,,0:~{ , −= jlj Llh K  
 

be the jth level maximal overlap discrete wavelet transform (MODWT) filter associated 

with scale 12 −= j
jτ , where 1)1)(12( +−−≡ LL j

j  is the width of the filter and 

.,3,2,1 K=j  Let  
 

},2,1,0,1,2,:{ KK −−=tX t  
 

represent a discrete parameter real-valued stochastic process, that is, a collection of 

random variables indexed by the set of all integers. Define the level j MODWT wavelet 

coefficients for this process as 
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If it exists and is finite, the time-dependent wavelet variance for scale jτ  is defined to 

be the variance of tjW , ; i.e.,  
 

}var{)( ,
2

, tjjtX Wv ≡τ . 
 

If we assume that the width of the wavelet filter is dL 2≥ , where L is its width and d is 

its number of backward differences,  then )(2
, jtXv τ  will be finite and independent of 

time. If L is large enough we will have 0}{ , =tjWE , so that 
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3.3.2 Estimation of wavelet variance 

Suppose the series 110 ,,, −NXXX K  is a portion of a stochastic process }{ tX . Let }~{ lh  

be a MODWT wavelet filter of width L, and assume that }{ tX  satisfies conditions such 

that the wavelet variance )(2
jXv τ  for scale 12 −= j

jτ  based upon this filter is finite and 
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independent of time. Let 1)1)(12( +−−≡ LL j
j  be the width of the equivalent 

MODWT filter }~{ ,ljh  for level j. Then the unbiased MODWT estimator of the wavelet 

variance is defined as 
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where tjW ,
~  is the MODWT wavelet coefficient at level j and time index t, and 

1+−≡ jj LNM ,  with 1≥jM  (Percival and Walden, 2000). The unbiased wavelet 

variance estimator uses only the last jM  and avoids the first 1−jL  coefficients on 

each level because they are boundary coefficients. When all N MODWT wavelet 

coefficients are used, we obtain a biased MODWT estimator of the wavelet variance 

which is given by 
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Though the DWT can be used to formulate estimators of the wavelet variance, the 

MODWT is preferred because their estimators are known to have superior sampling 

properties (Percival and Walden, 2000).  

 

3.3.3 Distribution of the wavelet variance estimator 

An approximation to the distribution of the unbiased MODWT wavelet variance 

estimator )(ˆ2
jXv τ  has been worked out and can be used to assess its sampling 

variability and to obtain confidence intervals for the true wavelet variance )(2
jXv τ  (see 

Percival and Walden, 2000, for details). This approximation is based on the assumption 

that the statistic )(ˆ2
jXv τ has a distribution that is equal to a random variable given by 

the product of a chi-square random variable 2
ηχ  with η  degrees of freedom and the 

constant ητ )(ˆ2
jXv . The starting point for this approximation is to note that, if we have 

M independent and identically distribution Gaussian random variables with mean zero, 

then the sum of their squares forms a random variable whose distribution is given by 
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the product of a chi-square random variable 2
Mχ  with M degrees of freedom and a 

constant. By assumption, the MODWT wavelet coefficients tjW ,  that we use to form 

)(ˆ2
jXv τ are Gaussian random variables with mean zero and variance )(2

jXv τ ; however, 

because these coefficients are in general correlated with each other, their sum of 

squares is not a chi-square random variable with jM  degrees of freedom. 

 We can adjust for this correlation by setting η  equal to a value such that the 

random variable ηχτ η
22 )( jXv  has the same theoretical variance as ).(ˆ2

jXv τ  By 

appealing to a large sample approximation, we can obtain a good approximation to this 

theoretical variance. In this approach, η  is known as the equivalent degrees of freedom 

(EDOF) and in effect becomes a parameter that we need to determine somehow. The 

Splus wavelets module which is used in this research supports three different modes for 

setting the EDOF, η .  
 

1. EDOF, 1η̂  (based upon large sample theory):  
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 and τ,ˆ js  is a sample lag τ  autocovariance defined by  
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2. EDOF, 2η̂  (based on the assumption that the shape of the spectral density function 

(SDF) for }{ tX  is known a priori):  
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where jk Mkf ≡  and )()(~)( )( fSfHfC X
D

jj ∝ . That is, the product of the 

squared gain functions for the Daubechies MODWT equivalent wavelet filter 

}~{ ,ljh  for level j and the SDF for }{ tX  (assumed to be known up to a constant of 

proportionality). 
 

3. EDOF, 3η̂  (large sample approximation based on a band-pass approximation): 
 

  }1,2max{ˆ3
j

jM=η . (3.3) 
 

Once η  has been set to 1η̂ , 2η̂  or 3η̂ , we can calculate an approximate 100(1-2p)% 

confidence interval for )(2
jXv τ  via  
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where )( pQη  is the %100×p  percent point for the chi-square distribution with η  

degrees of freedom (setting 025.0=p  yields an approximate 95% confidence interval). 

 We computed the wavelet variance for the DEM and NDVI data sets, plotted 

them against corresponding resolutions and used the graphs to investigate whether 

these data sets exhibit simple scaling or multiple-scale structure. We also computed 

95% confidence intervals for the wavelet variance at each scale using Equations (3.1) to 

(3.3). A discussion of the results of the analysis is presented in Section 4.2. 

 

3.3.4 The choice of suitable wavelet filter  

It is always important to select the wavelet that will best suit a particular analysis. 

There are many different wavelet functions with varying characteristics and 

functionality. However, there are no hard and fast rules for a choice for any particular 

analysis (Bruce and Gao, 1996). In selecting a wavelet for an analysis, it is reasonable 

to examine its properties against the data set to be analyzed and the overall aims of the 

study. For many applications, the wavelet function must be sufficiently smooth to 

efficiently represent the characteristics of the underlying data set. Generally, 

smoothness is inversely related to the support width; very compact wavelets are less 



Data sets and methods 

63 

smooth. It is also known that very compact wavelets such as the Haar are very well 

localized in time and space, but have poor frequency resolution (Bruce and Gao, 1996). 

Another important attribute of wavelets is their ability to conserve of energy. During a 

wavelet transformation process, the total energy of the data set is divided up between 

the approximation and detail coefficients; thus no energy is lost or gained. The energy 

of a data set is the amount of information it contains. It is proportional to the sum of 

squares of the pixel (or intensity) values. Thus, the energy in the wavelet transform of a 

data set is the sum of the squares of the wavelet coefficients.  

 The Daubechies wavelets are known to be good in terms of their compact 

representation of signal details; however, they are not efficient in the representation of 

signal approximation at a given resolution (Reza, 1999). Furthermore, a number of top 

researchers in wavelets and scaling issues (e.g. Kumar & Foufoula-Georgiou, 1993a, b; 

Hu et al., 1998; Brunsell and Gillies, 2002) preferred to use the Daubechies wavelet for 

the fact that they are continuous, compact and orthogonal. For these reasons and also 

based on observations from preliminary analysis, the Daubechies “d6” (i.e. the 

Daubechies wavelet with a width of 6) was selected as the most suitable for this aspect 

of the research. However, the Haar wavelet (the first known wavelet) would also be 

employed to allow for comparison. Figure 3.6 shows the “d6” mother wavelet (or 

wavelet function) and its corresponding father wavelet (or scaling function). The graph 

of the Haar wavelet function is shown in Figure 2.3. 
 

 
 

Figure 3.6 Graphs of the “d6” father and mother wavelets 
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3.4 Determination of scaling behavior of data sets with wavelets 

A characteristic feature of remote sensing data sets is that they are extremely variable 

over temporal and spatial and scales. Therefore, a major challenge to ecologists, 

hydrologists, meteorologists and climatologists is to measure, model and predict the 

nature of these variability over different scales.  To achieve these, it is necessary to 

determine the changes in spatial patterns as the resolution of a data set is changed; 

hence the need for determining the scaling behavior of a data set. Scaling behavior 

refers to the statistical variation (e.g. statistical self-similarity, multiscaling, etc) of a 

data set across different spatial scales; while scaling characteristics are the parameters 

necessary to describe such scaling behavior. In other words, the scaling characteristics 

provide appropriate formulation for the assimilation of remotely sensed data sets into 

large-scale models. Statistical self-similarity (or simple scaling) is observed when a 

data set follows a power law spectrum; otherwise we have multiscaling.  

 Wavelet transforms are preferred because of their key advantage over other 

forms of analysis: that is, their ability to allow for the breakdown of a data set into a 

scale frequency space. This permits easy determination of the relative contribution of 

different spatial scales present within a data set. An additional benefit of the wavelet 

transform is that, if a process exhibits self-similar scaling behavior, the wavelet 

coefficients obtained through a wavelet transform preserve that self-similarity (Kumar 

and Foufoula-Georgiou 1993(a) & 1993(b)). Due to the preservation of this behavior, 

wavelet coefficients allow for a convenient method of analyzing the fluctuations 

between spatial resolutions within a data set. If a process does not show self-similar 

behavior, this methodology still permits analysis of the actual scaling behavior through 

a multiscaling framework.  

 

3.4.1 Definition of statistical self-similarity 

Let )}({ xY  be an arbitrary stochastic field indexed by the vector  dx ℜ∈ , where dℜ  is 

a d-dimensional real space.  Then )}({ xY  is statistically self-similar if for any arbitrary 

set of points nxxxx ,,,, 321 K , the following equality holds in the joint probability 

distribution of )}({ xY : 
 

 [ ] [ ]nn
HH

nn yYyYPyYyYP <<=<< )(,,)()(,,)( 1111 xxxx θθ λλλλ KK , (3.4) 
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where λ  is a positive real scaling factor and θH  is a real scaling exponent.  Self-

similar processes that are scaling in the sense of Equation (3.4) are usually termed 

strict-sense simple scaling. Simple scaling indicates that there is only one scaling 

exponent θH  for the process. Strict means that the content of scaling is in the sense of 

the probability distribution function, that is for all the moments. On the other hand, 

wide-sense simple scaling means only up to the second order moments. See Gupta and 

Waymire (1989, 1990) and references therein for detailed discussion of statistical self-

similarity.  

 If the moments of a stochastic process exist, then from Equation (3.4) one 

consequence of simple scaling is: 
 

 [ ] [ ])1()( ppHp YEYE θλλ = . (3.5) 
 

Gupta and Waymire (1990) demonstrated another important consequence of simple 

scaling: log–log linearity between moments and the scaling factor λ . Thus, taking the 

logarithmic transform of Equation (3.5), we obtain: 
  

 )1(loglog)()(log pp mpsm += λλ , (3.6) 
 

where p is the order of the moments, [ ])()( λλ p
p YEm =  and θpHps =)( . Thus for a 

simple scaling process, the following two conditions must be satisfied simultaneously: 
 

1. loglog− linearity in log )(log λpm  versus λlog  for each moment of order p;  

2. linearity of the slope change θpHps =)(  with order of moment. 
 

This means that to ascertain statistical self-similarity of a data set, we need to show that 

higher order moments follow power law spectrum as a function of increasing scales; 

and that the scaling exponents show a linear relationship with the order of moment. If 

the wavelet coefficients in the three directions exhibit simple scaling, the scaling 

exponents need not be the same. In the event that a data set is isotropically self-similar, 

the scaling exponents are the same (Kumar and Foufoula-Georgiou, 1993b). The 

difference in the values of scaling exponents helps to characterize differences in the 

dependence structure of a data set in the three directions. Departures from simple 
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scaling are termed multiscaling, which is indicated if )( ps  is a non-linear function of 

the order of moment (Hu et al., 1998).  

 

3.4.2 Determination of statistical self-similarity of wavelet coefficients 

Orthogonal wavelets were employed to decompose each data set into approximation 

and detail coefficients to allow for multiresolution analysis of the self-similarity nature, 

or otherwise, of the wavelet coefficients. Multiresolution analysis was conducted for 

seven levels of decomposition using the Daubechies “d6” wavelet. The decomposition 

resulted in one approximation or residual image ( )7=J  and detailed coefficients in 

each of the horizontal, vertical and diagonal directions at each level of decomposition. 

To examine the self-similar nature of the data sets, the first four statistical moments 

(mean, variance, skewness and kurtosis) were calculated from the wavelet coefficients 

produced by the multiresolution at each level of decomposition and in each direction of 

the detail coefficients. The slope )( ps  in Equation (3.6) was estimated using linear 

regression from a plot of logarithm of moments versus logarithm of resolution. The 

estimated slope terms from the regression models were then used to examine the 

scaling behavior in each of the three directions that wavelet coefficients were produced. 

Linear regression was again used to examine the relationship between the estimated 

slope terms and order of moment. The results are presented and discussed in Sec.  4.3. 

 

3.5 Indirect multiscale analysis of pattern metrics  

Landscape pattern is spatially correlated and scale-dependent. Therefore, to understand 

the structure and functioning of landscape requires multiscale information. Scaling 

functions are the most precise and concise way of quantifying multiscale characteristics 

explicitly. The indirect approach to multiscale analysis employs methods that are 

designed for single-scale analysis such as landscape metrics. The scale multiplicity in 

the indirect approach is realized by resampling the data set at different scales, according 

to grain or extent, and then repeatedly computing the landscape metrics using the 

resampled data set at different scales. In this section, the existence of scaling relations 

for 18 landscape metrics (see Section 2.3) of the LULC data sets when measured over a 

wide range of scales are explored. An outline of the steps in the aggregation procedure 
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is given, as well as explanation of how landscape metrics will be estimated from maps 

with changing grain size and extent. 

 

3.5.1 Description of aggregation procedure 

Several different methods have been used over time for resampling data sets, common 

among them being the aggregation methods – the mean, median, majority, maximum, 

minimum and sum aggregation methods (Jansen and Kelker, 1998). The aggregation 

methods are more simple and easy to employ than the fractal and geostatistics methods 

which are more intricate and robust. During an aggregation process, an input nm×  

grid data set is systematically resampled to produce a hierarchically nested and a 

coarser resolution data set based on a method of choice. Given a grid data set, the mean 

method involves finding the mean value over a nn×  pixel window and replacing the 

pixel values in the window with the single mean to form a data set of coarse resolution. 

The process is said to smooth the variance and increase spatial autocorrelation of the 

data set.  

The median method is similar to that of the mean; it uses the median of the 

values in the pixel window instead of the mean. The majority rule assigns the modal 

pixel value in the nn×  window. If the window has two or more modes, the assignment 

is random. The majority rule systematically reduces the representation of less abundant 

land use and land cover type. The maximum (minimum) method involves replacing the 

values in an nn×  pixel window with the maximum (minimum) of all the values to 

form a coarser data. According to Bian (1997), the process may alter the spatial pattern 

including spatial autocorrelation at coarser resolutions. The maximum (minimum) 

aggregation method is likely to create bias since smaller (larger) values are not factored 

into the representation. The sum aggregation method involves finding the arithmetic 

total of all the values that fall in a nn×  pixel window.  

The processes involved in any aggregation can be summarized in the following 

4 steps: 
 

Step 1: Multiply the cell resolution of the input grid by the cell factor to 

obtain the cell resolution of the output grid. 

Step 2: Map the spatial extent of the output cells onto the input grid 
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Step 3: Identify the cells on which to perform the aggregation calculations – 

cell locations from the input grid that fall within the extent of an 

output cell must be included in the calculations for determining that 

cell’s output value. 

Step 4: Calculate the output value by using the specified method and the 

values in the cells from the input grid that fall within the output cell’s 

spatial extent. 

 

3.5.2 Estimation of landscape metrics from maps with changing grain size  

To estimate the landscape metrics of LULC84 and LULC99 for different grain sizes, 

the grain size of the original maps was systematically changed through 18 separate 

aggregation levels; from the finest 11×  (or 1 original pixel forming an aggregate) 

through to the coarsest 5050×  (or 2500 original pixels forming an aggregate) while the 

extent was kept constant. The grain size of each of the two landscape data sets was 

changed using the “majority” (or mode) aggregation method. Each new map was 

created by directly aggregating the original data set instead of using the cumulative 

procedure in which the aggregation at the next grain size is based on the preceding 

aggregated data set. In other words, we preferred the “independent” to the “iterative” 

aggregation scheme. When the grain size could not wholly divide the number of rows 

or columns of the data set during an aggregation, the remainder of rows or columns at 

the edge was excluded from the new map. This omission of edge rows and/or columns 

did not seem to be a problem as long as the extent/grain ratio was sufficiently large. In 

all, 36 maps (2 land use and land cover maps ×  18 grain size levels) were used to 

investigate the effect of changing grain size on landscape metric. Table 3.5 summarizes 

the features of the set of maps created from each original map. The landscape pattern 

analysis software, FRAGSTATS 3.3 (McGarigal and Marks, 2002), was used to 

compute all 18 landscape metrics for each of the 36 maps. The four-neighbor rule was 

applied in each case.  
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Table 3.5  Features of maps used to investigate the effects of changing grain size on 
landscape metrics 

 

Grain 
size 

Resolution 
(m) 

Number 
of rows 

Number of 
columns 

11×  30 3114 2010 
22×  60 1557 1005 
33×  90 1038 670 
44×  120 779 503 
55×  150 623 402 
66×  180 519 335 
77×  210 445 287 
88×  240 389 251 
99×  270 346 223 
1010×  300 311 201 
1515×  450 208 134 
2020×  600 156 101 
2525×  750 125 80 
3030×  900 104 67 
3535×  1050 89 57 
4040×  1200 78 50 
4545×  1350 69 45 
5050×  1500 62 40 

 

The majority rule is the most commonly used in ecological and remote sensing 

applications. This is evident in the fact that several recent studies in these areas (Turner 

et al., 1989; Wu et al., 2002; Shen et al., 2004; Wu, 2004) only used the majority rule, 

although there are other rules for aggregating spatial data. We wish to employ two 

more aggregation rules (mean and median) and then compare how the different 

aggregation rules affect landscape metrics. In this regard, the procedure for changing 

the grain size was repeated using the mean and median aggregation rules respectively. 

In total, 108 landscape maps (2 land use and land cover maps ×  3 aggregation methods 

×18 grain size levels) were analyzed for the purpose of investigating the effect of 

changing aggregation method on landscape metrics. The effects of changing grain size 

on landscape metrics are presented and discussed in Section 4.4; while those on 

changing the method of aggregation are presented and discussed in Section 4.5. 

 

3.5.3 Estimation of landscape metrics from maps with changing extent 

To estimate the landscape metrics of LULC84 and LULC99 with different extents, we 

systematically increased the extent of the maps while keeping the grain size constant.  
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Nine maps with different extents ranging from 2km 56  to 2km 633,5  were clipped 

from each of LULC84 and LULC99.  Starting from the south-western corner and 

traversing the diagonal to the north-eastern corner, maps with increasing extents were 

clipped from each original landscape map. The increment in the extents was in the ratio 

of 1:10 to the extent of the original maps. In all, 18 maps (2 land use and land cover 

maps ×  9 extent levels) were used in this aspect of the study. Table 3.6 summarizes the 

features of the set of maps created from each original map.  

 

Table 3.6  Features of maps used to investigate the effects of changing extent on 
landscape metrics 

 

Map No. of cells 
in row 

No. of cells 
in column 

Area of extent 
(sq. km) 

Ratio to 
original extent 

1 311 201 56 1:10 
2 23 402 225 2:10 
3 934 603 507 3:10 
4 1246 804 902 4:10 
5 1557 1005 1408 5:10 
6 1868 1206 2028 6:10 
7 2180 1407 2761 7:10 
8 2491 1608 3606 8:10 
9 3114 2010 5633 1:  1 

 

Based on the initial findings from the wavelet multiscale analysis, the effects of the 

direction in which the extents were clipped from the original maps were further 

investigated. To do this, landscape maps with different extents were clipped using each 

of the four corners of the original landscape map as a starting point and proceeding in 

the direction of the diagonal.  
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Figure 3.7 Schematic representation of changing the direction of analysis with 
increasing extent  

 
Figure 3.7 shows (from left to right) the clipping starting from the north-

western, south-eastern, south-western and north-eastern corner respectively, and 

traversing diagonally. Because the maps were clipped in the shape of the original maps, 

the values of the indices for the four directions converged as the same largest extent 

was reached. In total, 72 landscape maps (2 land use and land cover maps ×  4 

directions of analysis ×  9 extent levels) were analyzed for the purpose of investigating 

the effect of changing the direction of analysis on landscape metrics. The effects of 

changing extent on landscape metrics are presented and discussed in Section 4.6; while 

those on changing the direction of pattern analysis are presented and discussed in 

Section 4.7. 
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4 RESULTS AND DISCUSSION 

 

4.1 Heteroscedasticity and proportional effect in NDVI and DEM data sets 
 

The mean and standard deviation of the pixel values in each of the 228 local windows 

of NDVI84 and NDVI99 were computed (see Table 7.1, Appendix I) to provide a 

measure of the average value and a measure of the variability, respectively.  

 It was observed that the mean and the standard deviation values changed 

locally across the study area, with the mean values changing slightly more than the 

standard deviation values for both NDVI data sets. The mean values for NDVI84 had a 

range of 0.032, while the standard deviation values had a range of 0.016. For NDVI99, 

the range for the mean and standard deviation values were 0.263 and 0.204 

respectively. These statistics also indicated that the mean values in NDVI99 varied 

more than those in NDVI84, just as the standard deviation values in NDVI99 varied 

more than those in NDVI84.  Estimates of moving window coefficient of variations 

indicated that, generally, NDVI99 was more variable than NDVI84.  

 Figure 4.1 shows plots of local means and local standard deviations for 

NDVI84 and NDVI99. In (a), the trend of change in the mean values from locality to 

locality within NDVI84 is shown; while (b) shows the trend in the corresponding 

standard deviation values. The trends in mean and standard deviation values for 

NDVI99 are shown in (c) and (d) respectively. For NDVI84, it was observed that the 

mean values within the moving windows to the north and those to the south of the study 

area remained relatively constant; whereas those in the middle sector showed more 

variability (Figure 4.1(a)). However, there was a general decrease in the mean values 

for NDVI99 from the north to the south (Figure 4.1(c)), although the data points in the 

southern sector appear to be more variable. The standard deviation values for NDVI84 

and NDVI99 showed similar patterns across the study area; apart from a few large 

values scattered across the study area, the variability of the standard deviation values 

remained fairly constant. 
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(c)                         NDVI99 (d)                          NDVI99 

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0
0 50 100 150 200 250

Moving window

M
ea

n

0

0.05

0.1

0.15

0.2

0.25

0.3

0 50 100 150 200 250

Moving window

St
an

da
rd

 d
ev

ia
tio

n

 
Figure 4.1 Plots of local means and local standard deviations of NDVI84 and NDVI99 
 

 Contour maps are very informative visual displays, as they reveal overall 

trends in data values. For each NDVI data set, two contour maps were produced; one 

showing moving window means and the other showing corresponding standard 

deviations. Ordinary kriging, which is a form of statistical modeling that interpolates 

data from a known set of sample points to a continuous surface, was employed to 

construct the contour maps. The means and standard deviations within the 228 

km5km5 ×  moving windows for NDVI84 are contoured in Figure 4.2(a) and (b), 

respectively. It is observed from Figure 4.2(a) that the highest local means are 

concentrated in parts of the northern and south-western sectors, while the lowest are 

concentrated in the eastern parts of the middle belt of the study area. The distribution of 

the standard deviation showed mostly low values, with a cluster of large values in the 

south-western corner and another towards the north (Figure 4.2(b)).  
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Figure 4.2 Contour maps of local means (a) and local standard deviations (b) of 

NDVI84  
 

 A comparison of the contour maps showed that the moving window means 

and standard deviations are less correlated, indicating lack of proportional effect. This 

result is confirmed by the correlation coefficient of the mean-standard deviation pairs, 

which is 23.0− . Figure 4.3(a) is a scatter plot of moving window means against 

corresponding standard deviations of NDVI84.   
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Figure 4.3 Scatter plots of local standard deviations against means of NDVI84 (a) 

and NDVI99 (b) 
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The 228 local means for NDVI99 are contoured in Figure 4.4(a); while corresponding 

standard deviations are contoured in Figure 4.4(b). The contour map of NDVI99 local 

means showed that lower values were concentrated in the south-eastern part of the 

study area, while higher values are found mostly in the south. The distribution of the 

standard deviation values is similar to that shown by the standard deviations of 

NDVI84 (Figure 4.2(a)). 
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Figure 4.4 Contour maps of local means (a) and local standard deviations (b) of 
NDVI99 

 

 Comparing the maps in Figures 4.4(a) and (b), moderate resemblance was 

observed between the local means and standard deviations, suggesting that there is just 

a moderate proportional effect. This result is confirmed by the correlation coefficient of 

the mean-standard deviation pairs which is 0.53. Figure 4.3(b) is a scatter plot of the 

moving window means against corresponding standard deviations.   Comparing Figures 

4.3(a) and 4.3(b), it is observed that the relationship between the local means and 

corresponding standard deviations is stronger for NDVI99 than for NDVI84. 
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 The DEM was also investigated for heteroscedasticity and proportional effect. 

There appeared to be a slight general decrease in the moving window mean values from 

the northern sector through to the southern sector of the study area (Figure 4.5a). The 

standard deviation values do not show any significant variability over the entire study 

area. Apart from two large values (36 and 37) in the southern sector, the rest of the 

values ranged from 5 to 22.  
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Figure 4.5 Plots of local means (a) and local standard deviation (b) of DEM  
 

The means and standard deviations within the 144 km9km9 ×  moving 

windows for DEM are contoured in Figure 4.6. It was observed that the higher local 

means are concentrated in the eastern sector as well as forming a cluster in the central 

part of the northern sector. The lower local means are concentrated in the south-western 

sector of the study area. The distribution of the standard deviations showed mostly low 

values over the study area with a cluster of large values in the south-western corner.   
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Figure 4.6 Contour maps of moving window means and standard deviations for DEM 
 

 A comparison of the contour maps revealed that the moving window means 

and standard deviations are linearly uncorrelated. The correlation coefficient for the 

144 mean–standard deviation pairs is only 0.31, indicating lack of strong proportional 

effect. Figure 4.7 is a scatter plot of the moving window means and corresponding 

standard deviation. 
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Figure 4.7 A scatter plots of local standard deviations against local means of DEM 
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4.2 Results of wavelet variance analysis of NDVI and DEM data sets 

The “d6” and Haar wavelet filters were employed through seven levels of 

decomposition to estimate the unbiased MODWT wavelet variance of the DEM and 

NDVI data sets. Table 4.1 and Figure 4.8 show the results of the analysis of the NDVI 

data sets. There is no simple and clear relationship between wavelet variance and the 

resolution for any of the data sets. This implies that the trend of the change in the 

variability of each data set is not a simple a function of its resolution.  
 

Table 4.1  Wavelet variance at various resolutions of the NDVI data sets with “d6” 
and Haar wavelet filters 

 

Wavelet variance 
NDVI84 NDVI99 

Resolution 
(m) 

“d6” Haar “d6” Haar 
30 51033.1 −×  51082.1 −×  41067.5 −× 41012.8 −×  
60 51039.2 −× 51053.2 −× 41013.9 −× 31022.1 −×  

120 51067.2 −× 51085.2 −× 31059.1 −×  31099.1 −×  
240 51081.3 −×  51025.3 −× 31011.3 −×  31014.3 −×  
480 51085.1 −×  51048.2 −× 31098.1 −×  31073.3 −×  
960 61067.9 −× 51067.2 −× 31029.2 −× 31081.4 −×  
920 51021.1 −×  51021.0 −× 41007.7 −× 31030.2 −×  

 

It is observed from Table 4.1 that for lower resolutions (30 to 240 meters), the 

wavelet variance of both NDVI84 and NDVI99 data sets increased monotonically 

irrespective of the wavelet filter used. For higher resolutions (greater than 240 meters), 

the wavelet variance fluctuated for both data sets and both wavelet filters.  Also at 

lower resolutions, the unbiased MODWT wavelet variance estimates using the “d6” 

and the Haar wavelet filters were almost the same. However, for 480 m and higher 

resolutions, the estimates from the Haar wavelet filter were higher for both data sets. It 

is also noteworthy that wavelet variance estimates for NDVI 99 were generally larger 

than those for NDVI84. 
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Figure 4.8 Plots of wavelet variance against corresponding resolutions of NDVI84 
(left) and NDVI99 (right)  

 

 With the Haar wavelet filter, the NDVI84 data set revealed a major peak at 

the 240 meter scale   (or 128128×  pixels data) and a minor peak at the 960 meter scale 

(or 3232×  pixels data); while with the “d6” it revealed a major peak at the 240 meter 

scale. The NDVI99 data set revealed two peaks, one at the m 240 scale and another at 

the m 960 scale with the “d6” wavelet filter; while it revealed a peak at the m 960 scale 

with the Haar wavelet filter. The presence of peaks in wavelet variance-resolution 

graph is indicative of hierarchical and hence a multiple-scale structure (Wu et al, 2000). 

For NDVI84 data set, the dominant scale was 240 meters irrespective of the filter used. 

However, for the NDVI99 data set it varied with the wavelet filter: it was 240 meters 

with “d6” and 960 meters with the Haar wavelet filter. 

 Table 4.2 contains the EDOFs 1η̂  and 3η̂  (rounded to the nearest integer) as 

determined by Equations (3.1) and (3.3) respectively, which are associated with the 

“d6” wavelet variance estimates ),(2
jXv τ  at scales .7,,2,1 K=j  In the bottom row for 

each data set is the number jM  of wavelet  coefficients at each scale.  
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Table 4.2  Equivalent degrees of freedom 1η  and 3η  associated with the “d6” wavelet 
variance estimates for the NDVI data sets  

 

Level (j)  
1 2 3 4 5 6 7 

NDVI84 1η̂  820 361 220 101 63 32 64 
 3η̂  510 252 124 9 27 11 8 
 jM  1019 1009 989 949 869 709 389 

NDVI99 1η̂  810 345 222 86 71 21 10 
 3η̂  510 252 124 59 27 11 3 
 jM  1019 1009 989 949 869 709 389 

 

Figure 4.9 shows the “d6” wavelet variance estimates plotted against scale, 

along with two 95% confidence intervals for the true wavelet variance at each scale for 

the NDVI99 data set. The confidence intervals are based on the unbiased MODWT 

estimator and 2χ  approximations to its distribution with EDOFs 1η̂  and 3η̂  as listed in 

Table 4.2. Figure 4.9 shows that the variance in NDVI99 is mainly due to fluctuations 

at scales 8 and higher. For the four smallest scales, the confidence interval given by the 

two methods are close. However, the agreement breaks down at the three largest (16, 

32 and 64) scales. The fact that the wavelet variance for the four smallest scales (1 to 8) 

lie roughly on a straight line indicates that the wavelet variance varied approximately as 

a power law over the 30 to 240 meter scales. 
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Figure 4.9 Ninety-five percent confidence intervals for “d6” wavelet variance 

estimates of NDVI99 
 

 Results of wavelet variance analysis of DEM are presented in Table 4.3 and 

Figures 4.10 and 4.11.  There was no clear identifiable peak for the DEM with respect 

to either wavelet filter (see Figure 4.10). The relationship between wavelet variance and 

resolution appeared to be linear for both wavelet filters. The regression equations with 

respect to “d6” and Haar wavelets are 740.3014.0 −= xy  and 271.1010.0 += xy  

respectively, where y is the wavelet variance and x is the resolution in meters. The 

coefficient of determination is 0.991 with respect to “d6” and 0.976 with respect to the 

Haar. 
 

Table 4.3  Wavelet variance at various resolutions of the DEM with “d6” and Haar 
wavelet filters 

 

Resolution (m) 90 180 360 720 1440 2880 5760 
Wavelet variance (d6) 0.848 0.839 1.220 4.500 11.500 34.800 77.100 
Wavelet variance (Haar) 1.090 1.480 2.930 7.570 17.100 34.400 52.600 
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It was also observed that at lower resolutions (90 to 2550 meters), the estimates from 

the Haar wavelet filter were consistently larger than those by “d6”. However from 2880 

meters and higher resolutions, the estimates by “d6” exceeded those by Haar. 
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Figure 4.10  Plot of wavelet variance against corresponding resolutions of DEM  
 

Figure 4.11 shows the “d6” wavelet variance estimates plotted against scale, 

along with two 95% confidence intervals for the true wavelet variance at each scale for 

the DEM. The figure indicates that the variance in the data set is mainly due to 

fluctuations at scales 360 meters and lower. For the six smallest scales, the confidence 

intervals given by the two methods are close; however, the agreement breaks down at 

the 64 m scale. Again, the fact that the values of wavelet variance for higher scales (4 

to 64) lie roughly on a straight line suggests that the wavelet variance varies 

approximately as a power law over 360 meters to 5.76 kilometers scales. 
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Figure 4.11 Ninety-five percent confidence intervals for “d6” wavelet variance 
estimates of DEM 

 

 In summary, these results suggest that the NDVI data sets exhibit hierarchical 

and multiple-scale structure; while the DEM data set does not seem to. Based on the 

“d6” wavelet filter (which is the most widely used for wavelet variance analysis), the 

dominant scale for the NDVI84 and NDVI99 data sets is the same (i.e. 240 meters). 

 

4.3 Scaling characteristics of NDVI and DEM data sets  

Wavelet coefficients were used to investigate whether or not the NDVI and DEM data 

sets exhibit self-similar scaling behavior. The first four moments of the wavelet 

coefficients from seven levels of decomposition in the horizontal, vertical and diagonal 

directions were used (see Appendix II). Using Equation (3.6) and computations of the 

first four moments at the seven levels and in the three directions, )(log λpm  was 

plotted against )log(λ . The slope )( ps  and intercept )1(log pm  for each p were 

estimated via regression. The coefficient of determination 2r  for each fit was also 

determined. Table 4.4 shows the results of the regression for the NDVI and DEM data 
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sets. A “-” in the table indicates that the value is not defined. This occurs when the 

estimate of a moment is ,0≤  in which case its logarithm is not defined. It is observed 

from Table 4.4 that, generally, the coefficient of determination 2r  fluctuates with the 

order of moment; it increases from the first to the second moment, drops from the 

second to the third and rises again to the fourth. The slope term )( ps  also fluctuates 

with the order of moment; it increases with the first two moments, drops from the 

second to the third moment and drops further. The regressions fit the data sets 

reasonably well, fitting almost perfectly at the first and second order moments. The 

linearity of the regressions indicates the presence of statistical self-similarity. 

 Slope terms obtained from the regression models involving the logarithm of 

moment and logarithm of resolution were then used to examine the scaling behavior in 

each of the three directions that wavelet coefficients were produced. The slope terms 

were regressed on the order of moment to determine whether or not they are linear. The 

results of this regression analysis are summarized in Table 4.5.  It was observed from 

Table 4.5 that there is a linear relationship between the estimated slope terms and the 

order of moment. We are, therefore, able to infer that the detail wavelet coefficients in 

the three directions of decomposition of the NDVI data sets exhibit statistical self-

similarity over the 120 m to 3.84 km scales. 
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Table 4.4  Regression results for log of moment versus log of resolution in the horizontal, vertical and diagonal wavelet coefficients of 
NDVI and DEM data sets 

 

Horizontal details Vertical details Diagonal details Data set Order of  
moment )( ps  a 2r  )( ps  a 2r  )( ps  a 2r  

DEM 1 2.101 - 6.419 0.982  - - -  2.324 - 8.182 0.913 
 2 3.118 - 6.733 0.991  3.117 - 6.599 0.989  3.024 -7.089 0.984 
 3 -1.112 3.440 0.607  -0.685 2.237 0.999  0.570 - 2.902 0.140 
 4 -1.702 6.105 0.835  -1.399 5.630 0.886  -0.640 2.449 0.590 
       
NDVI84 1 0.878 0.591 1.000  - - -  1.451 - 7.422 0.985 
 2 1.881 -7.869 0.998  1.848 -7.777 0.994  1.732 -7.760 0.996 
 3 0.261 -0.679 0.340  0.210 -1.050 0.483  0.513 1.800 0.163 
 4 -0.811 3.359 0.953  -0.735 2.978 0.614  -1.218 4.162 0.852 
       
NDVI99 1 1.430 - 6.350 0.862  - - -  0.779 1.364 1.000 
 2 2.163 -6.756 0.998  1.997 - 6.319 0.990  2.063 - 6.864 0.993 
 3 0.528 - 1.466 0.588  0.213 - 1.072 0.032  0.254 - 1.200 0.021 
 4 0.021 1.139 0.009  -0.642 2.613 0.542  -0.576 2.248 0.340 
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The wavelet coefficients in the three directions of decomposition of the DEM 

also exhibits statistical self-similarity, but over the 3.6 km to 11.52 km scales. For all 

three data sets, the magnitude of the slopes varied according to the direction of the 

wavelet coefficients; the highest occurring in the vertical direction for all data sets. As 

an example, the NDVI84 data set has its lowest slope magnitude in the horizontal 

direction with a value of 67.0−  and the highest in the vertical direction with a value of 

29.1− . Similar inferences can be deduced for the NDVI99 and DEM data sets.  

 

Table 4.5  Regression results for slope versus order of moment in the horizontal, 
vertical and diagonal wavelet coefficients of NDVI and DEM data sets 

 

Data set wavelet coefficients  )( ps   a  2r  
DEM horizontal  -1.564  4.511  0.727 
 vertical  -2.258  7.118  0.865 
 diagonal  -1.135  4.156  0.774 

 
NDVI84 horizontal  -0.669  2.224  0.586 
 vertical  -1.292  4.316  0.977 
 diagonal  -0.923  2.926  0.801 

 
NDVI99 horizontal  -0.586  2.501  0.633 
 vertical  -1.320  4.481  0.960 
 diagonal  -0.587  2.099  0.470 
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4.4 Effects of changing grain size on landscape pattern metrics 

Two land use and land cover maps (LULC84 and LULC99) were used to investigate 

the effects of changing grain size on the 18 selected landscape metrics. The grain size 

of the original maps was systematically changed through 18 separate aggregation 

levels; from the finest 11×  through to the coarsest 5050×  while the extent was kept 

constant (see Table 3.5). In all, 36 maps (2 land use and land cover maps ×  18 grain 

size levels) were used in this aspect of the study. Figure 4.12 shows samples of the 

maps used for this analysis. The values of the 18 selected landscape metrics were 

estimated from each of these maps and the results for LULC84 are summarized in 

Table 4.6. The corresponding results for LULC99 are presented in Table 7.5 in 

Appendix III. 

In general, changing the grain size had significant effects on the values of the 

landscape metrics. The magnitude and pattern of responses varied among metrics and 

across the two landscapes. The effects can be grouped into three main types: Type I – 

predictable responses with simple scaling relationships; Type II – unpredictable or 

fluctuating responses with no clear simple scaling relations; and Type III – fixed 

responses irrespective of changes in grain size. Thirteen of the eighteen landscape 

metrics studied belonged to Type I. These included number of patches, patch density, 

landscape shape index, total edge, edge density, mean patch area, patch area standard 

deviation, patch area coefficient of variation, area-weighted mean shape index, area-

weighted mean fractal dimension index, mean shape index, mean fractal dimension 

index and contagion. These metrics changed predictably with increasing grain size, 

exhibiting simple scaling relationships that were consistent across the two landscapes 

(Figure 4.13). The fit of the linear regressions were all very high, with coefficient of 

determination ( 2r ) ranging from 0.769 to 0.992. Eleven of the Type I metrics 

decreased in value with increasing grain size via a power law relationship.  
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11×  55×  1010×  

   
1515×  2020×  2525×  

   
3030×  4040×  5050×  

  
Figure 4.12   Sampled maps of LULC99 with different grain sizes  
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Table 4.6  Estimates of 18 landscape metrics of LULC84 maps with different grain sizes 
 

Estimates of landscape metrics Grain size 
(pixels on 
a side) 

No. of 
patches 

(NP) 

Patch 
density 
(PD) 

Largest 
patch  

index (LPI)

Landscape 
shape ind. 

(LSI) 

Total edge 
 

(TE) 

Edge 
density 
(ED) 

Mean patch   
area 

(MPA) 

Patch area 
std dev. 
(PASD) 

Patch area 
coeff. of var. 

(PACV) 
  1 319837 56.78 13.0517 257.26 76930860 136.57 2 200 11337 
  2 24247 4.30 15.1153 161.91 28184640 39.38 23 819 3526 
  3 23783 4.22 15.1123 90.09 24937590 38.94 24 827 3490 
  4 23631 4.19 14.7883 73.52 21783000 38.61 24 823 3447 
  5 17028 3.02 15.1482 64.15 18957750 33.64 33 990 2992 
  6 13474 2.39 15.3004 57.76 17034840 30.24 42 1121 2682 
  7 11177 1.99 14.8902 53.25 15682170 27.84 50 1205 2391 
  8 9702 1.73 14.5823 49.67 14594400 25.95 58 1288 2222 
  9 8319 1.48 15.1715 46.27 13583970 24.15 68 1407 2081 
10 6934 1.23 15.7012 42.46 12456000 22.14 81 1532 1888 
15 3968 0.70 14.0141 32.61 9495000 16.82 142 1949 1370 
20 2550 0.45 15.0609 26.33 7653600 13.49 222 2366 1064 
25 1763 0.31 15.6800 22.29 6378000 11.34 319 3029 949 
30 1351 0.24 15.7865 19.53 5562900 9.86 418 3371 807 
35 1025 0.18 16.4203 16.99 4796400 8.58 546 4019 737 
40 854 0.15 15.7179 15.56 4360800 7.77 658 4147 631 
45 623 0.11 16.8900 14.89 3819635 6.46 785 4571 527 
50 471 0.08 15.1167 12.11 3472432 5.92 914 5523 426 
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Table 4.6 (Continued) 

Estimates of landscape metrics Grain size 
(pixels on 
a side) 

A-w mean 
shape ind 
(AWMSI) 

A-w mean 
frac dim ind 
(AWMFDI) 

Mean 
shape ind 

(MSI) 

Total 
area 
(TA) 

Mean fractal 
dim index 
(MFDI) 

Contagion 
 

(CONTAG)

Patch 
richness 

(PR) 

Patch rich 
density 
(PRD) 

Shannon’s 
diversity ind 

(SHDI) 
  1 33.49 1.3024 1.1091 563323 1.0221 40.36 6.0000 0.0011 1.4369 
  2 12.89 1.2219 1.1368 563323 1.0179 46.81 6.0000 0.0011 1.4260 
  3 12.67 1.2203 1.1293 563323 1.0212 42.41 6.0000 0.0011 1.4261 
  4 12.37 1.2179 1.1185 564245 1.0168 38.71 6.0000 0.0011 1.4258 
  5 11.35 1.2062 1.1195 563504 1.0167 37.43 6.0000 0.0011 1.4264 
  6 10.46 1.1976 1.1133 563323 1.0159 36.26 6.0000 0.0011 1.4256 
  7 9.35 1.1870 1.1142 563223 1.0156 35.15 6.0000 0.0011 1.4260 
  8 8.72 1.1797 1.1088 562401 1.0145 34.17 6.0000 0.0011 1.4260 
  9 8.19 1.1733 1.1079 562482 1.0142 33.44 6.0000 0.0011 1.4257 
10 7.59 1.1678 1.1059 562599 1.0139 33.16 6.0000 0.0011 1.4253 
15 5.71 1.1427 1.0972 564408 1.0124 30.85 6.0000 0.0011 1.4290 
20 4.55 1.1256 1.0944 567216 1.0117 29.65 6.0000 0.0011 1.4283 
25 4.32 1.1177 1.0915 562500 1.0113 28.86 6.0000 0.0011 1.4262 
30 3.81 1.1109 1.0850 564408 1.0101 28.18 6.0000 0.0011 1.4258 
35 3.51 1.1027 1.0856 559298 1.0102 27.91 6.0000 0.0011 1.4269 
40 3.11 1.0931 1.0795 561600 1.0096 27.04 6.0000 0.0011 1.4302 
45 2.72 1.0916 1.0827 565886 1.0093 29.28 6.0000 0.0011 1.4261 
50 2.34 1.0936 1.0909 558000 1.0085 30.25 6.0000 0.0011 1.4313 
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Although exponential decay function could also be fitted to the changes in these 

eleven metrics, 2r  was lower in each case. The remaining two Type I metrics (patch 

area standard deviation and mean patch area) increased in value via a linear and a 

power law relationship respectively (Figure 4.13 and Table 4.7). Considering the fact 

that they are separated by a time difference of 15 years, the consistency of the scaling 

relations among the two landscape maps is quite remarkable. However, the values of 

the parameters in the scaling relations changed considerably among the two landscapes, 

indicating their structural differences at various grain sizes.  
 

Table 4.7  Scaling relations showing the effects of changing grain size on Type I 
metrics 

 

Type I landscape metric               Scaling relation and characteristics 
 
Number of patches 
Patch density 
Landscape shape index 
Total edge 
Edge density 
Patch area coefficient of variation 
Mean shape index 
Area-weighted mean shape index 
Mean fractal dimension index 
Area-weighted mean fractal dimension index  
Contagion 

 
A decreasing power law function: 

0 and 0,0, ><>= xbaaxy b , 
where y is the value of the metric, a and 
b are constants and x is the grain size 
expressed as the number of pixels on a 
side 
 
 

 
Patch area standard deviation 

 
An increasing linear function:    

0  and 0,0, >>>+= xbabaxy , 
where y is the value of the metric, a and 
b are constants and x is the grain size 
expressed as the number of pixels on a 
side 

 
Mean patch area 

 
An increasing power law function: 

0  and  0,0   , >>>= xbaaxy b , 
where y is the value of the metric, a and 
b are constants and x is the grain size 
expressed as the number of pixels on a 
side 
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Figure 4.13  Scalograms showing the effects of changing grain size on Type I metrics 
   of LULC84 
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  In contrast to Type I, the values of Type II metrics exhibited unpredictable or 

fluctuating wave-like responses with increasing grain size. The fluctuations suggest that 

these metrics are highly sensitive to the specific patterns of the landscape under study, 

and thus general scaling relations were not possible to derive (Figure 4.14). LPI and 

SHDI fluctuated with no clear pattern and lack of consistency, while TA showed 

consistency across the 2 landscapes.  
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Figure 4.14  Scalograms showing the effects of changing extent on Types II and III 
   metrics of LULC84 and LULC99 
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Type III included 2 metrics: patch richness and patch richness density. These metrics 

had fixed values (6 for patch richness and 0.0011 for patch richness density) 

irrespective of the grain size, indicating that they are not affected by changes in the 

grain size (see graph at the bottom in Figure 4.14).  

 

4.5 Effects of changing the method of aggregation on pattern analysis 

A number of studies have shown that different aggregation methods may have 

significant effects on spatial model evaluation, land cover classification, and landscape 

pattern analysis (Costanza, 1989; Justice et al., 1989; Bian and Butler, 1999; Turner et 

al., 2001). We have cause to believe, therefore, that aggregation methods may also 

affect scaling relations of landscape metrics. To investigate these effects on the 18 

metrics, we employed the mean, median and mode aggregation methods to 

systematically change the grain size of our landscape maps from 11×  to 5050×  pixels 

while the extent was kept constant.   In all, 108 landscape maps (2 land use and land 

cover maps ×  3 aggregation methods ×18 grain size levels) were analyzed for the 

purpose of investigating the effect of aggregation method on landscape metrics. The 

results for NDVI84 and NDVI99 are summarized in Tables 7.4 and 7.5, respectively, in 

Appendix III. 

The results (Figure 4.15) showed that, generally, the method of aggregation 

significantly affected the values of landscapes metrics as did changing grain size. 

Sixteen out of the 18 metrics showed significant differences among the three methods 

of aggregation; while patch richness and patch richness density were not affected. Type 

I metrics were most robust as they maintained their scaling relationships to a large 

extent, in spite of the fact that the parameter values in the scaling equations among the 

methods changed slightly. For most Type I metrics (number of patches, patch density, 

landscape shape index, total edge, edge density, patch area coefficient of variation, 

area-weighted mean shape index and area-weighted mean fractal dimension index), the 

values produced by the median and mode aggregation methods were closely related; 

while those produced by the mean method differed significantly from them. These 

appear to be the metrics whose responses with change in grain size follow a decaying 

power law. For the others (mean patch area and patch area standard deviation), values 

produced by the mean and mode aggregation methods were closely related; while those 
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produced by the median method differed significantly from them. Mean shape index, 

mean fractal dimension index and contagion (Type I) together with Shannon’s diversity 

index, largest patch index and total area (Type II) showed the most pronounced 

differences as a result of changing the method of aggregation. It is noteworthy, 

however, that the mean and median aggregation methods produced the same values for 

total area; while the values produced by mode method differed significantly. The Type 

III metrics (patch richness and patch richness density) were unaffected by changing the 

method of aggregation. 
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Figure 4.15  Scalograms showing the effects of changing the method of aggregation on landscape metrics of LULC84 
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Figure 4.15 (Continued)
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4.6 Effects of changing the extent on landscape pattern metrics 

LULC84 and LULC99 were used to investigate the effects of changing extent on 

landscape metrics. From each, nine maps with different extents ranging from 2km 56  

to 2km 633,5  were clipped (Figure 4.16). Clipping was started from the south-western 

corner to the north-eastern corner along the diagonal. In all, 18 maps were used in this 

aspect of the study. The values of all 18 metrics were estimated from each map of 

LULC84 and summarized in Table 4.8; while corresponding values for LULC99 are 

presented in Table 7.7, Appendix III.  
 

                  
2km 56  2km 252    2km 507         2km 029                2km 4081                   2km 0282  

 

     
             

2km 7612                              2km 6063                                      2km 5633  
 
Figure 4.16  LULC84 maps with different extents used to investigate the effects of 
   changing extent on landscape metrics 
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Table 4.8  Estimates of landscape metrics of LULC84 with different extents 
 

Landscape metrics  

Area of 
Extent 
( 2km ) 

No. of 
patches 

(NP) 

Patch 
density 
(PD) 

Largest 
patch ind 

(LPI) 

Landscape 
shape ind. 

(LSI) 

Total 
edge 
(TE) 

Edge 
density 
(ED) 

Mean 
patch area 

(MPA) 

Patch area 
std dev. 
(PASD) 

Patch area 
coeff of var 

(PACV) 
56 3424 61 52 25 720930 128 1.6412   51 3115 

225 13411 60 16 52 3028650 134 1.6807   47 2767 
507 31478 62   9 80 7110450 140 1.6103   49 3012 
902 54148 60 19 105 12483390 139 1.6651   84 5038 

1408 82294 58 18 129 19143540 136 1.7113 104 6100 
2028 121077 60 15 157 28068180 138 1.6746 107 6358 
2761 159972 58 17 181 37774020 137 1.7256 150 8678 
3606 197525 55 17 198 47341680 131 1.8251 196 10742 
5633 319837 57 13 257 76930860 137 1.7613 200 11337 

 
Table 4.8 (Continued) 

Estimates of landscape metrics Area of 
extent 
( 2km ) 

Total 
 Area 
(TA) 

A-w mean 
shape ind 
(AWMSI) 

A-w mean 
frac dim 

(AWMFD) 

Mean 
shape ind 

(MSI) 

Mean frac 
dim ind 
(MFDI) 

Contagion 
 

(CONTAG) 

Patch 
richness 

(PR) 

Patch rich 
density 
(PRD) 

Shannon’s 
div. ind. 
(SHDI) 

    56 5626 11 1.2520 1.1015 1.0212 50 6.0000 0.1066 1.1744 
  225 22540 10 1.2489 1.1094 1.0215 44 6.0000 0.0266 1.3182 
  507 50688 11 1.2597 1.1055 1.0208 45 6.0000 0.0118 1.2861 
  902 90161 17 1.2754 1.1057 1.0211 45 6.0000 0.0067 1.2728 

      1408 140831 20 1.2848 1.1046 1.0210 45 6.0000 0.0043 1.2810 
2028 202753 20 1.2848 1.1043 1.0210 43 6.0000 0.0030 1.3572 
2761 276053 28 1.3011 1.1035 1.0212 41 6.0000 0.0022 1.4197 
3606 360497 34 1.3105 1.1041 1.0215 41 6.0000 0.0017 1.4331 
5633 563323 34 1.3024 1.1091 1.0221 40 6.0000 0.0011 1.4369 
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In general, changing the extent of landscape maps had significant effects on the 

values of its metrics. Similar to changing grain size, the responses of metrics to 

changing extent can be grouped into three main types: Type I, Type II and Type III. 

The response curves of Type I metrics showed consistent and simple scaling 

relationships across the two landscapes. However, the values of the parameters in the 

scaling relation changed considerably among different landscapes, indicating their 

structural differences for distinctive extents. Equations derived from these response 

curves could be used to predict the values of such metrics when the extent of a 

landscape with similar characteristics is known. In contrast, the response curves of the 

Type II metrics did not show simple trends or consistent patterns across the two 

landscapes. For these reasons, scaling relations could not be formulated for prediction 

purposes. Type III metrics remained constant irrespective of size of extent.    

 
Table 4.9  Scaling relations showing the effects of changing extent on Type I metrics  
 

Type I landscape metric               Scaling relation and characteristics 
 
Number of patches 
Total edge 
Total area 
Patch area standard deviation 
Patch area coefficient of variation 
Area-weighted mean shape index 
Area-weighted mean fractal dimension 
index 

 
An increasing linear function:    

0  and 0,0, >>>+= xbabaxy , 
where y is the value of the metric, a and b 
are constants and x is the value of the 
extent 

 
Landscape shape index 

 
An increasing power law function: 

0  and  0,0   , >>>= xbaaxy b , 
where y is the value of the metric, a and b 
are constants and x is the value of the 
extent 

 
Patch richness density  

 
A decreasing power law function: 

0 and 0,0, ><>= xbaaxy b , 
where y is the value of the metric, a and b 
are constants and x is the value of the 
extent 
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Figure 4.17  Scalograms showing the effects of changing extent on Type I metrics of 
   NDVI84  
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Half of the 18 landscape metrics belonged to Type I. They included number of 

patches, total edge, patch area standard deviation, total area, patch area coefficient of 

variation, area-weighted mean shape index, landscape shape index, area-weighted mean 

fractal dimension index and patch richness density. Each of these metrics could be 

described by simple scaling relations such as linear or power law function (Table 4.9 

and Figure 4.17). The scaling relations fitted the metrics of both landscape maps very 

well; with  2r  ranging between 0.752 and 1.000. Seven of the Type I metrics increased 

in value with increasing extent via a linear relationship. A third-order polynomial 

function fitted three of these metrics (PASD, PACV and AWMSI) better. Using PASD as 

example, 2r  values for fitting a third-order polynomial function and a linear function 

were 0.977 and 0.913 respectively. However, for easier interpretation and applicability, 

we preferred the linear fits. Landscape shape index and patch richness density, the other 

two Type I metrics, followed a power law relation as the extent was increased. 

There were eight Type II metrics for LULC84; these did not exhibit any clear 

trends with changing extent and did not show consistency in their trends across the two 

landscapes (Figure 4.18). These included largest patch index, edge density, mean patch 

area, mean shape index, mean fractal dimension index, contagion, patch density and 

Shannon’s diversity index. For LULC99, there were five Type II metrics. This is 

because linear models fitted PD, ED and MPA reasonably well, unlike the case of 

LULC84. This is one of several inconsistencies in Type II metrics across the two 

landscapes. It was observed that, in general, contagion decreased (LULC84) or 

increased (LULC99) with increasing extent (the two graphs at the top in Figure 4.18). 

As the extent of landscape increased, mean fractal dimension index and Shannon’s 

diversity index increased (LULC84) or decreased (LULC99). For both landscapes, 

largest patch index decreased monotonically as extent increased from 2km 56  to 
2km 507 . 



Results and discussion 

103 

LULC84

35
37
39
41
43
45
47
49
51

0 1000 2000 3000 4000 5000 6000

Area of extent (sq. km)

C
on

ta
gi

on
LULC99

35
36
37
38
39
40
41
42
43

0 1000 2000 3000 4000 5000 6000

Area of extent (sq. km)

C
on

ta
gi

on

 
 

LULC84

1.0206
1.0208

1.021
1.0212
1.0214
1.0216
1.0218

1.022
1.0222

0 1000 2000 3000 4000 5000 6000

Area of extent (sq. km)

M
ea

n 
fr

ac
ta

l d
im

en
si

on
 in

de
x

 

 

LULC99

1.02
1.0205

1.021
1.0215

1.022
1.0225

1.023
1.0235

1.024

0 1000 2000 3000 4000 5000 6000

Area of extent (sq. km)
M

ea
n 

fr
ac

ta
l d

im
en

si
on

 in
de

x
 

 

LULC84

1

1.1

1.2

1.3

1.4

1.5

0 1000 2000 3000 4000 5000 6000

Area of extent (sq. km)

S
ha

nn
on

's
 d

iv
er

si
ty

 in
de

x

 

 

LULC99

1.34

1.36

1.38

1.4

1.42

1.44

1.46

0 1000 2000 3000 4000 5000 6000

Area of extent (sq. km)

Sh
an

no
n'

s 
di

ve
rs

ity
 in

de
x

 
 

LULC84

0

10

20

30

40

50

60

0 1000 2000 3000 4000 5000 6000

Area of extent (sq. km)

La
rg

es
t p

at
ch

 in
de

x

 

 

LULC99

0
5

10
15
20
25
30
35

0 1000 2000 3000 4000 5000 6000

Area of extent (sq. km)

La
rg

es
t p

at
ch

 in
de

x

 
 

LULC84

1.101
1.102
1.103
1.104
1.105
1.106
1.107
1.108
1.109

1.11

0 1000 2000 3000 4000 5000 6000

Area of extent (sq. km)

M
ea

n 
sh

ap
e 

in
de

x

 

 

LULC99

1.1

1.105

1.11

1.115

1.12

1.125

1.13

0 1000 2000 3000 4000 5000 6000

Area of extent (sq. km)

M
ea

n 
sh

ap
e 

in
de

x

 
Figure 4.18  Scalograms showing the effects of changing extent on Type II metrics of  
   LULC84 and LULC99 
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However for larger extents ( 2km 0001  or more), largest patch index increased 

in the case of LULC99, but remained fairly constant for LULC84. Between 2km 56  

and 2km 0282 , the pattern exhibited by mean shape index for both landscapes is 

similar. However, from 2km 2761  upwards, it increased in the case of LULC84 and 

decreased for LULC99. Type III consisted of only one metric (patch richness) which 

had a constant value of 6 across all extents of the two landscapes. This indicated that 

even the smallest extent ( 2km 56 ) included all the six land use land cover types in the 

two landscapes.   

 

4.7 Effects of changing the direction on pattern analysis 

The effects of changing the direction (or starting position) of analysis on pattern 

analysis have long been recognized, particularly, in vegetation analysis (Greig-Smith, 

1983; Dale, 1983). In a recent study of landscapes from North America, Wu et al. 

(2002) established that the direction of analysis significantly affected the values of 

landscapes metrics. Because the distribution of land use and land cover types in our 

landscapes is not uniform, we suspect that the direction in which maps with different 

extents were clipped from the original maps is likely to affect landscape pattern 

analysis. To investigate these effects on the 18 metrics, maps of different extents were 

clipped starting from each of the four corners and moving along the diagonal of the 

landscapes (see Figure 3.7). Thus, four directions were investigated in all: SW-NE, SE-

NW, NW-SE and NE-SW. 

The results (Tables 7.6 and 7.7 and Figure 4.19) showed that the direction of 

analysis significantly affect the values of landscapes metrics as did changing extent. 

Apart from three metrics (total edge, patch richness and patch richness density) which 

were not affected, all other metrics showed significant changes among the four 

directions of analysis. Type I metrics were most robust as they maintained their scaling 

relationships to a large extent, in spite of the fact that the parameter values in the 

scaling equations among the four directions varied considerably. Type II metrics 

showed the most pronounced directionality. Most of these metrics exhibited large 

differences at smaller extents among the four directions. However, the differences 



Results and discussion 

105 

became smaller as we approached the full landscape. Eventually, all four response 

curves converge at the full extent of the landscape.  

It was interesting to note that the four response curves for each metric (Figure 

4.19) could be grouped into two: NW-SE and NE-SW formed one group, while SW-NE 

and SE-NW formed another. The two curves in each group resembled each other in 

terms of the closeness of their values. The divergence of the response curves along 

different directions was a result of the anisotropy of landscape patterns. The 

characteristics of the curves and their relationships together carry useful information on 

landscape structure. For example, if the landscape pattern is completely isotropic, then 

the response curves of all metrics should be identical. However, isotropy in all 

directions is at best an idealized situation for real landscapes. In general, the differences 

among response curves in different directions ought to increase with increasing 

anisotropy.  



Results and discussion 

106 

0

50000

100000

150000

200000

250000

300000

350000

0 2000 4000 6000

Area of extent (sq. km)

N
um

be
r o

f p
ac

tc
he

s

SW-NE
SE-NW
NW-SE
NE-SW

 

0
10000000

20000000
30000000
40000000

50000000
60000000
70000000

80000000
90000000

0 2000 4000 6000

Area of extent (sq. km)

To
ta

l e
dg

e

SW-NE
SE-NW
NW-SE
NE-SW

0

100000

200000

300000

400000

500000

600000

0 2000 4000 6000

Area of extent (sq. km)

To
ta

l a
re

a

SW-NE
SE-NW
NW-SE
NE-SW

 
 

0

50

100

150

200

250

0 2000 4000 6000

Area of extent (sq. km)

Pa
tc

h 
ar

ea
 s

td
 d

ev
ia

tio
n

SW-NE
SE-NW
NW-SE
NE-SW

 

 

0

2000

4000

6000

8000

10000

12000

14000

0 2000 4000 6000

Area of extent (sq. km)

Pa
tc

h 
ar

ea
 c

oe
ff
. o

f v
ar

ia
tio

n

SW-NE
SE-NW
NW-SE
NE-SW

 

0

5

10

15

20

25

30

35

40

0 2000 4000 6000

Area of extent (sq. km)

A
-W

 M
ea

n 
sh

ap
e 

in
de

x

SW-NE
SE-NW
NW-SE
NE-SW

 

1.18

1.2

1.22

1.24

1.26

1.28

1.3

1.32

1.34

0 2000 4000 6000

Area of extent (sq. km)

A
-W

 M
ea

n 
fra

ct
al

 d
im

en
si

on
 in

de
x

SW-NE
SE-NW
NW-SE
NE-SW

 

0

50

100

150

200

250

300

0 2000 4000 6000

Area of extent (sq. km)

La
nd

sc
ap

e 
sh

ap
e 

in
de

x

SW-NE
SE-NW
NW-SE
NE-SW

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0 2000 4000 6000

Area of extent (sq. km)

Pa
tc

h 
ric

hn
es

s 
de

ns
ity SW-NE

SE-NW
NW-SE
NE-SW

 
Figure 4.19  Scalograms showing the effects of changing the direction on pattern analysis 
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Figure 4.19 (Continued)
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4.8 Comparing the effects of changing grain size and extent on landscape 
pattern metrics 

 
A number of differences and similarities exist between the effects of changing grain 

size and extent on landscape metrics. In this section, we shall highlight these 

differences and similarities in the context of the numerical relationships that exist 

among certain landscape metrics. Overall, the effects of changing grain size on 

landscape metrics were more predictable than those of changing extent. This is evident 

in the fact that out of 18, there were 13 (or 72%) Type I metrics associated with 

changing grain size as compared with 9 (or 50%) for changing extent. Eighty-five 

percent of the Type I metrics, in relation to changing grain size, followed a power law 

relationship; while 78%, in relation to changing extent, followed a simple linear 

function.  

Some of the landscape metrics are statistically correlated, and so we would 

expect these relationships to be reflected in their response curves. For example, 

TA TE.LSI 250= , where TA is the total area of the landscape. Thus LSI and TE 

must have identical response curves for changing grain size, because TA remains 

constant over changing grain size. This is the case in our study: both LSI and TE 

exhibited decreasing power law relationships (Figure 4.20 (a) and (b)). However, in the 

case of changing extent, if TE increases as a power law function ( baxy = ) with extent, 

then LSI must follow a scaling function of the form 1−∝ bxy  because TA follows a 

linear trend. Thus, if b is close to 2 we would expect LSI to show a linear trend. Again, 

this was achieved in our study: LSI exhibited an increasing power law scaling, while TE 

followed a linear relationship (Figure 4.20 (c) and (d)).  
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Figure 4.20  Scalograms showing the effects of changing grain size and extent on 
   selected metrics  
 

Similarly, because TANPPD ∝  and TATEED ∝ , we would expect a set of 

identical response curves to changing grain size for PD and NP  and another set for ED 

and TE. These expectations are fulfilled in this study as both pair exhibited identical 

response curves (decreasing power law functions) to changing grain size. Yet, in the 

case of changing extent, NP and PD exhibited non identical response curves. The 

number of patches exhibited an increasing linear trend; while PD exhibited inconsistent 

trends across different landscapes (fluctuated for LULC84 and showed decreasing 

linear trend for LULC99). Similarly, TE and ED exhibited non identical responses – TE 

exhibited an increasing linear relation; while ED fluctuated for LULC84 and followed a 

decreasing linear trend for LULC99.  

Patch richness (PR) and PRD are related by TAPRPRD = , so for changing 

grain size they should have identical scaling patterns. The last graph in Figure 4.15 

shows that both PR and PRD are constant functions over changing grain size. However, 

in the case of changing extent TA increased linearly while PR remained constant. Thus, 
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PRD obeyed a decreasing power law function. These patterns were consistent over the 

2 landscape maps. 

Since PACV, PASD and MPA are related by 100MPA)(PASDPACV = , the 

trends of any two of the three curves should help determine the trend of the third. For 

changing grain size, PASD increased linearly, while PACV decreased and MPA 

increased both as power law functions. However, for changing extent, the response 

curve for MPA is not predictable. This was most obvious for LULC84 landscape. 

The comparison also revealed some similarities. MSI and MFDI exhibited 

similar patterns in response to changing grain size and changing extent. This is because 

they share strong mathematical similarity: 
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where ijp  is the perimeter of patch ij,  ija  is the area of patch ij , mi ,,1K=  is the 

number of patch types, nj ,,1K=   is the number of patches. This equation shows that, 

while MSI is simply a perimeter-area ratio normalized based on the square shape and 

averaged over all patches, MFDI requires that both the numerator and the denominator 

are log-transformed before the summation for the entire class and across the landscape. 

Both MSI and MFDI exhibited a decreasing power law function for increasing grain 

size (Figure 4.21 (a) and (b)). MSI and MFDI also exhibited similar response curves for 

increasing extent, although these curves could not be described by simple scaling 

equations (Figure 4.21 (c) and (d)). 
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Figure 4.21  Scalograms showing similar effects of MSI and MFDI to both changing 
   grain size and extent 
 

Similar to MSI and MFDI, the response curves of AWMSI and AWMFDI to 

changing grain size and extent resembled each other. This is so because they also share 

similarities in their mathematical representations: 
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where the notations have their usual meanings. It was observed that both AWMSI and 

AWMFDI exhibited decreasing power law functions with respect to increasing grain 

size (Figure 4.22 (a) and (b)); while they exhibited increasing linear functions with 

respect to increasing extent (Figure 4.22 (c) and (d)). 
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Figure 4.22  Scalograms showing similar effects of AWMSI and AMFDI to both  
   changing grain size and extent 
 

Table 4.10 is a complete summary of the comparison of scaling relations of 

landscape metrics with respect to changing grain size and extent. In related studies, Wu 

et al. (2002), Shen et al. (2004) and Wu (2004) found that the response patterns of 

commonly used landscape metrics to changing grain size and extent could be grouped 

into three main types: (1) Type I metrics exhibit consistent and robust scaling relations 

in the forms of linear, power, or logarithmic functions over a range of scales; (2) Type 

II metrics show staircase-like responses with changing scale; and (3) Type III metrics 

behaving erratically in response to changing scale and with no consistent scaling 

relations among different landscapes. In general, the results of this study corroborate 

these findings. However, there are apparent differences which are noteworthy. None of 

the 18 commonly used landscape metrics exhibited clear staircase-like response curves 

with respect to changing grain size or extent as reported by other studies.  
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Table 4.10   Comparison of scaling relations of landscape metrics with respect to 
changing grain size and extent 
 

Type of scaling relation Landscape metric 
Grain size Extent 

Total area unpredictable linear 
Number of patches power law linear 
Patch density power law unpredictable 
Largest patch index unpredictable unpredictable 
Landscape shape index power law power law 
Total edge power law linear 
Edge density power law unpredictable 
Mean patch area power law unpredictable 
Patch area standard deviation linear linear 
Patch area coefficient of variation power law linear 
Mean fractal dimension index power law unpredictable 
Area-weighted mean fractal dimension index power law linear 
Mean shape index power law unpredictable 
Area-weighted mean shape index power law linear 
Contagion power law unpredictable 
Patch richness constant constant 
Patch richness density constant power law 
Shannon’s diversity index unpredictable unpredictable 

 
If there were any such trends, they would have been classified into Type II 

which we described as inconsistent and unpredictable. In the case of changing grain 

size, Wu (2004) characterized contagion, mean shape index and mean fractal dimension 

index as having no scaling relations (unpredictable). However, all three exhibited 

consistent decreasing power law functions with 2r  ranging between 0.77 and 0.95. 

Patch richness and patch richness density were found to be constants with respect to 

changing grain size, but Wu (2004) found them to exhibit staircase-like responses. 

With respect to changing grain size, Wu (2004) found AWMSI, AWMFDI, PACV, 

PASD and PR to exhibit staircase-like responses. However, our study found AWMSI, 

AWMFDI, PACV and PASD to follow linear relationships; while PR remained constant 

with increasing extent. We also noticed that specific forms of the scaling functions for 

Type I metrics changed in the case of changing extent.  

So why were there these differences? Two major factors might account for the 

discrepancies between our results and those of previous studies: (1) the composition 

and configuration of the landscapes and (2) the form of extents used in relation to the 

original extent. The landscapes used by Wu et al. (2002), Shen et al. (2004) and Wu 
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(2004) differ markedly from ours. Their landscapes were all from North America, so 

we believe compositional (e.g. diversity of patch types) and configurational (e.g. spatial 

arrangement of different patch types) differences might have influenced the results. We 

also thought it wise to clip the different extents in the shape of and in specified ratios to 

the original extent so as to facilitate easy interpretation of the results. However, other 

studies clipped the different extents in the shape of squares irrespective of the shape of 

the original data. These differences might have also contributed to the slight differences 

registered.  
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5 SUMMARY AND CONCLUSION 

 

5.1 Summary 

In this study, the researcher adapted statistical applications of a modern tool (wavelets) 

to help provide answers to the two fundamental questions of multiscale analysis in a 

landscape ecological study. In particular, the Daubechies and Haar wavelet filters were 

employed to investigate what scales are important contributors to the overall variability 

of the NDVI and DEM data sets. Furthermore, wavelet multiresolution decomposition 

facilitated the separate study of small- and large-scale wavelet coefficients for 

statistical self-similarity.  Statistical scalograms were also constructed to characterize 

the multiscale structure of landscapes from northern Ghana.  

A summary of the research findings, following the outline of the objectives, 

are presented in the ensuing paragraphs. Moving window statistics of the NDVI and 

DEM data sets were computed to investigate for heteroscedasticity and proportional 

effect. The local means of the NDVI fields appeared to be heteroscedastic, while their 

corresponding standard deviations remained fairly constant over the entire study area. 

For the DEM, both local means and local standard deviations remained fairly constant 

over the study area. No proportional effect was observed between local means and 

corresponding standard deviations for all three data sets. These results are good for the 

purpose of estimation, because estimates from any particular sector will be as good as 

estimates elsewhere in the study area.  

 Wavelet variance analysis was conducted using the Daubechies “d6” and the 

Haar wavelet filters to determine the dominant scales for the NDVI and DEM data sets. 

The trend of change in the wavelet variance of the NDVI data is not a simple function 

of its resolution. However for DEM, the trend of wavelet variance was a linear function 

of its resolution. With the “d6” wavelet filter, the NDVI84 revealed one major peak at 

the 240 meter scale; while the NDVI99 revealed two peaks: a major one at the 240 

meter scale and a minor at the 960 meter scale. Thus, for both NDVI84 and NDVI99, 

the dominant scale is the 240 meter scale. DEM did not exhibit a dominant scale as 

there was no clear identifiable peak. The presence of peaks in the wavelet variance-

resolution graph is indicative of hierarchical and hence a multiple-scale structure in the 
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landscape (Wu et al., 2000). Thus, the results of the wavelet variance analysis suggest 

that the NDVI fields exhibit hierarchical and multiple-scale structure.  

 The knowledge of multiple-scale structure led to a statistical self-similarity 

analysis of the wavelet coefficients of the NDVI and DEM data sets.  A wavelet multi-

resolution analysis was conducted using NDVI84, NDVI99 and DEM. The small-scale 

wavelet coefficients were used to investigate whether these data sets exhibit statistical 

self-similar scaling behavior. The first four moments of the coefficients were used 

through seven levels of dyadic decompositions. The NDVI data sets were shown to be 

statistically self-similar over the 120 meter to 3.84 km scales in all the three directions 

of wavelet decomposition, while DEM was shown to be statistically self-similar over 

the 3.6 km to 11.52 km scales in all the three directions of wavelet decomposition. 

NDVI84 had slopes of 67.0− , 29.1−  and 92.0−  in the horizontal, vertical and 

diagonal directions, respectively. NDVI99 had slopes of 59.0− , 32.1−  and 59.0−  in 

the horizontal, vertical and diagonal directions, respectively; while DEM had slopes of 

56.0− , 26.2−  and 14.1−  in the horizontal, vertical and diagonal directions, 

respectively.  The negative slopes are indicative of increasing variability with 

decreasing scales; while the differences in their magnitudes are indicative of the 

anisotropic nature of the landscapes. The magnitude of the slopes indicates long range 

behavior and may imply a methodology for statistically assimilating remotely sensed 

data into large-scale meso and global climate models. 

Two land use and land cover maps (LULC84 and LULC99) were used in the 

indirect approach to multiscale analysis. Both maps were resampled at different scales, 

according to grain size and extent, after which the values of 18 commonly used 

landscape metrics were estimated from each aggregated map. The study then 

investigated how these landscape metrics responded to changing grain size and extent, 

by exploring for general scaling relations and idiosyncratic behaviors. The results 

showed that changing grain size and extent both had significant effects on landscape 

metrics. In general, the results corroborate findings of related studies. The patterns 

exhibited by the landscape metrics as a result of changing grain size and extent also 

reflected the statistical correlations that exit among them. The response curves of the 

metrics to both changing grain size and extent could be grouped into three main types: 

Type I – predictable responses with simple scaling relationships (e.g. power law, 
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linear); Type II – unpredictable or fluctuating responses with no clear simple scaling 

relations; and Type III – fixed responses irrespective of changes to grain size or extent.  

In general, more landscape metrics (72%) showed consistent scaling relations 

with changing grain size than with changing extent (50%) – indicating that the effects 

of changing grain size are generally more predictable than those of changing map sizes. 

The study also established that the direction of analysis, in the case of changing extent, 

had significant effects on landscape pattern analysis. Type II metrics showed the most 

pronounced directionality. Most metrics in this category exhibited large differences at 

smaller extents among the four directions. However, the differences became smaller 

with increasing extent until eventually all four response curves converge at the full 

extent of the landscape. The four response curves for each metric (Figure 4.19) could 

be grouped into two: NW-SE and NE-SW in one group, and SW-NE and SE-NW in 

another. The two curves in each group resembled each other in terms of the closeness 

of their values. The divergence of the response curves along different directions was a 

result of the anisotropy of landscape patterns. The characteristics of the curves and their 

relationships together carry useful information on landscape structure. For example, if 

the landscape pattern were completely isotropic, then the response curves of all metrics 

would be identical. However, isotropy in all directions is at best an idealized situation 

for real landscapes. In general, the differences among response curves in different 

directions increases with increasing anisotropy.  

It was also observed that the method of aggregation in the case of changing 

grain size had significant effects on landscape pattern analysis. Sixteen out of 18 

metrics showed significant differences among the three methods (mean, median and 

mode) of aggregation. Type I metrics were most robust as they maintained their scaling 

relationships, although the parameter values in the scaling equations among the 

different methods changed slightly. Type III metrics were unaffected by the different 

methods of aggregation. For most other metrics, the values produced by the median and 

mode aggregation methods were more closely related, suggesting that they could be 

used interchangeably.  
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5.2 Conclusion 

An understanding of the nature of scale in landscape data is important when 

extrapolating to coarser resolutions, or in the assimilation of data into meso-scale and 

global climate models. The knowledge that the NDVI and DEM fields are statistical 

self-similarity is useful for the assimilation of these fields into large-scale models as 

well as for comparison of model output with the observed satellite data. One may have 

reasonable confidence through the robustness of the scaling exponents, as determined 

by the 2r  values, in the aggregation procedure for maintaining the statistical properties 

present within the original data. Moreover, the high magnitude of the slope values may 

lead to a larger scale view of the dynamics observed by coarser resolution sensors. In 

other words, the high magnitudes of the slope values indicate the existence of larger 

scale correlation over the entire range of scales examined in this study.  

Knowledge of how biophysical variables vary in space is an important issue in 

many areas of science. The use of landscape data to ascertain the observed scaling 

behavior has implications for any large-scale ecological and the climatological 

modeling, where model output is necessary at scales larger than those at which the data 

are collected. The results of the direct multiscale analysis (i.e. wavelet analysis of the 

statistical variability of the NDVI and DEM fields with changes in spatial resolution) 

contribute to the basis for understanding how to assimilate landscape data into coarser 

resolution models. As a further example in the ecological field, research in phenology 

involves examining the spatial distribution of the length of the growing season as a 

function of environmental forces. Thus understanding the spatial scaling of input 

parameters will represent more realistically, the underlying physical processes. This 

will lead to more pragmatic agricultural considerations as to when to plant, length of 

growing season, etc. Furthermore, the incorporation of representative scaled parameters 

into such models may lead to further insights into non-linear processes that affect the 

overall physiological mechanisms that underlie plant atmosphere systems. 

The quantification of spatial pattern is necessary to link the effects of 

landscape heterogeneity with ecological function and to use remotely sensed data to 

measure change in large spatial units. The study results demonstrate that the spatial 

scale at which these patterns are quantified influences the results and measurements 

made at different scales may not be comparable. In other words, there is no optimal 
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scale for characterizing spatial heterogeneity and comparison between landscapes using 

pattern indices must be based on the same spatial scales. Furthermore, qualitative and 

quantitative changes in measurements across spatial scales will differ according to how 

scale is defined. Thus, the definition and directions and methods of changing scale must 

always be explicitly stated. It is important to define the scale of ecological data in terms 

of both grain size and extent.  

 In addition, the results may provide practical guidelines for scaling of spatial 

pattern. For example, landscape metrics that do not change (Type III) and those that 

change predictably (Type I) across scales reflect landscape features that can easily be 

extrapolated or interpolated from fine scales to broad scales. In contrast, unpredictable 

metrics (Type II) represent landscape features whose extrapolation may be difficult and 

which may require information on the specifics of the landscape of concern at several 

different scales. Finally, to quantify spatial heterogeneity using landscape metrics, it is 

both necessary and desirable to use landscape metric scalograms, instead of single-

scale values. Indeed, a comprehensive empirical database containing pattern metric 

scalograms and other forms of multiple-scale information of diverse landscapes is 

crucial for achieving a general understanding of landscape patterns and developing 

spatial scaling rules. 

 

5.3 Suggestions for further research 

One issue that needs further study is the effect of the choice of wavelet. This is because 

the success of both analysis and modeling depends largely on an appropriate choice of 

wavelet. It will be interesting to compare results of multiscale analysis using different 

orthogonal and biorthogonal wavelets. The findings of the indirect multiscale analysis 

can be investigated further by using several landscape maps which are different in 

composition and configuration. This study covered only landscape-level metrics, which 

were computed for the entire landscape and thus measured the landscape pattern 

rendered by all patch types. However, certain ecological applications require 

information on the abundance and configuration of different habitat or cover types that 

are provided by class-level metrics. There is the need, therefore, to investigate whether  
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class-level metrics show similar patterns to those found for landscape-level metrics in 

terms of their responses to changing grain size and extent. Furthermore, this study 

considered 2 out of 3 situations in which scale effects on spatial pattern analysis may be 

observed. The third situation which involves changing the grain size and extent 

simultaneously could be a candidate for further research. 
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7 APPENDICES 

 

Appendix I: On heteroscedasticity and proportional effect 

Table 7.1 contains the mean and standard deviation of the pixel values in each of the 

228 local windows of NDVI84 and NDVI99, as well as those of the 144 local windows 

of DEM used in the analysis of heteroscedasticity and proportional effect. Also 

contained in the table are the x and y coordinates of each statistic. 
 
 

Table 7.1  Moving window statistics of NDVI84, NDVI99 and DEM together with 
their x- and y-coordinates 

 

Moving window statistics 
NDVI84 NDVI99 DEM x y 

Mean Standard 
deviation Mean Standard 

deviation Mean Standard 
deviation 

1   1 -0.2434 0.0154 -0.1645 0.1274 128 13 
1   2 -0.2487 0.0156 -0.1929 0.1238 141 16 
1  3 -0.2541 0.0120 -0.1889 0.1112 161 14 
1   4 -0.2532 0.0155 -0.1897 0.1446 153 13 
1   5 -0.2550 0.0142 -0.1748 0.1418 177 15 
1   6 -0.2517 0.0109 -0.1967 0.1046 163 17 
1   7 -0.2493 0.0089 -0.1866 0.0997 138 11 
1   8 -0.2493 0.0099 -0.2127 0.0745 142 14 
1   9 -0.2503 0.0087 -0.2016 0.0703 134 10 
1 10 -0.2526 0.0087 -0.2323 0.0681 144 15 
1 11 -0.2462 0.0079 -0.2488 0.0552 175 21 
1 12 -0.2499 0.0081 -0.2548 0.0656 207 17 
2   1 -0.2500 0.0082 -0.2069 0.0587 108 10 
2   2 -0.2485 0.0075 -0.2204 0.0608 120 11 
2   3 -0.2493 0.0114 -0.2045 0.0972 139 14 
2  4 -0.2511 0.0123 -0.1955 0.1143 155 16 
2   5 -0.2513 0.0095 -0.1994 0.0718 151 11 
2   6 -0.2514 0.0076 -0.2211 0.0626 167 13 
2   7 -0.2506 0.0076 -0.2104 0.0585 140 13 
2   8 -0.2464 0.0085 -0.2034 0.0516 123 11 
2   9 -0.2493 0.0080 -0.2184 0.0694 122 9 
2 10 -0.2452 0.0066 -0.2004 0.0468 142 12 
2 11 -0.2445 0.0104 -0.2428 0.0689 157 13 
2 12 -0.2479 0.0092 -0.2511 0.0596 207 22 
3   1 -0.2546 0.0088 -0.2254 0.0610   96   7 
3   2 -0.2526 0.0069 -0.2452 0.0609 109 10 
3   3 -0.2461 0.0060 -0.2107 0.0535 127 12 
3   4 -0.2480 0.0078 -0.2302 0.0624 147 11 
3   5 -0.2510 0.0067 -0.2036 0.0605 138 11 
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Table 7.1 (Continued) 

NDVI84 NDVI99 DEM 
x y 

Mean Standard 
deviation Mean Standard 

deviation Mean Standard 
deviation 

3   6 -0.2456 0.0071 -0.1882 0.0490 144 12 
3   7 -0.2456 0.0073 -0.2107 0.0698 140 10 
3   8 -0.2480 0.0091 -0.2161 0.0824 118 10 
3   9 -0.2476 0.0094 -0.1936 0.0858 114   8 
3 10 -0.2486 0.0073 -0.2376 0.0567 130 10 
3 11 -0.2448 0.0080 -0.2357 0.0622 152 13 
3 12 -0.2495 0.0088 -0.2432 0.0647 180 12 
4   1 -0.2511 0.0079 -0.2130 0.0684   96   8 
4   2 -0.2492 0.0078 -0.2332 0.0808 109 11 
4   3 -0.2486 0.0072 -0.2223 0.0678 128 15 
4   4 -0.2380 0.0198 -0.1122 0.2168 129 13 
4   5 -0.2500 0.0077 -0.2033 0.0650 138 11 
4   6 -0.2477 0.0094 -0.1935 0.0760 124 12 
4   7 -0.2460 0.0081 -0.1974 0.0585 128 10 
4   8 -0.2461 0.0115 -0.1875 0.0776 112 11 
4   9 -0.2528 0.0089 -0.2094 0.0584 116   8 
4 10 -0.2534 0.0096 -0.2255 0.0723 139 10 
4 11 -0.2521 0.0085 -0.2328 0.0636 172 16 
4 12 -0.2522 0.0076 -0.2716 0.0590 171 14 
5   1 -0.2516 0.0066 -0.2254 0.0614 112 12 
5   2 -0.2507 0.0088 -0.2085 0.0699 100 12 
5   3 -0.2518 0.0094 -0.1955 0.0738 102 12 
5   4 -0.2495 0.0095 -0.1736 0.1376 110 12 
5   5 -0.2515 0.0077 -0.1858 0.0908 133 11 
5   6 -0.2514 0.0072 -0.2142 0.0566 137 12 
5   7 -0.2496 0.0089 -0.1920 0.0728 115 11 
5   8 -0.2556 0.0108 -0.2076 0.0781 107 10 
5   9 -0.2568 0.0100 -0.2281 0.0620 120 13 
5 10 -0.2515 0.0093 -0.2161 0.0682 138 11 
5 11 -0.2504 0.0082 -0.2356 0.0707 170 17 
5 12 -0.2479 0.0074 -0.2530 0.0647 173 13 
6   1 -0.2478 0.0074 -0.2387 0.0654 115   8 
6   2 -0.2515 0.0090 -0.1937 0.0730 101   9 
6   3 -0.2529 0.0089 -0.1795 0.0645 99 19 
6   4 -0.2524 0.0084 -0.2008 0.0731 128 14 
6   5 -0.2470 0.0092 -0.2150 0.0662 136 13 
6   6 -0.2488 0.0090 -0.2022 0.0713 143 11 
6   7 -0.2515 0.0099 -0.2068 0.0741 113 13 
6   8 -0.2596 0.0124 -0.2299 0.0962 107 11 
6   9 -0.2531 0.0098 -0.2381 0.0595 128 12 
6 10 -0.2508 0.0102 -0.2696 0.0560 139 11 
6 11 -0.2551 0.0091 -0.2921 0.0599 168 14 
6 12 -0.2554 0.0077 -0.3167 0.0520 173 15 
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Table 7.1 (Continued) 

NDVI84 NDVI99 DEM 
x y 

Mean Standard 
deviation Mean Standard 

deviation Mean Standard 
deviation 

  7   1 -0.2459 0.0065 -0.2278 0.0493 116   7 
  7   2 -0.2521 0.0094 -0.2516 0.0693   95 12 
  7   3 -0.2502 0.0102 -0.1971 0.0783 107 11 
  7   4 -0.2567 0.0090 -0.2267 0.0633 128 15 
  7   5 -0.2505 0.0090 -0.2061 0.0689 147 10 
  7   6 -0.2557 0.0099 -0.2311 0.0686 127 12 
  7   7 -0.2609 0.0114 -0.2434 0.0857 102 12 
  7   8 -0.2536 0.0206 -0.1705 0.1542 115 14 
  7   9 -0.2611 0.0129 -0.2652 0.0974 115   9 
  7 10 -0.2545 0.0121 -0.2664 0.0862 134 10 
  7 11 -0.2555 0.0099 -0.2881 0.0722 169 15 
  7 12 -0.2575 0.0083 -0.3271 0.0528 165 16 
  8   1 -0.2500 0.0078 -0.2434 0.0542 114   5 
  8   2 -0.2458 0.0074 -0.2170 0.0540 107 14 
  8   3 -0.2452 0.0072 -0.2018 0.0667   97 10 
  8   4 -0.2563 0.0095 -0.2397 0.0754 106 15 
  8   5 -0.2617 0.0111 -0.2246 0.0796 139 12 
  8   6 -0.2606 0.0119 -0.2633 0.0920 117 13 
  8   7 -0.2612 0.0117 -0.2731 0.0900   98 11 
  8   8 -0.2616 0.0175 -0.2509 0.1512 123 15 
  8   9 -0.2636 0.0112 -0.2585 0.1045 132 13 
  8 10 -0.2667 0.0104 -0.2771 0.0898 149 14 
  8 11 -0.2583 0.0117 -0.2896 0.0723 157 14 
  8 12 -0.2597 0.0096 -0.2979 0.0628 136 10 
  9   1 -0.2507 0.0065 -0.2523 0.0496 105   8 
  9   2 -0.2465 0.0082 -0.2539 0.0552 108 13 
  9   3 -0.2441 0.0083 -0.2356 0.0573 102 14 
  9   4 -0.2510 0.0113 -0.2488 0.0642   87   7 
  9   5 -0.2565 0.0088 -0.2526 0.0608 130 16 
  9   6 -0.2597 0.0105 -0.2866 0.0751 109 12 
  9   7 -0.2627 0.0109 -0.2982 0.0742 107 19 
  9   8 -0.2661 0.0099 -0.3111 0.0740 128 11 
  9   9 -0.2661 0.0092 -0.3139 0.0750 140 12 
  9 10 -0.2673 0.0099 -0.3034 0.0702 144 10 
  9 11 -0.2700 0.0102 -0.3175 0.0765 150 13 
  9 12 -0.2635 0.0121 -0.3436 0.0653 140 15 
10   1 -0.2503 0.0061 -0.2683 0.0406   89 11 
10   2 -0.2451 0.0060 -0.2599 0.0460   95 15 
10   3 -0.2487 0.0065 -0.2864 0.0526 100 17 
10   4 -0.2485 0.0074 -0.2728 0.0674   88   9 
10   5 -0.2497 0.0089 -0.2741 0.0725 110 16 
10   6 -0.2450 0.0074 -0.2686 0.0642   95 15 
10   7 -0.2496 0.0088 -0.2623 0.0693 105 18 
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Table 7.1 (Continued) 

NDVI84 NDVI99 DEM 
x y 

Mean Standard 
deviation Mean Standard 

deviation Mean Standard 
deviation 

10   8 -0.2568 0.0092 -0.3028 0.0683 115 12 
10   9 -0.2606 0.0103 -0.3099 0.0693 126 12 
10 10 -0.2633 0.0109 -0.3197 0.0736 133 13 
10 11 -0.2664 0.0103 -0.3249 0.0616 127 12 
10 12 -0.2616 0.0106 -0.3454 0.0600 140 16 
11   1 -0.2464 0.0053 -0.2779 0.0434   98   8 
11   2 -0.2441 0.0057 -0.2638 0.0508   92 10 
11   3 -0.2466 0.0069 -0.2618 0.0605 123 36 
11   4 -0.425 0.0069 -0.2430 0.0603 138 37 
11   5 -0.2455 0.0071 -0.2665 0.0602   89 12 
11   6 -0.2444 0.0064 -0.2455 0.0547 101 15 
11   7 -0.2504 0.0070 -0.2938 0.0601   84   9 
11   8 -0.2551 0.0077 -0.3031 0.0617 105 16 
11   9 -0.2548 0.0086 -0.3192 0.0651 137 16 
11 10 -0.2580 0.0087 -0.3219 0.0608 149 13 
11 11 -0.2579 0.0076 -0.3315 0.0572 123 14 
11 12 -0.2563 0.0075 -0.3214 0.0558 132 16 
12   1 -0.2446 0.0066 -0.2662 0.0483 127   9 
12   2 -0.2420 0.0060 -0.2599 0.0436 100 12 
12   3 -0.2419 0.0061 -0.2436 0.0568 115 17 
12   4 -0.2448 0.0071 -0.2684 0.0568 115 11 
12   5 -0.2479 0.0079 -0.2763 0.0542   93 13 
12   6 -0.2462 0.0061 -0.2434 0.0541   83   8 
12   7 -0.2483 0.0065 -0.2454 0.0550   99 10 
12   8 -0.2508 0.0068 -0.2980 0.0527 127 19 
12   9 -0.2570 0.0094 -0.3522 0.0636 129 17 
12 10 -0.2551 0.0090 -0.3594 0.0491 158 14 
12 11 -0.2587 0.0087 -0.3622 0.0484 142 21 
12 12 -0.2583 0.0094 -0.3552 0.0566 114   8 
13   1 -0.2500 0.0158 -0.2071 0.1428 - - 
13   2 -0.2459 0.0106 -0.2562 0.0836 - - 
13   3 -0.2423 0.0063 -0.2581 0.0494 - - 
13   4 -0.2440 0.0055 -0.2393 0.0489 - - 
13   5 -0.2450 0.0074 -0.2582 0.0521 - - 
13   6 -0.2472 0.0052 -0.2562 0.0543 - - 
13   7 -0.2486 0.0047 -0.2547 0.0467 - - 
13   8 -0.2466 0.0060 -0.2969 0.0482 - - 
13   9 -0.2557 0.0100 -0.3702 0.0604 - - 
13 10 -0.2571 0.0090 -0.3698 0.0588 - - 
13 11 -0.2569 0.0083 -0.3752 0.0475 - - 
13 12 -0.2578 0.0098 -0.3453 0.0752 - - 
14   1 -0.2579 0.0072 -0.2770 0.0718 - - 
14   2 -0.2482 0.0170 -0.2181 0.1392 - - 
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Table 7.1 (Continued) 

NDVI84 NDVI99 DEM 
x y 

Mean Standard 
deviation Mean Standard 

deviation Mean Standard 
deviation 

14   3 -0.2453 0.0090 -0.2659 0.0503 - - 
14   4 -0.2451 0.0086 -0.2728 0.0537 - - 
14   5 -0.2433 0.0075 -0.2794 0.0547 - - 
14   6 -0.2487 0.0051 -0.2761 0.0444 - - 
14   7 -0.2470 0.0053 -0.2639 0.0461 - - 
14   8 -0.2470 0.0057 -0.2882 0.0470 - - 
14   9 -0.2483 0.0081 -0.3587 0.0477 - - 
14 10 -0.2495 0.0086 -0.3635 0.0488 - - 
14 11 -0.2560 0.0073 -0.3664 0.0452 - - 
14 12 -0.2528 0.0101 -0.3140 0.0861 - - 
15   1 -0.2507 0.0088 -0.2711 0.0622 - - 
15   2 -0.2505 0.0134 -0.2186 0.1266 - - 
15   3 -0.2482 0.0144 -0.2271 0.1073 - - 
15   4 -0.2466 0.0067 -0.2724 0.0463 - - 
15   5 -0.2464 0.0073 -0.2893 0.0462 - - 
15   6 -0.2505 0.0066 -0.2881 0.0427 - - 
15   7 -0.2480 0.0066 -0.2593 0.0433 - - 
15   8 -0.2503 0.0079 -0.2817 0.0508 - - 
15   9 -0.2482 0.0072 -0.3463 0.0454 - - 
15 10 -0.2501 0.0086 -0.3395 0.0562 - - 
15 11 -0.2522 0.0088 -0.3420 0.0522 - - 
15 12 -0.2486 0.0088 -0.2934 0.0734 - - 
16   1 -0.2522 0.0076 -0.2563 0.0592 - - 
16   2 -0.2492 0.0182 -0.1905 0.1671 - - 
16   3 -0.2485 0.0145 -0.2506 0.1102 - - 
16   4 -0.2452 0.0058 -0.2735 0.0474 - - 
16   5 -0.2483 0.0073 -0.3143 0.0589 - - 
16   6 -0.2516 0.0065 -0.3111 0.0500 - - 
16   7 -0.2501 0.0074 -0.2949 0.0378 - - 
16   8 -0.2497 0.0078 -0.3049 0.0424 - - 
16   9 -0.2524 0.0081 -0.3238 0.0576 - - 
16 10 -0.2515 0.0095 -0.3278 0.0589 - - 
16 11 -0.2508 0.0084 -0.3142 0.0655 - - 
16 12 -0.2499 0.0080 -0.3310 0.0543 - - 
17   1 -0.2470 0.0140 -0.2112 0.1353 - - 
17   2 -0.2453 0.0131 -0.2237 0.1083 - - 
17   3 -0.2434 0.0071 -0.2943 0.0477 - - 
17   4 -0.2430 0.0056 -0.3173 0.0358 - - 
17   5 -0.2457 0.0068 -0.2988 0.0497 - - 
17   6 -0.2437 0.0061 -0.3166 0.0546 - - 
17   7 -0.2459 0.0068 -0.3199 0.0486 - - 
17   8 -0.2468 0.0074 -0.3173 0.0495 - - 
17   9 -0.2524 0.0073 -0.2994 0.0478 - - 
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Table 7.1 (Continued) 

NDVI84 NDVI99 DEM 
x y 

Mean Standard 
deviation Mean Standard 

deviation Mean Standard 
deviation 

17 10 -0.2561 0.0076 -0.3514 0.0465 - - 
17 11 -0.2510 0.0084 -0.3181 0.0662 - - 
17 12 -0.2526 0.0064 -0.3484 0.0427 - - 
18   1 -0.2428 0.0167 -0.1819 0.1563 - - 
18   2 -0.2425 0.0140 -0.2085 0.1179 - - 
18   3 -0.2424 0.0072 -0.2618 0.0499 - - 
18   4 -0.2407 0.0059 -0.2749 0.0451 - - 
18   5 -0.2430 0.0077 -0.3135 0.0535 - - 
18   6 -0.2460 0.0069 -0.3394 0.0397 - - 
18   7 -0.2472 0.0073 -0.3266 0.0460 - - 
18   8 -0.2478 0.0066 -0.3150 0.0451 - - 
18 11 -0.2464 0.0097 -0.3266 0.0647 - - 
18 12 -0.2548 0.0079 -0.3676 0.0439 - - 
19   1 -0.2417 0.0052 -0.2436 0.0590 - - 
19   2 -0.2384 0.0192 -0.1424 0.2398 - - 
19   3 -0.2401 0.0076 -0.2469 0.0458 - - 
19   4 -0.2450 0.0085 -0.2568 0.0487 - - 
19   5 -0.2450 0.0079 -0.2612 0.0493 - - 
19   6 -0.2481 0.0075 -0.3349 0.0452 - - 
19   7 -0.2492 0.0080 -0.3155 0.0494 - - 
19   8 -0.2479 0.0096 -0.3302 0.0484 - - 
19   9 -0.2428 0.0085 -0.3147 0.0545 - - 
19 10 -0.2467 0.0085 -0.3610 0.0617 - - 
19 11 -0.2441 0.0086 -0.3298 0.0658 - - 
19 12 -0.2481 0.0076 -0.3539 0.0606 - - 

 
 
Appendix II: On scaling characteristics of NDVI and DEM data sets 
 
The first four moments of the detail wavelet coefficients from seven levels of 

decomposition in the horizontal, vertical and diagonal directions which were used to 

analyze the scaling characteristics of the NDVI data sets and DEM are presented in 

Table 7.2. The logarithms of these four moments are also presented in Table 7.3.  A “-” 

in the table indicates that the value is non available. This occurred when the estimate of 

a moment is ,0≤  in which case the logarithm was not defined. 
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Table 7.2  The first four moments of wavelet coefficients at seven levels of decomposition in the horizontal, vertical and diagonal directions 
 

thq order moment 
Horizontal details Vertical details Diagonal details D

at
a Resolution

(m) 
1 2 3 4 1 2 3 4 1 2 3 4 

30 - - - - - - - - - - - - 
60 0.0000 0.0000 -0.8431 80.4664 0.0000 0.0000 0.0432 29.7705 0.0000 0.0000 -0.0372 92.266 

120 0.0000 0.0001 0.5394 33.5541 0.0000 0.0001 0.8265 44.0771 0.0000 0.0000 0.0796 18.907 
240 0.0001 0.0004 1.3662 35.5691 -0.0004 0.0005 0.6585 31.8551 0.0001 0.0002 1.1922 41.529 
480 0.0012 0.0017 1.0858 15.1061 -0.0004 0.0018 0.6741 16.1544 -0.0001 0.0009 0.2344 11.512 
960 0.0000 0.0063 1.0650  11.5842 -0.0044 0.0046 -0.3753 1.6785 0.0010 0.0027 0.4482 5.105 

1920 -0.0056 0.0174 -1.0602 5.9069 -0.0122 0.0161 0.0474 1.5382 0.0019 0.0082 -0.0664 0.711 

N
D

V
I8

4 

3840 -0.0425 0.0734 -0.8053 1.9594 -0.0415 0.0807 1.3583 6.3947 -0.0437 0.0268 -0.2201 -0.162 
 

30 - - - - - - - - - - - - 
60 0.0000 0.0010 -0.0399 9.2045 0.0000 0.0011 -0.0052 12.2797 0.0000 0.0005 0.0362 4.439 

120 0.0000 0.0055 0.2999 18.4721 -0.0001 0.0071 0.2228 26.4820 0.0001 0.0022 -0.0872 9.309 
240 0.0009 0.0295 1.0829 25.4590 -0.0024 0.0405 0.5128 30.8400 -0.0003 0.0144 0.1183 23.080 
480 -0.0026 0.1314 0.8433 13.9811 -0.0062 0.1533 0.8728 17.8816 -0.0034 0.0643 -0.0986 11.249 
960 0.0163 0.5217 1.1039 20.3756 -0.0043 0.4264 0.0257 2.3681 0.0177 0.2479 0.0282 5.782 

1920 0.0140 2.0587 -1.4624 12.9355 -0.0542 1.4433 -0.2372 1.0409 -0.0230 0.7361 0.8111 6.152 

N
D

V
I9

9 

3840 -0.6465 8.8370 -3.1858 14.3730 0.3840 5.9187 1.4200 3.9310 -0.2150 2.5122 -0.1906 0.224 
 

      90 - - - - - - - - - - - - 
    180 -0.042 4 -7.6908 146.727 0.03 5 5.0155 268.544 -0.0002 1.2 -0.2565 10.011 
    360 0.070 8 1.8655 18.665 -0.09 9 -1.7624 41.662 0.0102 3.4  0.1817 4.704 
    720 0.534 122 4.5465 48.760 -0.42 181 -1.0587 95.526 0.0121 13.1  0.0043 2.427 
  1440 1.744 1551 1.2958 17.878 -1.43 2421 1.1301 43.453 -0.0315 235.5 -0.6217 5.403 
  2880 6.079 13581 0.2169 1.857 -4.42 18149 -0.0841 3.811 0.9600 3442.0  0.7655 6.720 
  5760 -6.503 93114 -0.0435 0.186 -12.20 130125 0.4712 3.543 -3.6649 25577.1  0.0282 0.395 

D
EM

 

11520 -18.646 875407 -0.0043 -0.272 -135.28 1067996 -0.2130 0.477 -28.950 152692.7  0.5913 0.591 
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Table 7.3  Logarithm of the first four moments of wavelet coefficients at seven levels of decomposition in the horizontal, vertical and 
diagonal directions 

 

Logarithm of the thq order moment 
Horizontal details Vertical details Diagonal details D

at
a Resolution

(m) 
1 2 3 4 1 2 3 4 1 2 3 4 

1.4771 - - - - - - - - - - - - 
1.7782 - - - 1.9056 - - -1.3645 1.4738 - - - 1.9650 
2.0792 - -4.0000 -0.2681 1.5258 - -4.0000 -0.0828 1.6442 - - -1.0991 1.2766 
2.3802 -4.0000 -3.3979  0.1355 1.5511 - -3.3010 -0.1814 1.5032 -4.0000 -3.6990 0.0764 1.6183 
2.6812 -2.9208 -2.7696  0.0358 1.1792 - -2.7447 -0.1713 1.2083 - -3.0458 -0.6300 1.0612 
2.9823 - -2.2007 0.0273 1.0639 - -2.3372 - 0.2249 -3.0000 -2.5686 -0.3485 0.7080 
3.2833 - -1.7595 - 0.7714 - -1.7932 -1.3242 0.1870 -2.7212 -2.0862 - -0.1484 

N
D

V
I8

4 

3.5843 - -1.1343 - 0.2921 - -1.0931 0.1330 0.8058 - -1.5719 - - 
 

1.4771 - - - - - - - - - - - - 
1.7782 - -3.0000 - 0.9640 - -2.9586 - 1.0892 - -3.3010 -1.4413 0.6473 
2.0792 - -2.2596 -0.5230 1.2665 - -2.1487 -0.6521 1.4230 -4.0000 -2.6576 - 0.9689 
2.3802 -3.0458 -1.5302  0.0346 1.4058 - -1.3925 -0.2901 1.4891 - -1.8416 0.9270 1.3632 
2.6812 - -0.8814 -0.0740 1.1455 - -0.8145 -0.0591 1.2524 - -1.1918 - 1.0511 
2.9823 -1.7878 -0.2826  0.0429 1.3091 - -0.3702 -1.5901 0.3744 -1.7502 -0.6057 -1.5498 0.7621 
3.2833 -1.8539  0.3136 - 1.1118 -  0.1594 - 0.0174 - -0.1331 -0.0909 0.7890 

N
D

V
I9

9 

3.5843 -  0.9463 - 1.1576 -0.4157  0.7722 0.1523 0.5945 - 0.4001 - -0.6492 
 

1.9542 - - - - - - - - - - - - 
2.2553 - 0.5911 - 2.1665 -1.4802 0.7160 0.7003 2.4290 - 0.0792 - 1.0005 
2.5563 -1.1530 0.8808 0.2708 1.2710 - 0.9494 - 1.6197 -1.9914 0.5315 -0.7407 0.6725 
2.8573 -0.2728 2.0857 0.6577 1.6881 - 2.2574 - 1.9801 -1.9172 1.1173 -2.3665 0.3851 
3.1584 0.2415 3.1906 0.1125 1.2523 - 3.3841 0.0531 1.6380 - 2.3720 - 0.7326 
3.4594 0.7838 4.1329 -0.6637 0.2688 - 4.2588 - 0.5810 -0.0177 3.5368 -0.1161 0.8274 
3.7604 - 4.9690 - -0.7310 - 5.1144 -0.3268 0.5494 - 4.4079 -1.5498 -0.4037 

D
EM

 

4.0615 - 5.9422 - - - 6.0286 - -0.3219 - 5.1838 -0.2282 -0.2282 
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Appendix III: On indirect multiscale analysis of pattern metrics  
 

During the estimation of landscape metrics from maps with changing grain size, it was 

realized that the Grid Aggregate request in ArcView does not support the majority 

(mode) statistic. Therefore, the program below was written to invoke the majority 

statistic in the Map Calculator: 
 

[Mygrid].BlockStats(#GRID_STATYPE_MAJORITY, 

NbrHood.MakeRectangle(2,2,false),false)  
 

It was also observed that ArcView's implementation of the majority statistic could not 

resolve ties. Thus, for example, if two classes appeared twice each within an nn×  

block, the result was NoData.  To overcome this problem, a pyramid of grids was 

created by replacing the "2,2" in the Map Calculator expression by "3,3", "4,4", and so 

on. This resulted in a series of aggregated outputs with nn×  neighborhood sizes. The 

results were then patched together in the Map Calculator with an extended version of 

the expression  
 

[A2].IsNull.Con([A3].IsNull.Con([A4], [A3]), [A2]) 
 

in order to fix the NoData holes in the output data.  

 

 Estimates of the 18 landscape metrics from LULC84 maps with different 

grain sizes using the mean, median and mode aggregation methods are presented in 

Table 7.4; while those for LULC99 with the same three methods are summarized in 

Table 7.5. The estimates of the 18 landscape metrics of LULC84 maps with different 

extents clipped from each of the four corners are presented in Table 7.6; while those for 

LULC99 are presented in Table 7.7. 

. 
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Table 7.4  Estimates of 18 landscape metrics of LULC84 maps with different grain sizes using the mean, median and mode 
aggregation methods 

 

Estimates of landscape metrics with different aggregation methods 
Number of patches 

 (NP) 
Patch density  

(PD) 
Largest patch  index 

 (LPI) 
Landscape shape index  

(LSI) 
Grain size  

Mean Median Mode Mean Median Mode Mean Median Mode Mean Median Mode 
1 319837 319837 319837 56.78 56.78 56.78 13.05 13.05 13.05 257 257 257 
2 276287 90252 24247 49.05 16.02 4.30 7.07 15.58 15.12 247 141 162 
3 138627 42377 23783 24.61 7.52 4.22 8.28 14.20 15.11 175 99 90 
4 76499 24952 23631 13.60 4.44 4.19 7.87 15.33 14.79 136 77 74 
5 48862 16625 17028 8.69 2.96 3.02 8.17 14.33 15.15 109 64 64 
6 33456 12022 13474 5.94 2.13 2.39 7.76 15.41 15.30 93 54 58 
7 24331 9245 11177 4.33 1.65 1.99 8.30 15.34 14.89 80 48 53 
8 18384 7252 9702 3.29 1.29 1.73 8.19 15.68 14.58 71 43 50 
9 14462 5907 8319 2.57 1.05 1.48 8.11 15.48 15.17 63 39 46 
10 11297 4906 6934 2.01 0.87 1.23 7.99 15.64 15.70 57 35 44 
15 5003 2422 3968 0.89 0.43 0.70 8.45 15.87 14.01 39 25 33 
20 2811 1441 2550 0.50 0.26 0.45 6.49 16.61 15.06 30 19 27 
25 1671 985 1763 0.30 0.18 0.31 7.27 17.39 15.68 23 16 22 
30 1084 701 1351 0.19 0.13 0.24 13.71 22.78 15.79 19 14 20 
35 759 524 1025 0.14 0.10 0.18 15.91 23.33 16.42 16 12 17 
40 627 462 854 0.11 0.08 0.15 14.52 23.77 15.72 14 11 16 
45 410 353 623 0.07 0.06 0.11 17.66 21.87 16.89 12 10 15 
50 343 286 471 0.06 0.05 0.08 10.48 21.65 15.12 11 9 12 

 
 
 
 

 



Appendices 

138 

Table 7.4 (Continued) 
 

Estimates of landscape metrics with different aggregation methods 
Total edge  

(TE) 
Edge density  

(ED) 
Mean patch area  

(MPA) 
Patch area standard 
deviation  (PASD) 

Grain size  

Mean Median Mode Mean Median Mode Mean Median Mode Mean Median Mode 
1 76930860 76930860 76930860 136.57 136.57 136.57 2 2 2 200 200 200 
2 73951260 42053700 28184640 131.28 74.65 39.38 2 6 23 114 438 819 
3 52117920 29470860 24937590 92.52 52.32 38.94 4 13     24 176 607 827 
4 40327320 22791000 21783000 71.71 40.53 38.61 7 22 24 219 803 823 
5 32463150 18789300 18957750 57.70 33.40 33.64 12 34 33 303 980 990 
6 27600300 16033140 17034840 49.00 28.46 30.24 17 47 42 326 1238 1121 
7 23768010 14074410 15682170 42.30 25.05 27.84 23 61 50 396 1395 1205 
8 21018960 12524640 14594400 37.37 22.27 25.95 31 78 58 455 1624 1288 
9 18672660 11303010 13583970 33.20 20.10 24.15 39 95 68 508 1855 1407 
10 16826400 10305000 12456000 29.91 18.32 22.14 50 115 81 572 2030 1532 
15 11363400 7226550 9495000 20.23 12.87 16.82 112 232 142 947 3000 1949 
20 8522400 5482800 7653600 15.27 9.83 13.49 199 387 222 1224 4144 2366 
25 6661500 4494000 6378000 11.94 8.05 11.34 334 567 319 1866 5009 3029 
30 5371200 3753000 5562900 9.61 6.71 9.86 516 797 418 3112 6766 3371 
35 4441500 3243450 4796400 8.03 5.87 8.58 729 1055 546 4106 7838 4019 
40 4014000 2976000 4360800 7.24 5.37 7.77 884 1200 658 4392 8481 4147 
45 3291300 2542050 3819635 5.95 4.59 6.46 1350 1568 785 6638 9419 4571 
50 3003000 2299500 3472432 5.38 4.12 5.92 1627 1951 914 6026 10712 5523 
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Table 7.4 (Continued) 
 

Estimates of landscape metrics with different aggregation methods 
Patch area coefficient of 

variation (PACV) 
Area-weighted mean shape 

index (AWMSI) 
Area-weighted mean fractal 
dimension index (AWMFDI) 

Mean shape index  
(MSI) 

Grain size  

Mean Median Mode Mean Median Mode Mean Median Mode Mean Median Mode 
1 11337 11337 11337 33.49 33.49 33.49 1.302 1.302 1.302 1.109 1.109 1.109 
2 5596 7013 3526 10.53 22.68 12.89 1.178 1.262 1.222 1.074 1.112 1.137 
3 4327 4564 3490 8.48 16.19 12.67 1.158 1.236 1.220 1.066 1.117 1.129 
4 2977 3564 3447 6.50 12.99 12.37 1.141 1.219 1.218 1.079 1.121 1.119 
5 2631 2895 2992 6.08 10.79 11.35 1.135 1.203 1.206 1.082 1.125 1.120 
6 1937 2642 2682 4.81 10.22 10.46 1.124 1.197 1.198 1.091 1.125 1.113 
7 1714 2295 2391 4.51 9.02 9.35 1.119 1.187 1.187 1.096 1.126 1.114 
8 1486 2094 2222 4.26 8.40 8.72 1.117 1.181 1.180 1.101 1.126 1.109 
9 1307 1949 2081 3.89 8.05 8.19 1.113 1.177 1.173 1.103 1.125 1.108 
10 1149 1770 1888 3.74 7.30 7.59 1.111 1.168 1.168 1.111 1.124 1.106 
15 843 1293 1370 3.41 5.65 5.71 1.104 1.149 1.143 1.116 1.126 1.097 
20 617 1070 1064 3.00 4.91 4.55 1.097 1.137 1.126 1.117 1.119 1.094 
25 559 884 949 3.06 4.11 4.32 1.099 1.123 1.118 1.127 1.118 1.092 
30 604 849 807 3.31 4.19 3.81 1.103 1.121 1.111 1.132 1.111 1.085 
35 564 743 737 3.25 3.82 3.51 1.100 1.114 1.103 1.131 1.116 1.086 
40 497 707 631 2.93 3.56 3.11 1.093 1.107 1.093 1.133 1.099 1.080 
45 492 601 527 3.17 3.02 2.72 1.100 1.096 1.092 1.151 1.102 1.083 
50 371 549 426 2.61 2.82 2.34 1.089 1.093 1.094 1.154 1.109 1.091 
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Table 7.4 (Continued) 
 

Estimates of landscape metrics with different aggregation methods 
Total area 

(TA) 
Mean fractal dimension 

index (MFDI) 
Contagion 
(CONTAG) 

Patch richness 
(PR) 

Grain size  

Mean Median Mode Mean Median Mode Mean Median Mode Mean Median Mode 
1 563323 563323 563323 1.0221 1.0221 1.0221 40.36 40.36 40.36 6.000 6.000 6.000 
2 563323 563323 563323 1.0157 1.0193 1.0179 19.48 39.13 46.81 6.000 6.000 6.000 
3 563323 563323 563323 1.0140 1.0183 1.0212 20.58 38.20 42.41 6.000 6.000 6.000 
4 562401 562401 564245 1.0148 1.0176 1.0168 19.56 37.71 38.71 6.000 6.000 6.000 
5 562599 562599 563504 1.0148 1.0175 1.0167 20.33 37.24 37.43 6.000 6.000 6.000 
6 563323 563323 563323 1.0153 1.0171 1.0159 20.21 36.85 36.26 6.000 6.000 6.000 
7 561958 561958 563223 1.0157 1.0168 1.0156 20.74 36.44 35.15 6.000 6.000 6.000 
8 562401 562401 562401 1.0158 1.0166 1.0145 20.79 36.21 34.17 6.000 6.000 6.000 
9 562482 562482 562482 1.0156 1.0162 1.0142 21.23 36.01 33.44 6.000 6.000 6.000 
10 562599 562599 562599 1.0164 1.0162 1.0139 21.38 35.81 33.16 6.000 6.000 6.000 
15 561695 561695 564408 1.0156 1.0153 1.0124 22.46 35.09 30.85 6.000 6.000 6.000 
20 558000 558000 567216 1.0151 1.0141 1.0117 23.34 34.82 29.65 6.000 6.000 6.000 
25 558000 558000 562500 1.0151 1.0140 1.0113 24.64 34.91 28.86 6.000 6.000 6.000 
30 558981 558981 564408 1.0150 1.0129 1.0101 25.76 34.83 28.18 6.000 6.000 6.000 
35 553014 553014 559298 1.0147 1.0130 1.0102 27.06 34.41 27.91 6.000 6.000 6.000 
40 554400 554400 561600 1.0147 1.0116 1.0096 26.69 34.11 27.04 6.000 6.000 6.000 
45 553311 553311 565886 1.0162 1.0117 1.0093 29.00 34.49 29.28 6.000 6.000 6.000 
50 558000 558000 558000 1.0155 1.0119 1.0085 29.30 34.45 30.25 6.000 6.000 6.000 
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Table 7.4 (Continued) 
 

Estimates of landscape metrics with different aggregation methods 
Patch richness density  

(PRD) 
Shannon’s diversity index  

(SHDI) 
Grain size 

Mean Median Mode Mean Median Mode 
1 0.0011 0.0011 0.0011 1.4369 1.4369 1.4369 
2 0.0011 0.0011 0.0011 1.7494 1.4304 1.4260 
3 0.0011 0.0011 0.0011 1.6959 1.4339 1.4261 
4 0.0011 0.0011 0.0011 1.7144 1.4325 1.4258 
5 0.0011 0.0011 0.0011 1.6965 1.4326 1.4264 
6 0.0011 0.0011 0.0011 1.6959 1.4331 1.4256 
7 0.0011 0.0011 0.0011 1.6836 1.4326 1.4260 
8 0.0011 0.0011 0.0011 1.6817 1.4324 1.4260 
9 0.0011 0.0011 0.0011 1.6725 1.4312 1.4257 
10 0.0011 0.0011 0.0011 1.6701 1.4321 1.4253 
15 0.0011 0.0011 0.0011 1.6424 1.4289 1.4290 
20 0.0011 0.0011 0.0011 1.6201 1.4282 1.4283 
25 0.0011 0.0011 0.0011 1.5984 1.4177 1.4262 
30 0.0011 0.0011 0.0011 1.5780 1.4171 1.4258 
35 0.0011 0.0011 0.0011 1.5582 1.4186 1.4269 
40 0.0011 0.0011 0.0011 1.5582 1.4109 1.4302 
45 0.0011 0.0011 0.0011 1.5295 1.4111 1.4261 
50 0.0011 0.0011 0.0011 1.5203 1.4131 1.4313 
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Table 7.5 Estimates of 18 landscape metrics of LULC99 maps with different grain sizes using the mean, median and mode aggregation 
methods 

 

Estimates of landscape metrics with different aggregation methods 
Number of patches 

 (NP) 
Patch density  

(PD) 
Largest patch index 

 (LPI) 
Landscape shape index  

(LSI) 
Grain size  
 

Mean Median Mode Mean Median Mode Mean Median Mode Mean Median Mode 
1 374752 374752 374752 66.53 66.53 66.53 25.91 25.91 25.91 272 272 272 
2 222319 98614 26813 39.47 17.51 4.76 14.09 30.75 29.49 219 142 77 
3 97427 46681 26271 17.30 8.29 4.66 17.57 29.48 29.36 149 102 76 
4 53902 28124 26124 9.58 5.00 4.63 14.22 28.43 29.19 116 79 75 
5 33462 19020 18635 5.95 3.38 3.31 14.43 30.34 31.57 92 66 65 
6 22726 13979 14691 4.03 2.48 2.61 15.36 31.09 31.47 78 56 59 
7 16197 10559 12117 2.88 1.88 2.15 17.03 28.74 31.36 67 49 54 
8 12339 8529 10485 2.19 1.52 1.86 13.76 31.80 30.37 59 44 50 
9 9336 6962 9030 1.66 1.24 1.61 12.09 29.49 31.53 52 40 47 
10 7427 5770 7806 1.32 1.03 1.39 16.53 30.67 31.50 47 37 43 
15 3180 2931 4282 0.56 0.52 0.76 17.31 32.20 31.37 32 26 33 
20 1715 1737 2796 0.31 0.31 0.49 21.00 33.04 30.62 24 20 27 
25 1058 1133 1944 0.19 0.20 0.35 24.38 32.62 31.55 19 16 22 
30 698 845 1480 0.13 0.15 0.26 27.97 34.08 32.15 16 14 20 
35 474 598 1089 0.09 0.11 0.20 29.55 34.15 31.97 13 12 17 
40 357 462 874 0.06 0.08 0.16 28.36 34.39 30.62 11 10 15 
45 297 379 682 0.05 0.07 0.11 27.04 34.25 29.24 10 10 14 
50 217 310 546 0.04 0.06 0.10 31.90 35.20 29.89 9 9 12 
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Table 7.5 (Continued) 

Estimates of landscape metrics with different aggregation methods 
Total edge  

(TE) 
Edge density  

(ED) 
Mean patch area  

(MPA) 
Patch area standard deviation  

(PASD) 
Grain 
 size 

Mean Median Mode Mean Median Mode Mean Median Mode Mean Median Mode 
1 81224070 81224070 81224070 144.19 144.19 144.19 2 2 2 257 257 257 
2 65298840 42334980 22784460 115.92 75.15 40.45 3 6 21 213 596 1101 
3 44439930 30168900 22561920 78.89 53.56 40.05 6 12 21 360 826 1108 
4 34331040 23367960 22341120 61.04 41.55 39.60 10 20 22 424 1040 1109 
5 27354000 19393500 19284900 48.62 34.47 34.22 17 30 30 552 1336 1397 
6 23181300 16625340 17316360 41.15 29.51 30.74 25 40 38 695 1596 1566 
7 19671330 14490000 15854580 35.01 25.79 28.15 35 53 47 883 1723 1722 
8 17403840 12994080 14712480 30.95 23.11 26.16 46 66 54 908 2087 1797 
9 15335460 11761200 13706010 27.26 20.91 24.37 60 81 62 949 2180 1995 
10 13857900 10744800 12727800 24.63 19.10 22.62 76 98 72 1338 2478 2137 
15 9263250 7570350 9517500 16.49 13.48 16.86 177 192 132 2404 3617 2824 
20 6834000 5711400 7765200 12.25 10.24 13.69 325 321 203 3819 4836 3455 
25 5355000 4581000 6392250 9.60 8.21 11.36 527 493 289 5203 5982 4280 
30 4401000 3881700 5561100 7.87 6.94 9.85 801 662 381 7090 7167 4976 
35 3631950 3255000 4704000 6.57 5.89 8.41 1167 925 514 8784 8334 5648 
40 3112800 2817600 4246800 5.62 5.08 7.56 1553 1200 643 10066 9640 6101 
45 2781000 2542050 4045280 5.03 4.59 6.44 1863 1460 722 10458 10991 6603 
50 2451000 2247000 3769499 4.39 4.03 5.30 2571 1800 798 13839 12273 7228 
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Table 7.5 (Continued) 

Estimates of landscape metrics with different aggregation methods 
Patch area coefficient of 

variation (PACV) 
Area-weighted mean shape 

index (AWMSI) 
Area-weighted mean fractal 
dimension index (AWMFDI) 

Mean shape index  
(MSI) 

Grain size  

Mean Median Mode Mean Median Mode Mean Median Mode Mean Median Mode 
1 17119 17119 17119 36.16 36.16 36.16 1.300 1.300 1.300 1.104 1.104 1.1041 
2 8386 10430 5243 14.53 23.22 14.29 1.200 1.250 1.223 1.085 1.118 1.1348 
3 6222 6841 5169 11.34 17.26 14.02 1.180 1.232 1.221 1.096 1.117 1.1280 
4 4065 5202 5134 8.60 12.90 13.80 1.170 1.209 1.219 1.110 1.121 1.1145 
5 3285 4516 4619 7.92 11.85 13.04 1.160 1.201 1.209 1.112 1.121 1.1155 
6 2806 3961 4085 7.30 10.47 11.80 1.160 1.191 1.199 1.122 1.120 1.1112 
7 2544 3238 3706 7.25 8.80 11.04 1.160 1.180 1.191 1.121 1.119 1.1087 
8 1992 3165 3350 6.36 8.76 9.74 1.150 1.177 1.182 1.125 1.117 1.1040 
9 1575 2699 3203 5.88 7.70 9.55 1.150 1.170 1.178 1.130 1.115 1.0998 
10 1767 2541 2965 6.66 7.29 8.79 1.154 1.164 1.170 1.133 1.120 1.0969 
15 1361 1887 2142 6.46 5.56 6.42 1.147 1.143 1.144 1.140 1.112 1.0926 
20 1174 1506 1703 6.38 4.83 5.52 1.148 1.135 1.132 1.140 1.100 1.0850 
25 987 1215 1479 5.72 4.09 4.89 1.141 1.123 1.121 1.139 1.106 1.0802 
30 885 1083 1305 5.52 3.64 4.44 1.141 1.113 1.113 1.150 1.099 1.0753 
35 753 901 1100 4.99 3.19 3.68 1.135 1.104 1.101 1.162 1.105 1.0765 
40 648 803 949 4.29 2.96 3.26 1.126 1.097 1.093 1.166 1.098 1.0789 
45 561 753 873 3.70 3.00 2.98 1.115 1.098 1.090 1.161 1.097 1.0702 
50 538 682 790 3.77 2.63 2.57 1.118 1.088 1.088 1.186 1.094 1.0675 
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Table 7.5 (Continued) 

Estimates of landscape metrics with different aggregation methods 
Total area 

(TA) 
Mean fractal dimension 

index (MFDI) 
Contagion 
(CONTAG) 

Patch richness 
(PR) 

Grain size  

Mean Median Mode Mean Median Mode Mean Median Mode Mean Median Mode 
1 563323 563323 563323 1.0208 1.0208 1.0208 41.63   41.63 41.63 6.000 6.000 6.000 
2 563323 563323 563323 1.0175 1.0201 1.0180 33.57 40.87 48.73 6.000 6.000 6.000 
3 563323 563323 563323 1.0178 1.0185 1.0212 33.96 39.67 44.32 6.000 6.000 6.000 
4 562401 562401 564245 1.0186 1.0180 1.0166 34.04 39.13 40.66 6.000 6.000 6.000 
5 562599 562599 563504 1.0180 1.0173 1.0165 34.83 38.55 39.50 6.000 6.000 6.000 
6 563323 563323 563323 1.0184 1.0168 1.0160 35.10 38.08 38.38 6.000 6.000 6.000 
7 561958 561958 563223 1.0176 1.0165 1.0153 35.91 37.86 37.39 6.000 6.000 6.000 
8 562401 562401 562401 1.0175 1.0159 1.0143 36.21 37.52 36.46 6.000 6.000 6.000 
9 562482 562482 562482 1.0176 1.0154 1.0137 36.92 37.23 35.78 6.000 6.000 6.000 
10 562599 562599 562599 1.0178 1.0157 1.0134 37.22 37.03 35.27 6.000 6.000 6.000 
15 561695 561695 564408 1.0173 1.0142 1.0124 38.94 36.43 33.47 6.000 6.000 6.000 
20 558000 558000 567216 1.0160 1.0127 1.0111 40.18 36.59 32.25 6.000 6.000 6.000 
25 558000 558000 562500 1.0151 1.0125 1.0105 41.47 36.65 31.77 6.000 6.000 6.000 
30 558981 558981 564408 1.0148 1.0117 1.0095 42.61 36.63 31.15 6.000 6.000 6.000 
35 553014 553014 559298 1.0152 1.0121 1.0099 43.57 37.10 31.38 6.000 6.000 6.000 
40 554400 554400 561600 1.0153 1.0113 1.0100 44.27 37.04 30.46 6.000 6.000 6.000 
45 553311 553311 565886 1.0146 1.0108 1.0095 38.55 36.99 30.17 5.000 6.000 6.000 
50 558000 558000 558000 1.0159 1.0107 1.0089 39.53 37.40 29.30 5.000 6.000 6.000 
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Table 7.5 (Continued) 

Estimates of landscape metrics with different aggregation methods 
Patch richness density  

(PRD) 
Shannon’s diversity index  

(SHDI) 
Grain size  

Mean Median Mode Mean Median Mode 
1 0.0011 0.0011 0.0011 1.3689 1.3689 1.3689 
2 0.0011 0.0011 0.0011 1.4241 1.3643 1.3498 
3 0.0011 0.0011 0.0011 1.4110 1.3711 1.3495 
4 0.0011 0.0011 0.0011 1.4040 1.3696 1.3497 
5 0.0011 0.0011 0.0011 1.3847 1.3707 1.3505 
6 0.0011 0.0011 0.0011 1.3753 1.3713 1.3502 
7 0.0011 0.0011 0.0011 1.3577 1.3707 1.3498 
8 0.0011 0.0011 0.0011 1.3484 1.3700 1.3496 
9 0.0011 0.0011 0.0011 1.3327 1.3711 1.3476 
10 0.0011 0.0011 0.0011 1.3245 1.3707 1.3493 
15 0.0011 0.0011 0.0011 1.2807 1.3650 1.3509 
20 0.0011 0.0011 0.0011 1.2504 1.3580 1.3498 
25 0.0011 0.0011 0.0011 1.2241 1.3549 1.3508 
30 0.0011 0.0011 0.0011 1.1990 1.3481 1.3454 
35 0.0011 0.0011 0.0011 1.1842 1.3431 1.3428 
40 0.0011 0.0011 0.0011 1.1657 1.3423 1.3546 
45 0.0009 0.0011 0.0011 1.1575 1.3423 1.3467 
50 0.0009 0.0011 0.0011 1.1467 1.3379 1.3438 
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Table 7.6  Estimates of 18 landscape metrics of LULC84 maps with different extent clipped from each of the four corners 
 

Number of patches  (NP) Patch density (PD) Largest patch index (LPI) Area 
( 2km ) SW-NE SE-NW NW-SE NE-SW SW-NE SE-NW NW-SE NE-SW SW-NE SE-NW NW-SE NE-SW 

56 3424 1603 4486 4913 61 29 80 87 52 35 23 7 
225 13411 9096 17041 17067 60 40 76 76 16 17 7 9 
507 31478 19771 30175 37769 62 39 60 75 9 14 29 7 
902 54148 38356 50922 62971 60 43 57 70 19 19 34 12 
1408 82294 68184 81309 88661 58 48 58 63 18 23 35 19 
2028 121077 99423 116832 123005 60 49 58 61 15 25 29 21 
2761 159972 141842 164041 165050 58 51 59 60 17 21 25 20 
3605 197525 188252 216442 211428 55 52 60 59 17 16 20 17 
5633 319837 319837 319837 319837 57 57 57 57 13 13 13 13 

 
Table 7.6 (Continued) 

Landscape shape index (LSI) Total edge (TE) Edge density (ED)  Area 
( 2km ) SW-NE SE-NW NW-SE NE-SW SW-NE SE-NW NW-SE NE-SW SW-NE SE-NW NW-SE NE-SW 

56 25 18 33 37 720930 521790 974070 1088250 128 93 173 193 
225 52 44 65 66 3028650 2552250 3841050 3924120 134 113 170 174 
507 80 62 80 99 7110450 5527140 7113390 8853540 140 109 140 175 
902 105 86 103 125 12483390 10151520 12290100 14866260 139 113 136 165 
1408 129 113 131 143 19143540 16855320 19589880 21310020 136 120 139 151 
2028 157 136 159 165 28068180 24248730 28452660 29540700 138 120 140 145 
2761 181 164 189 188 37774020 34293360 39479490 39329880 137 124 143 143 
3605 198 191 217 212 47341680 45500370 51820950 50545290 131 126 144 140 
5633 257 257 257 257 76930860 76930860 76930860 76930860 137 137 137 137 
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Table 7.6 (Continued) 

Mean Patch area (MPA) Patch area standard deviation (PASD) Patch area coeff of variation (PACV) Area 
( 2km ) SW-NE SE-NW NW-SE NE-SW SW-NE SE-NW NW-SE NE-SW SW-NE SE-NW NW-SE NE-SW 

56 1.6412 3.5097 1.2541 1.1451 51 63 21 11 3115 1781 1680 973
225 1.6807 2.4780 1.3227 1.3207 47 58 22 26 2767 2322 1672 1995
507 1.6103 2.5638 1.6798 1.3421 49 85 87 31 3012 3326 5199 2303
902 1.6651 2.3506 1.7706 1.4318 84 126 139 61 5038 5353 7846 4238
1408 1.7113 2.0655 1.732 1.5884 104 179 173 121 6100 8665 9960 7621
2028 1.6746 2.0393 1.7354 1.6483 107 208 178 162 6358 10188 10238 9826
2761 1.7256 1.9462 1.6828 1.6725 150 213 180 185 8678 10948 10679 11064
3605 1.8251 1.915 1.6656 1.7051 196 222 174 192 10742 11584 10421 11259
5633 1.7613 1.7613 1.7613 1.7613 200 200 200 200 11337 11337 11337 11337

 
Table 7.6 (Continued) 

Mean patch area 
(MPA) 

Area-weighted mean shape index 
(AWMSI) 

Area-weighted mean fractal 
dimension index (AWMFDI) Area 

( 2km ) SW-NE SE-NW NW-SE NE-SW SW-NE SE-NW NW-SE NE-SW SW-NE SE-NW NW-SE NE-SW 
56 5626 5626 5626 5626 11 9 7 5 1.252 1.259 1.2149 1.2047 
225 22540 22540 22540 22540 10 11 8 9 1.2489 1.26 1.232 1.2386 
507 50688 50688 50688 50688 11 15 14 10 1.2597 1.2828 1.2665 1.2429 
902 90161 90161 90161 90161 17 21 21 15 1.2754 1.3009 1.2828 1.2623 
1408 140831 140831 140831 140831 20 30 27 24 1.2848 1.3133 1.2886 1.286 
2028 202753 202753 202753 202753 20 34 28 30 1.2848 1.3173 1.2931 1.2963 
2761 276053 276053 276053 276053 28 36 31 33 1.3011 1.3184 1.2965 1.3002 
3605 360497 360498 360498 360498 34 38 30 34 1.3105 1.3179 1.2951 1.3016 
5633 563323 563323 563323 563323 34 34 34 34 1.3024 1.3024 1.3024 1.3024 
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Table 7.6 (Continued) 

Mean shape index (MSI) Mean fractal dimension index (MFDI) Contagion (CONTAG) Area 
( 2km ) SW-NE SE-NW NW-SE NE-SW SW-NE SE-NW NW-SE NE-SW SW-NE SE-NW NW-SE NE-SW 

56 1.1015 1.119 1.1202 1.1348 1.0212 1.0216 1.023 1.0248 50 67 36 38 
225 1.1094 1.1184 1.1145 1.1241 1.0215 1.0222 1.0219 1.0237 44 63 38 39 
507 1.1055 1.1065 1.1135 1.1276 1.0208 1.0209 1.0223 1.0242 45 61 42 40 
902 1.1057 1.1008 1.1144 1.123 1.0211 1.0206 1.0227 1.0238 45 60 44 40 
1408 1.1046 1.0987 1.1158 1.1189 1.021 1.0206 1.0231 1.0235 45 54 44 43 
2028 1.1043 1.0981 1.1149 1.1168 1.021 1.0207 1.0229 1.0234 43 49 43 43 
2761 1.1035 1.1008 1.1121 1.1135 1.0212 1.0212 1.0225 1.0229 41 45 42 42 
3605 1.1041 1.1031 1.1118 1.1115 1.0215 1.0215 1.0224 1.0226 41 43 40 41 
5633 1.1091 1.1091 1.1091 1.1091 1.0221 1.0221 1.0221 1.0221 40 40 40 40 

 
Table 7.6 (Continued) 

Patch richness density (PRD) Shannon’s diversity index (SHDI) Patch richness (PR) Area 
( 2km ) SW-NE SE-NW NW-SE NE-SW SW-NE SE-NW NW-SE NE-SW SW-NE SE-NW NW-SE NE-SW 

56 0.1066 0.1066 0.1066 0.1066 1.1744 0.7541 1.4394 1.3385 6 6 6 6 
225 0.0266 0.0266 0.0266 0.0266 1.3182 0.8941 1.4165 1.3696 6 6 6 6 
507 0.0118 0.0118 0.0118 0.0118 1.2861 0.8903 1.3635 1.3477 6 6 6 6 
902 0.0067 0.0067 0.0067 0.0067 1.2728 0.9142 1.3215 1.3537 6 6 6 6 
1408 0.0043 0.0043 0.0043 0.0043 1.281 1.0631 1.3261 1.3228 6 6 6 6 
2028 0.003 0.003 0.003 0.003 1.3572 1.2088 1.3439 1.3267 6 6 6 6 
2761 0.0022 0.0022 0.0022 0.0022 1.4197 1.3277 1.3777 1.3667 6 6 6 6 
3605 0.0017 0.0017 0.0017 0.0017 1.4331 1.392 1.4221 1.4103 6 6 6 6 
5633 0.0011 0.0011 0.0011 0.0011 1.4369 1.4369 1.4369 1.4369 6 6 6 6 
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Table 7.7  Estimates of 18 landscape metrics of LULC99 with different extents clipped from each of the four corners 
 

Number of patches (NP) Patch density (PD) Largest patch index (LPI) Area 
)km( 2  SW-NE SE-NW NW-SE NE-SW SW-NE SE-NW NW-SE NE-SW SW-NE SE-NW NW-SE NE-SW 

56 5118 2903 4578 4208 91 52 81 75 22 71 25 23 
225 18329 17045 15968 15259 81 76 71 68 8 60 16 25 
507 42660 37223 27514 33588 84 73 54 66 7 58 47 21 
902 74288 71369 44430 57114 82 79 49 63 4 48 56 34 
1408 106630 113215 70029 85542 76 80 50 61 6 34 56 40 
2028 148470 153569 101889 122618 73 76 50 61 9 27 50 39 
2761 193415 196303 151555 165792 70 71 55 60 22 20 47 36 
3605 236647 242544 215503 221925 66 67 60 62 28 23 39 34 
5633 374752 374752 374752 374752 67 67 67 67 30 30 30 30 

 
Table 7.7 (Continued) 

Landscape shape index (LSI) Total edge (TE) Edge density (ED) Area 
)km( 2  SW-NE SE-NW NW-SE NE-SW SW-NE SE-NW NW-SE NE-SW SW-NE SE-NW NW-SE NE-SW 

56 34 21 31 34 997980     601680 905760 983100 177 107 161 175 
225 66 57 57 58 3835440 3382320 3362700 3455700 170 150 149 153 
507 99 82 66 85 8825400 7334220 5817030 7570890 174 145 115 149 
902 132 118 80 109 15714420 14144490 9536070 12994860 174 157 106 144 
1408 154 156 103 132 22990170 23235870 15317400 19644480 163 164 109 140 
2028 179 180 129 158 32029050 32328540 23013000 28339470 158 159 114 140 
2761 199 201 164 182 41574090 42083820 34260720 38024250 151 152 124 138 
3605 215 220 202 209 51412650 52541160 48178200 49854600 143 148 134 138 
5633 271 271 271 271 81224070 81224070 81224070 81224070 144 144 144 144 



Appendices 

151 

Table 7.7 (Continued) 

Mean patch area (MPA) Patch area standard deviation (PASD) Patch area coeff of variation (PACV) Area 
)km( 2  SW-NE SE-NW NW-SE NE-SW SW-NE SE-NW NW-SE NE-SW SW-NE SE-NW NW-SE NE-SW 

56 1.0993 1.938 1.2289 1.3370 20 74 27 25 1786 3820 2179 1682 
225 1.2298 1.3224 1.4116 1.4772 22 104 35 52 1764 7897 2442 3539 
507 1.1882 1.3617 1.8423 1.5091 26 151 146 82 2153 11124 7912 5454 
902 1.2137 1.2633 2.0293 1.5786 24 164 240 138 2004 12961 11814 8741 
1408 1.3207 1.2439 2.011 1.6463 43 145 297 195 3282 11688 14779 11855 
2028 1.3656 1.3203 1.9899 1.6535 64 145 318 229 4670 10966 15989 13853 
2761 1.4273 1.4063 1.8215 1.6651 146 165 333 251 10222 11755 18280 15042 
3605 1.5234 1.4863 1.6728 1.6244 212 203 306 263 13903 13685 18307 16176 
5633 1.5032 1.5032 1.5032 1.5032 257 257 257 257 17119 17119 17119 17119 

 
Table 7.7 (Continued) 

Total area 
(TA) 

Area-weighted mean shape index 
(AWMSI) 

Area-weighted mean fractal 
dimension index (AWMFDI) Area 

)km( 2  SW-NE SE-NW NW-SE NE-SW SW-NE SE-NW NW-SE NE-SW SW-NE SE-NW NW-SE NE-SW 
56 5626 5626 5626 5626 7 11 7 8 1.2107 1.2607 1.2232 1.2313 
225 22540 22540 22540 22540 6 25 8 11 1.2110 1.2988 1.2261 1.2501 
507 50688 50688 50688 50688 8 31 15 16 1.2263 1.3088 1.2641 1.2717 
902 90161 90161 90161 90161 8 36 24 27 1.2291 1.3049 1.289 1.2972 
1408 140831 140831 140831 140831 10 32 30 33 1.2437 1.2962 1.2987 1.3056 
2028 202753 202753 202753 202753 13 30 34 36 1.2545 1.2939 1.3030 1.3084 
2761 276053 276053 276053 276053 22 31 40 36 1.2753 1.2986 1.3075 1.3060 
3605 360498 360498 360498 360498 28 34 38 36 1.2890 1.3011 1.300 1.3026 
5633 563323 563323 563323 563323 36 36 36 36 1.2972 1.2972 1.2972 1.2972 
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Table 7.7 (Continued) 

Mean shape index (MSI) Mean fractal dimension index (MFDI) Contagion (CONTAG) Area 
)km( 2  SW-NE SE-NW NW-SE NE-SW SW-NE SE-NW NW-SE NE-SW SW-NE SE-NW NW-SE NE-SW 

56 1.1115 1.0967 1.1073 1.1296 1.0222 1.0191 1.0215 1.0239 37 63 41 38 
225 1.1240 1.0946 1.1108 1.1208 1.0236 1.0194 1.0216 1.0229 37 55 44 49 
507 1.1153 1.0902 1.1074 1.1146 1.0222 1.0187 1.0215 1.0223 36 55 52 51 
902 1.1154 1.0931 1.1052 1.1083 1.0218 1.0190 1.0215 1.0218 37 51 55 49 
1408 1.1114 1.0959 1.1068 1.1080 1.0212 1.0194 1.0216 1.0216 38 45 55 51 
2028 1.1084 1.0976 1.1070 1.1076 1.0209 1.0197 1.0214 1.0216 39 43 53 50 
2761 1.1053 1.0992 1.1071 1.1074 1.0206 1.0199 1.0214 1.0215 41 42 50 47 
3605 1.1049 1.1005 1.1074 1.1058 1.0207 1.0202 1.0213 1.0211 42 42 46 45 
5633 1.1041 1.1041 1.1041 1.1041 1.0208 1.0208 1.0208 1.0208 42 42 42 42 

 
Table 7.7 (Continued) 

Patch richness density (PRD) Shannon’s diversity index (SHDI) Patch richness (PR) Area 
)km( 2  SW-NE SE-NW NW-SE NE-SW SW-NE SE-NW NW-SE NE-SW SW-NE SE-NW NW-SE NE-SW 

56 0.1066 0.0889 0.1066 0.0889 1.4057 0.7019 1.3235 1.2009 6 6 6 6 
225 0.0266 0.0266 0.0266 0.0266 1.4284 0.9517 1.2695 1.1099 6 6 6 6 
507 0.0118 0.0118 0.0118 0.0118 1.4465 0.9546 1.1261 1.0791 6 6 6 6 
902 0.0067 0.0067 0.0067 0.0067 1.4310 1.0390 1.0536 1.1276 6 6 6 6 
1408 0.0043 0.0043 0.0043 0.0043 1.4160 1.2010 1.0553 1.0867 6 6 6 6 
2028 0.0030 0.0030 0.0030 0.0030 1.4002 1.2986 1.0856 1.1206 6 6 6 6 
2761 0.0022 0.0022 0.0022 0.0022 1.3869 1.3462 1.1770 1.2247 6 6 6 6 
3605 0.0017 0.0017 0.0017 0.0017 1.3613 1.3526 1.2615 1.2876 6 6 6 6 
5633 0.0011 0.0011 0.0011 0.0011 1.3689 1.3689 1.3689 1.3689 6 6 6 6 
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