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ABSTRACT 

We study theoretically the electron transport properties in achiral carbon nanotubes under the influence of an external 
electric field E(t) using Boltzmann’s transport equation to derive the current-density. A negative differential conductiv-
ity (NDC) is predicted in quasi-static approximation i.e., ωτ << 1, similar to that observed in superlattice. However, a 
strong enhancement in the current density intensity is observed in NDC of the achiral carbon nanotubes. This is ob-
served at where the constant electric field E0 is equal to the amplitude of the AC electric field E1. The peak of the NDC 
intensity occurs at very weaker fields than that of superlattice under the same conditions. The peak intensity decreases 
and shifts to right with the increase in the amplitude of the ac field. This mechanism suppresses the domain formation 
and therefore could be used in terahertz frequency generation. 
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1. Introduction 

Carbon nanotubes (CNTs) were first discovered by Iijima 
in 1991 [1], and since then there has been exponential 
growth in the interest of the quasi-one-dimensional 
monomolecular structure due to their unique and out-
standing electrical, mechanical, and chemical properties. 
Nonlinear effects on CNTs are of great interest for po-
tential applications in nanoelctronics and negative dif-
ferential conductivity (NDC) has been predicted at room 
temperature under the condition, when B c , T    
in a certain range of electric field strength [2]. The NDC 
is believed to provide current instability in CNTs [2] 
which is destructive for the formation of terahertz (THz) 
radiation as in semiconducting superlattices (SLs). Si-
multaneous application of both dc-and ac-fields to the 
CNTs will result in nonlinear phase of the instability [2] 
as observed in semiconducting superlattices (SL). Men-
sah [3] studied the NDC effect in a semiconductor SL in 
the presence of an external electric field and showed that 
the NDC occurred in the current density characteristics 
when 1 �  i.e. near where the constant electric field 

is equal to the amplitude of the ac electric field and the 
peak decreases with increasing the amplitude of the ac 
field. The theory agrees fairly well with an experiment [4] 
that indicated “right shift” of the current density versus 
static electric field characteristics, which is typical for a 
SL without domain formation. Klappenberger and co- 
workers [4] demonstrated ultrafast creation and annihila-
tion of space-charge domains in a semiconductor super-
lattice using terahertz fields. Up to now, NDC has been 
observed only in a d.c electric field in both doped and 
undoped CNTs [2]. However, there is no report on si-
multaneous application of dc and ac fields to CNT to 
date. In this paper, we report a systematic theoretical 
investigation of effect of simultaneous application of dc 
and ac field to armchair CNT (a-SWCNT) and zigzag 
CNT (z-SWCNT) using the Boltzmann’s transport equa-
tion to derive the current density and analyze the behav-
ior of the normalized current density as a function of dc 
electric field. 

2. Theory 

We consider a response of electrons in an undoped *Corresponding author. 
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achiral single-wall carbon nanotubes (a-SWCNT and 
z-SWCNT) (a-SWCNT), to the action of a strong pump-
ing electric field. 

  0 1 cosE t E E t                 (1) 

where the dc bias 0  is small and the ac field is quasi 
static

E
1 �  The investigation is done within the semi- 

classical approximation in which the motion of π-elec- 
trons is considered as classical motion of free quasi-par- 
ticles in the field of the crystalline lattice with dispersion 
law extracted from quantum theory. Taking into account 
the hexagonal crystalline structure of a rolled graphene in 
a form of SWCNT and using the tight binding approxi-
mation, the energy dispersion for z-SWCNT and a- 
SWCNT are expressed respectively, as [2] 
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where 0 ~ 3.0 eV  is the overlapping integral, zp  is 
the axial component of quasimomentum, p  is trans-
verse quasimomentum level spacing and s is an integer. 
The expression for  in Equations (2) and (3) is given 
as 

a
3 2a b  ,  is the C-C bond length. 

The – and + signs correspond to the valence and the 
conduction bands respectively. Due to the transverse 
quantization of the quasi-momentum, its transverse com- 
ponent can take n discrete values, 

0.142b nm

 1, ,n s n πp s p   3s a
p

  . Unlike transverse 
qua- simomentum  , the axial quasimomentum zp  is 
assumed to vary continuously within the range 
0 2πzp  a


, which corresponds to the model of infi-

nitely long SWCNT . This model is applicable 
to the case under consideration because of the restriction 
to the temperatures and /or voltages well above the level 
spacing [5], i.e. B C

L  

, ,Tk     where Bk  is Boltz-
mann constant, T is the temperature, C  is the charging 
energy. The energy level spacing   is given by 

π F L                    (4) 

where F  is the Fermi velocity and L is the carbon 

nanotube length [6]. 
Employing Boltzmann equation with a single relaxa-

tion time approximation 
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where e is the electron charge,  0f p  is the equilibrium 
distribution function,  ,f p t  is the distribution func-
tion, and   is the relaxation time. The electric field E is 
applied along the SWCNT axis. In this problem the re-
laxation term   is assumed to be constant. The justifi-
cation for   being constant can be found in ref [7]. The 
relaxation term of Equation (5) describes the effects of 
the dominant type of scattering (e.g. electron-phonon and 
electron-twistons) [8]. For the electron scattering by 
twistons (thermally activated twist deformations of the 
tube lattice),   is proportional to m and the I V  
characteristics have shown that scattering by twistons 
increases  and decreases maxE z zj E   in the NDC 
region. The effect is stronger for smaller ms. Quantitative 
changes of the I V  curves turn out to be insignificant 
in comparison with the case of   = constant [7,8]. 

Expanding the distribution functions of interest in 
Fourier series as; 
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where the coefficient,  x  is the Dirac delta function, 

rsJ  is the coefficient of the Fourier series and  t  is 
the factor by which the Fourier transform of the nonequi-
librium distribution function differs from its equilibrium 
distribution counterpart. 
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Substituting Equations (6) and (7) into Equation (5), 
and solving with Equation (1) we obtain 
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where eaE


 , and  kJ   is the Bessel function of 

the kth order and 0eaEΩ  . 

Similarly, expanding   0s zp   in Fourier series 
with coefficients rs  
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where 
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and expressing the velocity as  

   
0

0

, e zs z iearp
z z rs

rz

p
p s p iar

p


 




  

    

we determine the surface current density as 
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where the integration is taken over the first Brillouin 
zone. Substituting Equations (7), (9) and (12) into (13) 
we find the current density for the z-SWCNT after aver-
aging over a period of time t, as 
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which is similar to expression (8) in ref. [3]. See Figure 1. 
Where 0 1,1; Ω eaE eaE    for z-SWCNT 

and 0 0Ω 3, 3eaE eaE 1    for a-SWCNT. 

3. Results and Discussion 

The current density expression for z-SWCNT subjected 
to dc bias field 0  and quasi static-field    is 
obtained by using the solution to the Boltzmann equation 
with constant relaxation time 

E 1 �

 . The behavior of the 
normalized current density z oj j  as a function of the 
dimensionless parameter cZ    (Equation 14) for 
given   and   values was analyzed using a Mat-
labversion 7.6 2008a. 

The normalized current density of the nanotubes 
structures (z-SWCNT, a-SWCNT) exhibits linear de-
pendence on cZ  at weak applied external static electric 
field strengths (i.e. the region of ohmic conductivity). As 
Zc increases, the current density z oj j  increases and 
researches a maximum then drops off, and hence experi-
encing negative differential conductivity (NDC) i.e.  

0z

c

j

Z


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
. We observed that as the amplitude increases 

the normalized current density maximum decreases and 
shifts towards large electric field values. This “right 
shift” of the current density maximum is due to a 
nonlinearity of the Esaki-Tsu characteristics (i.e. nonlin 

 

 

 

 

Figure 1. Zz o cj j  curves for (a) armchair; (b) zigzag ; (c) 
superlattice when: ωτ = 0.2 and β = 2, 4, and 8; (d) super-
lattce; armchair; and zigzag for β = 0.8, ωτ = 0.2. 
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