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Abstract

Propagation of large-amplitude electromagnetic fields and their inter-

actions with small-amplitude waves in finite superlattices are considered

in the framework of the sine-Gordon theory. Finite-size effects result in

modulating the large-amplitude fields to a lattice of kinked waves. This

kink-lattice wave displays both a soliton feature and the particle property

typical to nonlinear topological excitations. The interaction of the kink-

lattice soliton with weak electromagnetic waves reveals an unusual number

(exactly three) of bound states, which is attributed to the finite size of the

propagation medium.



1 Introduction

Nonlinear fields and particularly those exhibiting solitary-wave solutions,

are now of great interest in many physical problems [ 1 ]. Free-field soli-

tons have been investigated extensively namely for quantum fields [ 2 ],

but in condensed matter there are subsidiary requirements such as the

knowledge of the soliton behaviours in the presence of various inherent ob-

jects as impurities, phonons and under bias from applied stresses [3,4 ].

The account of the soliton-phonon interactions has been quite enriching to

the low-temperature statistical mechanics of kink condensate systems by

providing the phase shift useful to construct a more accurate phenomeno-

logical free-energy density [ 5 ]. The basic idea involves the recognition

that the appearance of the soliton excitation must be accompanied by con-

sistent changes in the phonon density of states as well as on their shapes

about the soliton. Moreover, the soliton stability in the phonons lattice

can require an energy correction during which its symmetry invariance,

broken by the interaction with phonons, is restored. In general, the break-

ing (or restoring ) of the soliton translational invariance is attributed to

its collision with specific modes of the phonon spectrum, with ( or without

) an energy cost. These specific modes thus belong to the discrete lattice

phonon spectrum and are characteristic of the system. For the sine-Gordon

(sG), for instance, only one bound state coinciding with the translational

restoring has often been reported [ 5 ] while the (p4 is usually claimed to

possess exactly one additional non-zero frequency bound state [5,6]. How-

ever, it seems evident that these results are not general but depend instead

on certain conditions. Indeed the <p4 model was recently shown [ 7 ] to

display five non-degenerate bound states in the finite-length limit.

Investigating soliton excitations and their scatterings with lattice phonons

involving a definite system size is, by the way, interesting for evident rea-

sons: not only the finite-length condition agrees well enough with the real-

ity, but also by their "kink-lattice" features finite-length solitons are likely

to reveal novel non-trivial properties quite distinct from those of the usual



uncorrelated (or single ) kink solitons [ 8-10 ]

In this work we will be concerned with the interactions of solitons with

small -amplitude waves in finite-size superlattices. Solitonic phenomena

in superlattices are generally considered in two different contexts, that

is, to the structural and the electronic view points. In the first solitons

are identified with atomic bond defects or dislocations, which has been

widely studied [11,12] since the pioneering works of Frenkel-Kontorova and

Frank-van der Merwe[13]. In the second, it is suspected that a strong

Electromagnetic (EM) wave could make its propagation medium essentially

nonlinear due to the self-action effect, in virtue of which it is modulated

into a soliton EM field. Tetervov [14] remarked that if the superlattice is

acted upon by a weak probing EM wave simultaneously with the soliton

EM field, the scattering coefficients of the probing wave will depend on

the soliton parameters. However, in our opinion, the conjectured soliton

collapse after some characteristic collision time is rather speculative by the

very intrinsic stability properties of topological solitons [1,2]. We base our

argument on the well established sustainable role of bound states whose

essential contribution is to restore the energy lost by the soliton during its

interaction process with the weak probing EM wave.

The highlight result of the present study is that finite-size effects in-

crease the number of such bound states and in turn enhance the stability

of the soliton EM wave in the superlattice. In the next section (section 2)

we obtain the basic nonlinear equation in terms of 1+1 dimensional(lD)

sG equation resulting from the electronic dispersion law in the superlattice.

In section 3, this equation is solved assuming a conduction in the lowest

miniband and a finite-size superlattice. The interaction of the resulting

"kink-lattice"soliton with EM waves is anlaysed and particular attention is

paid to the bound states. Section 4 is devoted to some concluding remarks.



2 The sine-Gordon EM field equation of the super-
lattice

Proceeding as in [15], we assume that the characteristic length in which a

significant change in the EM field is large enough compared with the de

Broglie wavelength of the electrons or with the superlattice period. There-

fore the electron current density can be written as

j = -e^f(p)v(p+-A(r,t)) (1)
p c

where f(p) is the distribution function of the electron canonical momentum

p , v(p) is the electron velocity, e the electron charge and A(r, t) the vector

potential. The key physical parameter describing the electron distribu-

tion in the bands is the dispersion relation, for superlattices the following

dispersion law is most often considered [14-16]:

| L ^ d ) (2)

In eqn.(2), pj_ and pz are the transverse and longitudinal (relative to the

superlattice axis) components of the quasi momentum, respectively, A^ is

the half width of the vth allowed miniband,

are the size-quantized levels in an isolated conduction film, d = do + d\ (d0

is the width of the rectangular potentail wells and d\ is the potential depth

with a non zero quantum transparency) is the superlattice period.

We assume that electrons are confined to the lowest conduction mini-

band {u = 1) and omit the miniband indices. This is to say that the field

does not induce transitions between the filled and empty minibands. We

further assume that the characteristic time for change in the field is short



compared with the mean free time of electrons r . We therefore ignore the

collision of electrons with the lattice. The electron velocity is given by

dt(p) Ad . ,pzd .
" w = = s m ( ) ( 4 )

Substituting eqn. (4) into eqn.(l) and making the following transfor-

mation pz -> poz + -CAX, we obtain for the non-degenerate electron gas the

following expression for the z component of the current density j ,

g
j z = josin(—Azd) (5)

nc

where

eAd eAdh(A/kT)
30 = -X-E/(P)«»P«d= -n^r- ̂ r ^ y j (6)

with n the conduction electron density and Ik(x) the Bessel function of

imaginary argument. We evoke the classical Maxwell equation for the

vector potential, i.e.,

1 d2A 4TT .
( 7 )

and substitute j z from (5) to obtain the nonlinear field equation:

- ^ - y o
2 A ( / ) + u;o

2sin0 = O (8)

where

Here v0 is the EM velocity in the absence of electrons and

is the square of the Langmuir frequency.
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Equation (8) is quite frequent in the literature of nonlinear processes where

it is called sine-Gordon equation. The most popular version is the ID sG

equation whose single and double soliton solutions, i.e. kink and breather,

deeply influenced our understanding of various condensed matter phenom-

ena among which are charge transfers in quasi-lD conductors[17,18], flow

of flux quanta in Josephson Junctions[19] and also in superlattices[14-16].

The single-kink solution of the ID sG equation is usually obtained in

the form:

7

This describes a smoothed-out function with limiting values 0O —> ±w as

x —> ±oo. The quantity I refers to the spatial extension of the kink spread-

ing, the dependence of / on the kink translation velocity u is suggestive of

its "particle-like" features. The stability of sG kinks is well understood in

terms of their collisions with small amplitude waves. For eqn. (10), one

of the phonon modes excited by these collisions is a bound state[5]. This

mode has zero frequency which ensures the preservation of the kink profile

upon collision.

In the next section we reformulate this concept by involving finite-size ef-

fects.

3 Electromagnetic "kink-lattice" wave collisions with
weak waves: bound states

We are looking for the topological soliton solution of eqn. (8) for an ar-

bitrary, definite length of the propagation medium. With respect to the

present content, this corresponds to assuming finite-size superlattice. We

can access such solutions by demanding that 4>0 —> ±TT as x —> ± | . We

find:



4>°{x,t) = 2arccos[sn(——— \k)], 0 < k < 1 (11)

where sn is the Jacobi Elliptic (snoidal) function of modulus k. In figure

(1), (9) appears to form an EM kink-lattice wave. The periodicity of this

kink-lattice soliton at the boundaries x = ±|f gives[8]

L = 2klK(k). (12)

Here K(k) is the Jacobi Elliptic Integral of the first kind. It is also worth

mentioning the "particle-like" feature of eqn. (11), by virtue of which its

topological energy possesses the classical velocity dependence law:

(13)

where E(k) is the Jacobi Elliptic Integral of the second kind.

Examining the stability of the kink-lattice wave eqn. (11) upon colli-

sions with small-amplitude EM fields we rewrite the solution of eqn. (8)

including the resulting soliton dressing field, i.e.,

(14)

This new soliton ansatz traduces a soliton dressed by a stationary EM

field irrespective of the soliton dynamic property. Then we are led to:

-v2
0<Hxx + u;2

0[2sn2(~) - 1 ] * = c ^ (15)
kl0

l0

Eqn. (15), which is of quantum-mechanical Schrodinger type, is trans-

formed to a dimensionless form by setting:

8



x n u)2 J.2/--1 ^ 2 ^ cifi^

We thereby obtain

= 0, n = l (17)

So we arrive at an eigenvalue problem described by a first-order Lame

equation[20]. It is instructive to remark that the case n = 2, i.e. the sec-

ond order Lame equation corresponds to the </>4 model. This last case has

been discussed very recently[7]. Following the method developed in [7] we

obtain exactly three bound states. They are listed as follows:

i) the zero frequency (the so called Goldstone translation) mode;

(^-) (18)

ii) the first non-zero frequency bound state;

iii) the second non-zero frequency bound state;

A3(k)cn(~) (20)

These three modes form an orthonormal subset which is represented by

the relation



/•L/2
/ * l /(a;)* / i(x)cte = 7r<J(i/,/*), ^ = 1,2,3 (21)

J-L/2

For v = fi, eqn. (21) becomes the normalization relations of the three

modes, which enable us to determine A^(k). Thus,

( 2 2 )

2klo[K(k) - E(k)}
7T

( 2 4 )

The three bound states are sketched in figures 2a, 26 and 2c.

It is worthy to note that as k —> 1, L —> oo in eqn. (21) then sn —>• tanh, dn

—> sech and en —)• sech such that the problem tends to the infinite-length

sG case. Namely, the first and third bound states merge into the Goldstone

mode while the second collapses.

4 Concluding Remarks

The propagating of large-amplitude EM fields in superlattices has been

shown to be intimately dependent on the material size. Finite-size effects

are manifested both on the shape modulation of the field and in its scatter-

ing properties with weak probing EM waves. In the first context, finite-size

effects result in modulating the large EM field into a periodic kink lattice,

the period of which is proportional to the soliton width, as well as to the

length of the propagating medium. A fundamental implication of this de-

pendence of the soliton shape on the length is the possibility of fitting a

desired EM wave profile to the appropriate material size. The appearance

of new bound states due to finite-size effects is significant enough and tra-

duces a direct incidence of the material size on the soliton stability. These

10



results are all of great interest from the physical point of view, namely

they open a relevant new path in the electronic designs of the superlattice

material toward which the manipulation of the EM wave amplitudes and

shapes can facilitate a desired device perfomance.
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Figure 1: "kink-lattice" (k ~ 0.8) and single-kink(/c ~ 1) soliton solutions
of the sine-Gordon equation.
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Figure 2: The three bound states of the finite-size sine-Gordon system:

(2a) is the Goldstone mode, the two non-zero frequency modes (2b) and

(2c) are the new bound states induced by finite-size effects.
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