
UNIVERSITY OF CAPE COAST

MODELLING HEPATITIS B VIRUS IN THE PRESENCE OF REGULAR
INTERVENTIONS.

BY

PAUL CHATAA

Thesis submitted to the Department of Mathematics of the School of Physical
Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, in

partial fulfilment of the requirements for the award of Master of Philosophy degree in
Mathematics

JULY 2020

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



2

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



DECLARATION

Candidate’s Declaration

I hereby declare that this thesis is the result of my own original research and

that no part of it has been presented for another degree in this university or

elsewhere.

Candidate’s Signature ......................................... Date ......................

Name: Paul Chataa

Supervisors’ Declaration

We hereby declare that the preparation and presentation of the thesis were su-

pervised in accordance with the guidelines on supervision of thesis laid down

by the University of Cape Coast.

Principal Supervisor’s Signature ............................ Date ......................

Name: Prof. Farai Nyabaza

Co-Supervisor’s Signature ..................................... Date: ......................

Name: Dr. Samuel Mindakifoe Naandam

ii

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



ABSTRACT

Hepatitis B infection remains a global problem since the 1990s in Asia and

Africa and the reasons for which the hepatitis B virus disease is still in existence

remains poorly understood. Mathematical models of HBV transmission dynam-

ics have focused on the influence of prevention and control measures including

vaccination, antiviral treatment and linkage to care in certain regions and coun-

tries. However, understanding the important role played by imperfect vaccina-

tion in describing the hepatitis B virus transmission dynamics is beneficial as a

control strategy. In this study, an SV ICTR epidemiological model is proposed

to model the spread of the hepatitis B virus disease. The basic reproduction

number, R0 and the equilibria of the proposed model are discussed. It is shown

that the disease-free equilibrium point is both locally and globally asymptoti-

cally stable when R0 < 1 while the endemic equilibrium point is proved to be

locally asymptotically stable when R0 > 1. However, when R0 = 1, the model

system shows a backward bifurcation phenomenon. Results of the numerical

simulations reveal that increasing both the vaccination and treatment rates re-

duces the populations of both the acutely infected and chronic carriers which

eventually fall to zero over a given period. Hence, combining both vaccination

and treatment with the use of a vaccine with high vaccine efficacy are essential

in controlling the hepatitis B virus disease.
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CHAPTER ONE

INTRODUCTION

The revelations of the hepatitis B virus (HBV) infections started in the

early 1966 when Dr Baruch Blumberg discovered it. So, over the years, vac-

cination of susceptible individuals with the hepatitis B vaccine and treating of

infected patients with anti-viral therapies have proved to be partially efficient

(Rodriguez, 2016). It is of higher interest to understand the connections be-

tween the HBV, the human immune responses of the body, both the long-term

and short-term effectiveness of the vaccine and drug efficacy and the overall

well-being of the human liver.

Hence, in this thesis, we use analytical techniques which will be confirmed

by the numerical techniques to provide the connections between the HBV and

the human-host characteristics, drug efficacy and the overall well-being of the

liver while taking into account the important role played by perfect vaccination

that will incorporate imperfect vaccination and treatment of infected persons as

control and prevention strategies.

Background to the Study

Hepatitis B virus disease was first recorded as an epidemic in 1885 in

Germany (Bremen) (Koonprasert et al., 2016). The virus was first identified in

1966 by Baruch Blumberg at the National Institutes of Health in the USA (Alter

& Blumberg, 1966). Hepatitis B is a liver inflammation disease caused by the

hepatitis B virus (HBV). The virus is a global problem and the dangerous type

among all the hepatitis viruses (World Health Organization, 2008). Hepatitis

B virus (HBV) is a DNA virus with a circular genome formed by a partially

double-stranded DNA, which reproduces through an RNA intermediate form

by transcription which is very difficult to clear ones infected (Locarnini, 2004).

It infects the human hepatocytes to cause pathogen in the liver as an acute or

chronic infection and puts people at a high risk of death from cirrhosis of the

1
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liver and liver cancer (Farman et al., 2018). According to the World health

organization the hepatitis B virus can survive outside the human body for at least

seven (7) days and within this period the virus can still cause infection if it enters

into any unprotected body (World Health Organization, 2017). The hepatitis

B virus causes up to 80% of all cases of hepatocellular carcinoma worldwide

and is second to tobacco among the known human carcinogens (Hollinger &

Liang, 2001; World Health Organization, 2001). The hepatitis B virus does not

cross the placenta due to its huge size and, hence it cannot infect an unborn

baby unless there is a break in the maternal-fetal barrier through amniocentesis.

However, pregnant women who are infected with HBV can still transmit the

disease to their babies at birth. If not vaccinated at birth, many of these babies

develop lifelong HBV infections which will later develop into liver failure or

liver cancer in their lifetime (Mahoney & Kane, 1999). Hepatitis B is the only

sexually transmitted infection for which there is a protective vaccine called the

hepatitis B vaccine (Mahoney & Kane, 1999).

Individuals with congenital or acquired immunodeficiency including HIV

infection and those with immunosuppression including those with lymphopro-

liferative disease and patients treated with immunosuppressive drugs including

steroids and maintenance using haemodialysis are more likely to develop a per-

sistent infection with HBV (World Health Organization, 2002). Also, only peo-

ple who have been vaccinated successfully or those who have developed anti-

HBs antibodies after HBV infection are either partially or fully immune to HBV

infection.

More than 240 million people have long term liver infections and 780, 000

people die every year due to the acute or chronic consequences of the hepatitis B

virus infection (World Health Organisation, 2014). Most of the world population

are carriers of the hepatitis B virus (HBV) and hence causes endemics in parts

of Asia and Africa (Williams, 2006).

2
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In Ghana, the hepatitis B virus is a disease for children and young adults

between the ages of 10 years to 50 years. Hence, about 1.6 million people out

of Ghana’s total population are chronic hepatitis B virus carriers (Wiah et al.,

2015).

According to Mahoney & Kane (1999), the world can be categorised into

three geographical areas based on HBV infection rate. These include; areas

where the prevalence of chronic HBV infection is high (> 8%), intermediate

(2 − 8%) and low (< 2%). Hence, areas such as southeast Asia and the Pacific

Basin except for Japan, Australia, and New Zealand, sub-Saharan Africa, the

Amazon Basin, parts of the Middle East, the Central Asian Republics and some

countries in Eastern Europe are considered to be higher endemicity areas of

HBV infection. In these areas, about 70% to 90% of the population had the

HBV infection before the age of 40 years. Out of this percentage, 8% to 20% of

people who are infected are chronic HBV carriers.

Meanwhile, in countries such as China, Senegal and Thailand, infection

rates are very high in infants than adults and may continue throughout their

childhood life. At that stage, the prevalence of HBsAg in serum may exceed

25%. However, in other countries such as Panama, Papua New Guinea, Solomon

Islands, Greenland and Alaskan Indians, infection rates in infants are relatively

low and increase rapidly during early childhood life (World Health Organiza-

tion, 2002).

Low endemicity areas of HBV infection include North America, Western

and Northern Europe, Australia, and parts of South America. The carrier rate

in these areas is less than 2% and less than 20% of their entire populations are

infected with HBV (World Health Organization, 2002). The rest of the world

falls into the intermediate range of HBV prevalence, with 2 to 8% of a given

population being HBV carriers (Hollinger & Liang, 2001).

The situation of hepatitis B virus (HBV) transmission is very complicated

3
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and grim to understand. Mathematical models have been used extensively to

study both dynamical systems in spatial effects and the epidemiology of hep-

atitis B virus disease to improve our understanding of the major contributing

factors to the pandemic (Gui-Quan et al., 2015; Zou et al., 2010; Anderson &

May, 1992).

Vaccination of susceptible individuals such as newborn babies with a strong

vaccine efficacy rate is the best and most economical way to reduce the number

of recorded cases of hepatitis B in terms of both cost-effectiveness and cost-

benefit ratios. Some other approved ways of preventing hepatitis B virus in-

fection include testing of blood donors and an educational campaign to make

people aware of the dangers of the disease (World Health Organization, 2015).

After the acute HBV infection phase, the risk of developing chronic infec-

tion varies inversely to the age of the individual. So, most of the individuals with

chronic HBV are infected during or after birth (Guo et al., 2000). According to

the World Health Organisation, more than 90% of the infected individuals that

are adults will gain natural immunity to the disease within the first six months

to one year of infection and some of them will not even show symptoms of

infection (World Health Organization, 2015). This makes hepatitis B a deadly

disease since two out of every three persons with chronic HBV infection are

not even aware that, they are infected with the disease which contributes to the

ongoing transmission (Cohen et al., 2011; Lin et al., 2007).

Life Cycle of Hepatitis B Virus

Hepatitis B virus is one of the smallest enveloped animal viruses with a

virion diameter of 42nm. The life cycle of HBV is complex and difficult to

understand. This is because HBV is one of a few known non-retroviral viruses

which use reverse transcription as part of its replication process. The HBV

virion attaches itself to hepatocytes of the human liver through a weak inter-

action between the preS1 domain of the large HBV surface protein (LHBs) on

4

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



the HBV envelope and heparin sulfate proteoglycans (HSPGS) on the surface

of hepatocytes (Schulze et al., 2007).

Although the detailed molecular biological mechanisms behind the entry

process of HBV into the host cell is still not clearly understood, the sodium

taurocholate co-transporting polypeptide (NTCP) on the host cell surface, which

serve as a receptor for the HBV entry (Yan et al., 2012) allows the HBV virion

to pass through the plasma membrane through clathrin-mediated endocytosis

(Huang et al., 2012).

After the endocytosis process, the virus membrane fuses with the host

cell’s membrane, releasing the nucleocapsid into the cytoplasm (Watashi &

Wakita, 2015). Again, the whole mechanisms that are involved in this pro-

cess are not fully understood. However, one of the mechanisms behind this

process is the arginine-rich C-terminal domain of core protein that provides a

transport signal to a nuclear pore. The core protein then dissociates from the

partially double-stranded viral DNA which made a full double-stranded (by the

host DNA polymerases) and transformed into covalently closed circular DNA

(cccDNA) that serves as a template for transcription of four viral mRNAs. In

other words, the cccDNA is maintained in the nucleus of the host hepatocytes as

a stable episome which forms a minichromosome by associating with histones

and non-histone proteins (Bock et al., 2001).

Furthermore, the largest mRNA (which is longer than the viral genome) is

used to make the new copies of the genome for it to make the capsid core protein

and the viral RNA-dependent and DNA-polymerase to produce the four viral

transcriptions. These four viral transcriptions undergo additional processing

and even form progeny virions which are released from the cells or returned

to the nucleus and re-cycled to produce more copies (Beck & Nassal, 2007).

The long mRNA is then transported back to the cytoplasm where the virion p-

protein synthesizes DNA through its reverse transcriptase activity. The diagram

5
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below shows the life cycle process of hepatitis B virus

Figure 1: Life cycle of HBV, Source: (Ortega-Prieto et al., 2018).

Stages and Spectrum of Liver Disease after HBV Infection

The two main stages of hepatitis B virus infections include acute hepati-

tis B virus infection and chronic hepatitis B virus infection. Acute hepatitis B

infection is characterized by the presence of IgM antibody to hepatitis B core

antigen (IgM anti-HBc) serum antibodies converting to IgG with convalescence

and recovery and the transient ( which is less than six months) presence of hep-

atitis B surface antigen (HBsAg), hepatitis B envelope antigen (HBeAg) and

viral DNA with the clearance of these markers followed by seroconversion to

anti-HBsAg and anti-HBeAg.

In other words, when an individual is infected with the hepatitis B virus

for the first six (6) months of the entire infectious period, it called the acute stage

of the hepatitis B infection. This acute hepatitis B infection may go away on its

6

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



own in the first six months of infection or not. Most people do not show any

symptoms of infection and do not need any therapy at this stage of the disease.

According to Shepard et al. (2006), if the infected individual is an adult, there is

about 90% chance that the person’s body immune system will fight the disease

off in the first six months (i.e. the acute stage) and no treatment will be needed.

Acute hepatitis B infection can also lead to the fulminant condition of the

liver. Fulminant hepatitis B is a rare condition whose development is about 1%

of all acute hepatitis B infection cases. This fulminant hepatitis B is caused

by massive necrosis of liver substance which is usually very fatal (Hollinger &

Liang, 2001; Mahoney & Kane, 1999). The survival rate in adults is very low

which means that the prognosis for children is rather better. However, the few

individuals who manage to survive usually recover completely without perma-

nent liver damage and no chronic infection (Hollinger & Liang, 2001; Robinson,

2000). Also, individuals who have been tested positive for the hepatitis B virus

for more than six months are diagnosed to be suffering from chronic hepatitis

B infection. They may not able to clear the virus at this stage of the infection.

Hence, people with chronic hepatitis B will need long therapy to be able to live

longer and healthy life (Wilson et al., 1998).

According to Mahoney & Kane (1999), chronic hepatitis has caused seri-

ous destructive diseases of the liver and it contributes greatly to the worldwide

burden of hepatitis disease. Unlike the acute stage of the hepatitis B infection

where the individual may not show any sign of the infection, some of the patients

with chronic hepatitis B infection persistently may also have no clinical or bio-

chemical evidence of liver disease, while others may show signs of easy fatigue,

anxiety, anorexia, and malaise. Chronic hepatitis B virus infection can be mild

or severe depending on the body immune system of the Patient. The severity of

this chronic hepatitis B infection is associated with inflammatory liver diseases

such as cirrhosis and hepatocellular carcinoma (Hollinger & Liang, 2001).

7
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Cirrhosis refers to the case where the liver cells of an infected person

die and are progressively replaced with fibrotic tissue leading to nodule forma-

tion. The internal structure of the liver is deranged leading to the obstruction

of blood flow and a decrease in liver function. This damage is caused by recur-

rent immune responses stimulated by the presence of the virus and because liver

inflammation can be symptomless, the progression of inflammation to cirrhosis

can occur without the knowledge of the patient.

Hepatocellular carcinoma (HCC) on the other hand is a liver disease de-

veloped by patients with chronic hepatitis B infection. According to Mahoney

& Kane (1999), individuals who are at higher risk of developing HCC include

adult male who had hepatitis B infection and chronic hepatitis B patients with

cirrhosis who contracted hepatitis B in early childhood. The issue of developing

HCC varies directly with geographical location, race, age and sex of the in-

fected individual. Hence, HCC is responsible for 90% of the primary malignant

tumours of the liver observed in adults (World Health Organization, 2002). The

general process of the stages and spectrum of liver disease after HBV infection

are summarised in the tree diagram below.

Figure 2: Stages and spectrum of liver disease after HBV infection,
Source:(World Health Organization, 2002).

8
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Testing for Hepatitis B Infection

Hepatitis B serologic testing involves the measurement of hepatitis B virus

(HBV) specific antigens and antibodies. So, different serologic results or a com-

bination of results will indicate which phases of HBV infection a patient falls.

This will determine whether the patient is in an acute or chronic HBV infection

stage or immune to HBV infection as a result of prior infection or vaccination

or still susceptible to the HBV infection.

Hepatitis B surface antigen (HBsAg) is a protein on the surface of the

hepatitis B virus. The presence of HBsAg indicates that the infected individual

is infectious. Hence, the body system of any infected person normally produces

antibodies to HBsAg as part of the normal immune response to infection. This

HBsAg is the antigen used to make the hepatitis B vaccine.

The presence of hepatitis B surface antibody (anti-HBs) is usually an in-

dication of recovery and gaining of immunity from hepatitis B virus infection.

Anti-HBs are also developed in persons who have been successfully vaccinated

against hepatitis B.

Total hepatitis B core antibody (anti-HBc) appears at the acute stage of

hepatitis B infection and persists for life. A test of anti-HBc positive indicates

previous or ongoing hepatitis B infection in an undefined time frame, hence the

need for a follow-up test called hepatitis B-profile test.

IgM antibody to hepatitis B core antigen (IgM anti-HBc) positive test in-

dicates recent infection with HBV for at most six (6) months. Hence, the patient

is acutely infected (Centers for Disease Control and Prevention, 2005). Table 1

below gives a summary of an HBV serologic Lab test results and their interpre-

tations.

9
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Table 1: Hepatitis B test status and their interpretation

Test Status Interpretation

HBsAg

anti-HBc

anti-HBs

Negative

Negative

Negative

Susceptible

HBsAg

anti-HBc

anti-HBs

Negative

Positive

Positive

Immune due to natural infection

HBsAg

anti-HBc

anti-HBs

Negative

Positive

Positive

Immune due to hepatitis B vaccination

HBsAg

anti-HBc

IgM anti-HBc

anti-HBs

Positive

Positive

Positive

Negative

Acutely infected

HBsAg

anti-HBc

IgM anti-HBc

anti-HBs

Positive

Positive

Negative

Negative

Chronically infected

HBsAg

anti-HBc

anti-HBs

Negative

Positive

Negative

Interpretation unclear; four possibilities

1. Resolved infection

2. False-positive anti-HBc test

3. Low level of chronic infection

4. Resolving acute infection
Source:(Centers for Disease Control and Prevention, 2005)

10
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Hepatitis B Vaccine

The human hosts which are susceptible to hepatitis B infection are pro-

tected against hepatitis B virus infection by producing an immune system that

responds to the protein which is on the surface of the virus. Hence, when the

hepatitis B virus grows in the human liver, an excess amount of this surface

protein called hepatitis B surface antigen (HBsAg) is produced. Therefore, the

hepatitis B vaccine is produced by taking the part of the virus that makes this

surface protein called the surface protein gene and put it into yeast cells. The

yeast cells then produce many copies of the protein that are subsequently used

to make the vaccine. When the surface protein in the vaccine is given to chil-

dren through vaccination, their immune systems make an immune response that

protects against infection with the hepatitis B virus (Nurhasen, 2017).

Four years after discovering the hepatitis B virus, Drs. Blumberg and

Millman developed the first hepatitis B vaccine which was initially a heat-

treated form of the virus. This first hepatitis B vaccine was made in the 1980s

by taking samples of blood from people that were infected with hepatitis B virus

and separate the surface protein from the infectious virus. Because human blood

was used, there was a high probability of contaminating the vaccine with other

viruses that might be found in the human blood system, such as HIV. Although

contamination with HIV was a risk of the early blood-derived hepatitis B vac-

cine, research has shown that no one was infected with HIV as a result of the use

of the hepatitis B vaccine. This is because the blood used to make the vaccine

was subjected to several chemical treatments that will inactivate any possible

contaminating virus (Nurhasen, 2017).

Today, there is no risk of contaminating the vaccine with other viruses

because the surface protein is manufactured in the laboratory (Dickens, 2011).
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Hepatitis B Vaccine Exception

Susceptible individuals who are capable of getting hepatitis B infection

should not receive the dose of the hepatitis B vaccine if they have the following

health problems:

(i) Anyone who is an allergy to baker’s yeast or any other component of the

vaccine should not be vaccinated with the hepatitis B vaccine.

(ii) Anyone who has a life-threatening allergic reaction to a previous dose of

hepatitis B vaccine should not get another dose.

(iii) Anyone who is sick when a dose of the vaccine is scheduled should wait

until fully recovered before receiving the vaccine. However, pregnant

women who are susceptible to hepatitis B infection should get vaccinated

(Dickens, 2011).

Statement of the Problem

Hepatitis is a general term meaning inflammation of the liver and can

be caused by a variety of different viral agents or drugs. The viral agents

which cause this deadly disease include the hepatitis A, B, C, D, E, F, G and

H viruses. Continuous exposure to alcohol, drugs, or toxic chemicals, such as

aerosol sprays and paint thinners can also cause hepatitis B disease. This virus

is very difficult to clear after infection because of the formation of cccDNA.

According to the World Health Organisation, about 350 million people are

infected with hepatitis B virus and 170 million people that are chronically in-

fected live with hepatitis C virus (HCV). Hepatitis B infection can be transmitted

from carrier mothers to children during birth (vertical transmission; that is al-

most 90% of infants born to HBsAg-positive/ HBeAg-positive women and 10%

of infants born to HBsAg-positive/HBeAg-negative women become infected),

contact with an infected person (horizontal transmission), sexual intercourse
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(that is through semen and vaginal fluid contact with an infected person), expo-

sure to blood or fluid of an infected person (blood transfusion and blood-related

products) and contact with HBV contaminated materials such as needle, razor

blades, toothbrush, etc. Hepatitis B virus (HBV) can be controlled through vac-

cination (that is vaccination during birth and after birth), antiviral treatment of

both acute and chronic infections, an educational campaign, screening of blood

and blood products and linkage to care method.

Several mathematical models of HBV transmission dynamics have fo-

cused on the influence of prevention and control measures including perfect

vaccination, antiviral treatment and linkage to care in certain regions and coun-

tries. These mathematical models have provided us with useful information,

facts and ideas about the impact of perfect vaccination and treatment as control

strategies of HBV. J. Zhang & Zhang (2018) formulated a mathematical model

that incorporates perfect vaccination and treatment as control strategies to study

the transmission dynamics of hepatitis B virus in China. However, understand-

ing the important role play by imperfect vaccination in describing the hepatitis

B virus transmission dynamics proved beneficial.

Against this background, we seek to develop a mathematical model where

the total population is divided into Susceptible, Vaccinated, Acutely infected,

Chronic carriers, Treated and Recovered (SVICTR) individuals to model the

process of transmission mechanisms of hepatitis B in the presence of regular

interventions. More precisely, following the work done by J. Zhang & Zhang

(2018), an SVICTR model was proposed that will take into account imperfect

vaccination in describing hepatitis B virus transmission dynamics in the pres-

ence of regular interventions.

Significance of the Study

Mathematical models can help us to gain a clear understanding of disease

transmission dynamics, assess the effectiveness of various preventive measures
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and strategies and the ways to control it eventually. However, there has not been

any mathematical modelling of the hepatitis B virus using the SVICTR model

that takes into account imperfect vaccination. Hence, incorporating imperfect

vaccination as a control strategy of hepatitis B transmission dynamics will pave

the way for its total eradication. Hepatitis B has always contributed negatively

towards a nation’s total productivity due to the loss of human labour and other

resources as a result of death related to hepatitis B virus infections. Hence, this

thesis will be of importance in the understanding of the disease, its transmission

dynamics and its total eradication. This work will also help decision-makers

and health practitioners to evaluate the effectiveness of intervention strategies

put in place to fight the hepatitis B virus disease.

Research Objectives

General Objective

The general objective of this thesis is to assess the knowledge of hepatitis

B transmission dynamics using SVICTR model that will explore the important

role played by imperfect vaccination and treatment as control strategies.

Specific Objectives

This research has the following specific objectives:

• to develop a mathematical model by extending the model of J. Zhang &

Zhang (2018) to incorporate imperfect vaccination

• to determine the equilibrium points of the model and the basic reproduc-

tion number, R0

• to perform the stability analysis and numerical simulations of the model

• to determine which parameters influence the model dynamics most
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Delimitation

The thesis is limited to finding out the important role played by imperfect

vaccination in controlling the hepatitis B virus transmission dynamics.

Limitation

This thesis has a limitation of accurate estimation of parameter values

since we largely rely on literature values and some estimated values for the

numerical simulations.

Organisation of the Study

This thesis is organised into five (5) chapters. Chapter ONE is the back-

ground of the study. In Chapter TWO, we provide related literature on both

mathematical and statistical models on hepatitis B transmission dynamics. Chap-

ter THREE was devoted to the model formulation and analysis. The numerical

simulations and sensitivity analysis of the proposed model were carried out and

discussed in Chapter FOUR and Chapter FIVE was devoted for the recommen-

dation.

Chapter Summary

This chapter introduced the thesis, by first looking at the biological back-

ground of hepatitis B disease, the life cycle of the hepatitis B virus, the various

stages and spectrum of liver diseases after HBV infection, hepatitis B testing

results and their meaning, how the hepatitis B vaccine was made and the vac-

cine exemptions. We also give the motivation for studying the problem stated in

the thesis together with the research objectives of our study. We concluded the

chapter by given an outline for the structure of the thesis.
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CHAPTER TWO

LITERATURE REVIEW

Introduction

Hepatitis B virus infection is endemic in many parts of the world. It has

become a matter of fact to check its spreading dynamics globally. To do this

effectively, there is the need to take a look at the model’s other researchers used

and how we can modify them to help eradicate the hepatitis B virus disease.

Based on the literature review, we have also notice that many researchers and

policy-makers have used mathematical models to investigate the behaviour, con-

sequences and effects of the hepatitis B virus infection in the human population

over a given period. The aim was to come out with interventions and control

strategies for this deadly disease. Hence, in this chapter, the focus was on the

review of empirically related literature on hepatitis B virus infection, the his-

tory of mathematical modelling as a tool for studying infectious diseases and

the incorporation of perfect vaccination, imperfect vaccination and treatment as

control strategies.

Infectious Diseases

In this section, we will give the history behind using a mathematical model

as a tool for studying and controlling infectious diseases. A disease is said to

be infectious if its causal agent such as virus, bacterium, protozoa, or toxin, can

be transferred from one host to another through various modes of transmission.

These modes of transmission include physical contact, airborne, water, food,

disease vectors and carrier mothers to newborn babies (Zhien & Jia, 2009).

The spread of infectious diseases has always been of concern in the com-

munities in which the outbreak occurs and serves to endanger public health and

decision making bodies. This is because, infectious diseases have caused seri-

ous health problems, economic and social hardship to human societies in several

areas of the world. For example, the Antonine plague in the early 165 to 180
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AD was an ancient pandemic which was by either through smallpox or measles,

brought back to the Roman Empire by troops returning from campaigns in the

near-East (Zhien & Jia, 2009). These infectious diseases invade the entire Ro-

man Empire, kill two of the Romans and caused economic hardships to the

whole Roman empire (Zhien & Jia, 2009). Also, in areas such as the Caribbean,

Mexico, Peru and Brazil, smallpox was transmitted by the Spanish armies led by

Cortez. This has a reduction on the Mexican population from up to 30 million

to less than 2 million for a period of 50 years (Brauer & Castillo-Chávez, 2001;

Geddes, 2006). Again, the outbreak of coronavirus disease in Wuhan, China in

2019 has caused a global pandemic and claim millions of lives worldwide.

The control of these infectious diseases had a long history and great progress

has been made so far. Through the worldwide vaccination programme (Zhien &

Jia, 2009), the smallpox outbreak is now eradicated. Furthermore, the passing of

the World Health Assembly resolution in 1991 has successfully eradicated lep-

rosy as a public health problem (Zhien & Jia, 2009). Although there is a massive

achievement in the prevention and controlling of infectious diseases, a lot of ef-

fort is still needed to completely eradicate these infectious diseases worldwide.

To prevent and control infectious diseases effectively, it is crucial to, first of

all, understood the transmission mechanisms and dynamics of its spreading and

then provide pragmatic measures using mathematical models.

Mathematical Model

The word “modelling” comes from a Latin word called modellus which

means a human way of coping with reality. As explain by Andrews & McLone

(1976), mathematical modelling is the representation of real-world problems in

mathematical terms and ways so that a more precise understanding, significance

and properties of these problems will be obtained. Hence, mathematical models

are base on population dynamics, the behaviour of disease transmissions, fea-

tures of the infectious agents, and the connections with other societal and phys-
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iological factors. Through the use of analysis such as quantitative, qualitative,

sensitivity and numerical simulations, mathematical models provide us with a

clear understanding of how infectious diseases spread from one host to another,

discover the factors governing the transmission dynamics of the diseases, and

identify the most significant and sensitive parameters, to make reliable predic-

tions, provide useful prevention and control strategies.

The background of mathematical modelling of infectious diseases can be

traced back to the early 1760s when Bernoulli used mathematical models to

study the smallpox disease (Bernoulli, 1760). However, researchers use deter-

ministic mathematical models to study infectious diseases in the 20th century.

A good example is a discrete-time model Hamer formulated to study the spread

of measles in 1906 (Hamer, 1906). Later on, Dr Ross also proposed a differ-

ential equation model to study the transmissions dynamics of malaria between

the human population and the mosquitoes population in 1910. Dr Ross was

able to establish a threshold for the mosquitoes population size in his model be-

low which the spread of malaria can be controlled. This earned him his second

Nobel Prize award in medicine (Ross, 1911).

Moreover, Kermack and McKendrick formulated the SIR (susceptible,

infective, recovered) deterministic model, in 1926, to study the Black Death

disease in London between the period of 1665 to 1666, and the outbreak of

plague in Mumbai in 1906. They later, in 1932, formulated an SIS (suscepti-

ble, infective, susceptible) compartmental model. The analysis and investigation

of these two models, formally introduced the concept of thresholds quantity in

mathematical modelling which determines whether a disease spreads in a given

population or die out (Kermack & McKendrick, 1932). The ideal of thresholds

gives the foundations of the theory of epidemic dynamics. More intensive stud-

ies on epidemic dynamics took place after the middle of the 20th century and

hence several developments and progress have been particularly made during

18

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



the past 20 years in mathematical models to study various infectious diseases

such as hepatitis B virus disease, malaria, the human cancer disease, tuberculo-

sis, cholera etc.

Empirical Review of Related Literature on Hepatitis B Virus Infection

In this section, we will review related literature on the use of mathematical

models as a tool for controlling and prevention of hepatitis B infectious disease

in some countries and regions in the world. For hepatitis B virus infection,

in particular, Khan et al. (2013) proposed a mathematical model to study the

effect of immigrants on the host population in describing the hepatitis B virus

transmission. Their model was obtained by modifying the model of Pang et al.

(2010) to include some new transmission dynamics. These new transmission

dynamics include; the migrated compartment, HBV transmission rate between

the migrated compartment and the exposed compartment, the transmission rate

between the migrated compartment and the acutely infected compartment and

the natural death rate of individuals in the migrated compartment. The model

was solved numerically and it was shown that when the transfer rate of the

migrated compartment to the exposed compartment (µ1) and the transfer rate of

the migrated compartment to the acute infection compartment (µ2) varies, there

is a corresponding change in the population for both exposed, acutely infected

and chronic carriers compartments. Hence, Khan et al. (2013) observed that

there is a direct relationship between the number of immigrants and the number

of infective individuals in the population. That is the proportion of infective

individuals decreases when the proportion of migrated individuals decreases.

Hence, policies of the government should be geared towards these immigrants

and subject them to tests about the disease status before allowing them to enter

any country.

To further get a clear understanding of hepatitis B virus transmission dy-

namics and its control measures through mathematical modelling, Zou et al.
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(2010) used the characteristics of HBV infection such as vertical transmission

from carrier mothers to newborn babies to formulate a mathematical model that

will help in the studying of the transmission dynamics and control of hepatitis B

virus (HBV) infection in mainland China. The total population was categorized

into six (6) epidemiological groups. These include the proportion of individ-

uals susceptible to infection (S), individuals that were latently infected (L),

acutely infected individuals (I), chronic carriers of the hepatitis B virus (C),

recovered individuals with protective immunity (R) and individuals who recov-

ered through vaccination (V ). Vaccination was included as the only control

strategy and obtained a system of six (6) differential equations. They assume

that newborns by carrier mothers infected during birth move only to the carrier

compartment. The existence and stability analysis of the disease-free and en-

demic equilibria were discussed in their model. Sensitivity analysis was also

performed on the model parameters to determine the most sensitive parameter.

The basic reproduction number R0 of their model was estimated to be 2.406

in China with suitable model parameter values the model system follows the

reported HBV data from the Ministry of Health of China. This data describes

China as a hepatitis B endemic region in the Asia continent and approaching

its equilibrium with the current immunization programme as a control measure.

Based on the sensitivity analysis carried out on the model parameter values of

the basic reproduction number R0, Zou et al. (2010) observed that the optimal

control strategy for the hepatitis B virus disease in China is by combining both

immunizations of newborns, retroactive immunization of susceptible adults and

reduction of contact rate with infective individuals.

There were some potholes on the work done by Zou et al. (2010) that

needed to be filled in to make the model more accurate. Hence, Kimbir et al.

(2014) extend the work done by Zou et al. (2010) to incorporate treatment as a

control parameter. The main aim was to study the impact of treating infected
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persons as a control strategy for hepatitis B virus disease. They were of the view

that newborns by carrier mothers that are infected during birth, first move to the

latently infected compartment instead of the chronic carriers compartment. The

basic reproduction number R0 was numerically assessed for its sensitivity to

vaccination and treatment parameters. Based on the sensitivity analysis of the

parameter values of the basic reproduction number, Kimbir et al. (2014) realized

that increasing the vaccination and treatment rate will reduce the R0. Hence, the

combination of both vaccination and treatment is the best strategy in controlling

HBV infection.

Similarly, Dontwi et al. (2014) used the standard of Susceptible S, In-

fected I , Recovered R (SIR) model by Kermack and McKendrick to study the

hepatitis B transmission dynamics with vaccination as a control parameter. The

idea was to use hepatitis B virus infection data recorded from the Tano North

District Health Directorate to study and understood the hepatitis B dynamics

in the Tano North District through mathematical modelling. It will also as-

sist decision-makers to come out with the best preventive and control strategies

that will eradicate the hepatitis B disease in Ghana. Base on the numerical and

sensitivity analysis carried out on the model parameters, Dontwi et al. (2014)

concluded that an increase in the hepatitis B vaccination coverage in the district

will lead to a decrease in the prevalence rate of hepatitis B virus disease in the

Tano North district.

Later on, J. Zhang & Zhang (2018) proposed a model for hepatitis B virus

with control strategies of newborn vaccination and treatment. An optimal con-

trol constraint was used to simulate the yearly reported data of newly infected

cases of hepatitis B in China from 2004 to 2016. Hence, they divided the total

population into susceptible individuals S, acutely infected individuals I , chronic

carrier individuals C, treated patients T and immunized individuals R. In their

work, vertical transmission, that is the transmission of the hepatitis B virus from
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carrier mother to child was incorporate since it has a great impact on HBV

prevalence most especially in highly endemic areas like China. They also as-

sume that the infected individuals who experience treatment failure enter into

the chronic population only due to the short period of acute infection. Results

from the numerical simulation of their model indicate that, if the transmission

rate increases, then both chronic and acute infective populations also increase.

Therefore, the studies of Desta & Koya (2019) confirm that the prevention of

hepatitis B virus disease requires both vaccinations of newly born babies and

medical treatment of chronic infective populations to be increased.

Emerenini & Inyama (2018) observed that, studying the transmission of

HBV with considerations of different population level of individuals with vac-

cination of newborn babies and the treatment of infected individuals as control

strategies prove beneficial. Hence, they propose a model by incorporating vac-

cination of newborn babies and treatment as control strategies to study HBV.

Based on the stability analysis of the model system, they conclude that since

the disease-free equilibrium state is locally asymptotically stable, vaccination

and treatment played an important role in controlling hepatitis B transmission

dynamics in a population.

Furthermore, Farman et al. (2018) extended the model proposed by Williams

(2006) to study the transmission dynamics of acute and chronic hepatitis B epi-

demic problem in a community. This was done by dividing the infectious com-

partment into two stages; acutely infected stage and chronically infected stage

respectively. In their work unconditionally convergent nonstandard finite differ-

ence scheme was developed by applying Michens approach φ(h) = h + O(h2)

instead of the usual h to control the spread of hepatitis B virus. Treatment

and vaccination were also incorporated to minimize the number of acutely in-

fected individuals, chronic carriers with hepatitis B virus while maximizing the

number of recovered individuals. Since there is a reduction in the acutely in-
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fected as well as the chronically infected rates for both disease-free and en-

demic equilibria using the unconditionally convergent nonstandard finite dif-

ference scheme, controlling the spreading of hepatitis B virus disease in the

community is achieved.

Although China has included hepatitis B vaccination in their national vac-

cination programme, the infection rate of hepatitis B virus disease is still at an

alarming rate. Hence a lot of models were formulated by researchers to help

control the spreading of HBV in major cities of China. Therefore, T. Zhang et

al. (2015) observed that incorporating both the exponential birth rate and verti-

cal transmission in a mathematical model to study the transmission dynamics of

the hepatitis B virus in Xinjiang, China prove beneficial. Hence, they concluded

that enhancing the vaccination rate for newborns in Xinjiang is a very effec-

tive way of controlling the transmission of HBV. That is all infants in Xinjiang

should receive the hepatitis B vaccine as soon as possible after birth.

Koonprasert et al. (2016) used a mathematical model consisting of unin-

fected liver cells, infected liver cells and free virus as the total population to

study the hepatitis B virus disease. Their model includes a logistic growth term

for uninfected cells, a mass action term for infection of uninfected cells, a free

virus term, a loss of free viruses on infection of a cell and a non-cytolytic cure

process. Base on sensitivity and numerical analysis of the model parameter val-

ues, Koonprasert et al. (2016) concluded that the parameters that affect reducing

the number of infected cells are the rate of infection of uninfected cells (β), the

rate infected cells can be cured (ρ) and should be reduced to control the hepatitis

B virus transmission dynamics.

Finally, S. Zhang & Zhou (2012) claimed that intrauterine infection in

pregnant carrier mothers is relatively low, hence vertical transmission from HBV

carriers mothers occurs either during delivery or after birth. They further claim

that the acutely infected stage of HBV infection is relatively short compare to
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the pregnancy period of a carrier mother and the prolonged chronic phase of

the hepatitis B virus infection. Thus perinatal infection from carrier mothers

who are acutely infected is not possible. These two characteristics of hepatitis

B virus transmission dynamics were used to formulate a mathematical model to

describe the spread of hepatitis B virus disease in China. Numerical results from

the model system show that the increasing use of the hepatitis B vaccine and

treatment of infected individuals with interferon or lamovudine may be of great

importance for the control of HBV. However, S. Zhang & Zhou (2012) noticed

that a mathematical model with an age-dependent probability of developing the

carrier stage will probably make the simulations fit the hepatitis B virus disease

data reported from China better.

Vaccination as a Control Strategy of HBV Infection

In this section, we will elaborate and review the literature on the impor-

tant role play by vaccination in the control and prevention of hepatitis B virus

infections. Vaccination with the hepatitis B vaccine is the most effective mea-

sure to prevent HBV infection and its complications such as cirrhosis of the

liver, liver cancer, liver failure and death (Centers for Disease Control and Pre-

vention, 2006; Shepard et al., 2006). The vaccine confers protection in more

than 90% of healthy adults younger than 40 years who receive the complete

vaccine series (Venters et al., 2004; Assad & Francis, 1999) and immunity lasts

at least for three decades (Simons et al., 2016; McMahon et al., 2011). When

a vaccine confers between 80%− 90% protection to a susceptible individual in

a population against hepatitis B virus infection, then the vaccine is said to be a

perfect vaccine. Since 1982 a vaccine against HBV infection has been produced

and made available (Lewin et al., 2001). Most of the vaccines developed for

the prevention of HBV infection depend on the viral envelope protein called the

hepatitis B surface antigen (HBsAg). The vaccine against HBV can be received

by infants to adults and protects 85-90% of susceptible individuals (Shepard et
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al., 2006; Maynard et al., 1989). The two main types of vaccinations against

HBV infection include the 3-dose hepatitis B vaccination and the timely hepati-

tis B birth dose which is within 24 hours of birth.

Nowadays, the group that vaccination focuses on is the one with the high-

est risk of developing chronic infection, more especially children less than six

years (World Health Organization, 2015). According to Trépo et al. (2014), 40%

of men and 15% of women with HBV infection acquired at birth die of liver cir-

rhosis or hepatocellular carcinoma. The optimal vaccination strategy is for new-

borns to receive the first dose within 24 hours after birth and two boasters during

their childhood. In 95% of the cases, children will be protected from infection

for at least 20 years and may even acquire immunity for life (World Health Or-

ganization, 2015). Hence, in 1991 the world health organisation recommended

that hepatitis B vaccination should be included in national immunization pro-

grammes in all countries with chronic carriers prevalence of 8% by 1995 and all

countries by 1997 (Anderson & May, 1992).

So, around 2002, 154 countries had routine infant immunization with hep-

atitis B as a national immunization programme (Hou et al., 2005; Lok & McMa-

hon, 2004). As a result, the number of liver cancer cases has diminished (Lok

& McMahon, 2004). Furthermore, to reduce HBV infection to a larger extent, it

is recommended to vaccinate other high-risk groups such as individuals who re-

quire transplantations or dialysis, health care workers, travellers before visiting

endemic areas, people in prisons or people with multiple sexual partners (World

Health Organization, 2015). In 1983, the world health organisation designed

and initiated a demonstration project on a large scale controlled clinical trial to

vaccinate 80, 000 newborns in high incidence areas such as Qidong in Jiangsu

province in China (Sun et al., 2002; Tsung-Tang et al., 1986; Zuckerman et al.,

1983). This is because, since about 20 million children are born in China ev-

ery year, national hepatitis B immunization would offer protection to about 1.5
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million children from becoming HBV chronic carriers in China every year. The

vaccine gives positive predictions about the eradication of the disease. How-

ever, it will take a longer time before vaccination will be available to everybody.

Hence, we need good therapy to treat individuals that are already infected and

have progress into the chronic carriers stage of the hepatitis B virus infection.

Treatment of Chronic HBV Infection as a Control Strategy

In this section, we will elaborate and review the literature on the important

role play by the treatment of infected patients in the control and prevention of

hepatitis B infections. Treatment of hepatitis B virus infection is the process

of improving liver histology and reducing the risk of progression in a desirable

control in addition to newborns vaccination designated as a high priority to pre-

vent the disease. Chronic hepatitis B infection has been proven to be a difficult

disease to overcome. Hence, there is a need for long therapies in many cases

(Rodriguez, 2016). In any viral infection, a therapy could lose its effectiveness

with time since the virus may develop resistance to the drugs. When an infected

person is diagnosed with chronic HBV infection (this means the individual is

capable of transferring the disease to a susceptible person in the population), if

the infected person is in the early stages of the chronic infection and the level

of antigens is low, it is always advisable for the patient to wait until the virus

replication is complete and the damage of the liver is high before going in for

any therapy. However, the decision depends on each patient’s situation and pre-

disposition to other diseases such as cirrhosis or HCC (Lok, 2015).

There are currently seven approved drugs for the treatment of chronic

hepatitis B virus disease. They include two formulations of interferon (IFN),

conventional and pegylated IFN (PEG-IFN), five nucleoside or nucleotide ana-

logues, lamivudine (LMV), telbivudine, adefovir, entecavir and tenofovir (Lok,

2015). Among these seven approved drugs, treatment with nucleoside or nu-

cleotide analogues is the most efficient and effective because it inhibits virus
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replication in most patients for at least five (5) years long (Lampertico et al.,

2009). Also, all nucleoside or nucleotide analogues are known to reduce drug

resistance, so in most cases treatment is delayed or stopped which is frequently

in a virus relapse (Lampertico et al., 2009).

Mathematical models have proved beneficial for the understanding of the

virus and drugs dynamics under drug therapy infections such as human immun-

odeficiency virus (HIV), Hepatitis C virus (HCV) and hepatitis B virus (HBV)

(Perelson, 2002; Tsiang et al., 1999; Zeuzem et al., 1997; Perelson et al., 1997).

To get a clear understanding of these virus-host dynamics, various studies con-

ducted by some researchers focused on the combination of clinical data and

mathematical models. Hence, (Guidotti et al., 1996) have shown that a strong

immune response is a success to overcome an infectious disease. For hepatitis

B disease, in particular, various studies have been made to understand the effi-

cacy of drugs in curing the disease. Lewin et al. (2001) estimated 95% lamivu-

dine efficacy in preventing new hepatitis B virus production which can be in-

creased to 99% when combined with famciclovir. Furthermore, clinical data

have shown that, in the case of HBV, for patients that are undergoing therapy,

most of the virus decay profiles are biphasic (Tsiang et al., 1999; Zeuzem et al.,

1997; Nowak et al., 1996). However, mathematical models applied to the same

data have shown that for some patients, drug therapy yields faster clearance of

the virus whereas, for other patients, the clearance is much slower (Lewin et al.,

2001). Hence, the incorporation of treatment parameter as a control strategy to

study the hepatitis B virus disease will pave a way for its total eradication.

Role of Imperfect Vaccination in Controlling HBV Infection

In this section, how imperfect vaccination contributes to the ongoing trans-

mission of hepatitis B virus infections was elaborated. Despite an effective vac-

cination program for newborn babies since the 1990s and treatment of infected

patients, which has reduced chronic HBV infection in children (Centers for Dis-
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ease Control and Prevention, 2007; Cui et al., 2006), the incidence of hepatitis

B virus infection is still on an increasing rate from 21.9% in 100, 000 people

in 1990 to 53.3% in 100, 000 in 2003 (Wang et al., 2004). Imperfect vaccina-

tion is one of the defining issues in connection to the hepatitis B virus (HBV)

transmission of our time. So, it is important to forecast the long-term trends in

hepatitis B virus (HBV) prevalence and provide useful information for public

health decision making. One of the feasible methods to predict the prevalence

of any infectious disease is to use a mathematical model (Liang et al., 2017).

The control of hepatitis B virus disease using mathematical models has

proved to be difficult even in countries that maintain high vaccination coverage.

Again, this may be due to the use of imperfect vaccine and there has been a lot of

work done on the different modes by which vaccines might fail (Magpantay et

al., 2014). Different types of vaccines can have different impacts on population-

level dynamics. The three main types of the imperfect vaccine include; the

vaccine that reduces the probability of infection upon exposure by the factor ε,

the vaccine that does not protect a fraction ε of the vaccinees and perfect life-

time immunity to the remaining population and the vaccine that provides perfect

protection to each vaccinee for an exponentially distributed time after which the

vaccinee becomes as susceptible as unvaccinated individuals (Magpantay et al.,

2014). The probability of immunity waning within a vaccinated individual’s

lifetime is given by ε. These imperfect vaccines may not completely prevent

the infections but could reduce the probability of been infected or reduce the

consequences of being infected thereby reducing the disease burden.

According to McLean & Blower (1993), when a vaccine only reduces the

probability of infection upon exposure but does not eliminate the disease it is

called failure in degree; when a vaccine does not protects some individuals but

provide complete protection in others, it is called failure in taking. However,

when the protection conferred wanes over time, this is called failure in duration.

28

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Halloran et al. (1992) also used the term leaky vaccine to describe a vaccine that

only exhibits failure in degree, the all-or-nothing vaccine for the vaccine that

demonstrates a failure in taking and a vaccine that displays failure in duration

as a waning vaccine.

According to Farrington (2003), the vaccine for pertussis is described as

a possibly leaky vaccine, those for measles and rubella as an all-or-nothing vac-

cine and the vaccine for cholera as a waning vaccine. The direct effects of these

vaccines at the individual level are given in their descriptions, but the indirect

protection that they confer as a result of a reduction in the disease transmission

is not easily surmised from the individual effects. Since the hepatitis B vaccine

does not provide the vaccinee with permanent immunity (World Health Organi-

zation, 2015; Zou et al., 2010), it follows that the vaccine for HBV is imperfect

which contributes to the ongoing transmission.

Chapter Summary

The review in this chapter was about the use of different mathematical

models to study the transmission dynamics and mechanisms of hepatitis B virus

infections and the important role, vaccination, treatment and imperfect vaccina-

tion play in controlling the hepatitis B virus disease. The history behind using

mathematical models as a tool for studying and controlling infectious diseases

was also discussed. The models were base on the characteristics of hepatitis B

virus transmission dynamics. While some of the studies based the hepatitis B

virus transmission dynamics on the standard SIR model, others equally based

their hepatitis B virus transmission dynamics on variations of the standard SIR

model. The basic reproductive number, R0 was determined in both models and

used for the analyses of whether the hepatitis B virus disease will be endemic in

the entire population or not. So, this study looked at the hepatitis B virus trans-

mission dynamics by using a deterministic model based on variations and mod-

ifying the standard SIR model developed by (Kermack & McKendrick, 1927).
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Despite the numerous studies done in fighting this hepatitis B virus dis-

ease, to the best of our knowledge, there has not been any mathematical mod-

elling of hepatitis B virus transmission dynamics using the SVICTR model that

will incorporate imperfect vaccination, perfect vaccination and treatment as con-

trol strategies. Hence, a combination of this work and the review mathematical

models of hepatitis B virus transmission dynamics above will prove beneficial

and helps in the eradication of this global disease.
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CHAPTER THREE

RESEARCH METHODS

Introduction

Mathematical models for hepatitis B virus disease can either be a deter-

ministic model or a stochastic model. Deterministic models are models which

have a finite number of compartments where the mechanisms by which individ-

uals move from one compartment to another are specified through a series of

ordinary differential equations. Stochastic models on the other hand are mod-

els that deal with estimating probability distributions of potential outcomes by

allowing for random variation in one or more inputs over some time. Hence,

Stochastic models depend on the chance variations in the risk of exposure, dis-

ease and other illness dynamics. In this chapter, we model the spread of hepati-

tis B virus disease using the characteristics of the hepatitis B virus transmission

dynamics. Hence, a Susceptible, Vaccination, Acutely infected, Chronic carri-

ers, Treatment and Recovered (SV ICTR) model will be formulated based on

the deterministic approach and develop a system of differential equations and

expressions for which the equilibrium points, basic reproduction number and

stabilities of these equilibrium points will be determined.

The Existing Model

We begin the model formulation by introducing the model by J. Zhang

& Zhang (2018). We first present the assumptions, flowchart, parameters and

equations of the existing model followed by the assumptions, flowchart, equa-

tions and parameters of the modified and extended model.

Basic Model Assumptions of Existing Model

(A1) Vertical transmission from mother to child was incorporated. That is new-

borns to carrier mothers infected at birth proceed to the chronic carrier

state immediately.
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(A2) Recruitment into the susceptible population is simplified as a new birth

and the birth rate and death rate are assumed identical (ie λ = µ0).

(A3) Infected individuals who experience treatment failure move back only to

the chronic compartment due to the short period of acute infection.

(A5) Exit out of the population is by natural death only and no HBV-related

death.

(A6) Immunity acquired by treatment and vaccination is for lifelong.

(A7) Chronic carriers can clear the virus and become immune at the rate γ2.

The general process of this model is shown in Figure 3 below.

S I C

R

T

h(1− νC) gS

(1− ρ)γ1I
τ2CδT

ργ1I

τ1I

σT

γ2C

λω

µ0S µ0I µ0C

µ0R

µ0T

νhC

Figure 3: The schematic diagram of HBV Transmission dynamics, where g =
(β1I + η1C + η2T ) and h = λ(1− ω).

The remaining parameters are defined in detailed in Table 2 and Table 3

below.
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Table 2: State variables of exiting model and their description

Variables Description

S Susceptible individuals

I Acutely infected individuals

C Chronic carriers

T Treated individuals

R Immunized individuals

Table 3: Parameters of exiting model and their description

Parameter Description

λ birth rate

µ0 natural human mortality rate

ν probability of children been vertically infected

σ successful treatment rate

γ1 acute infection progressive rate

τ1 treatment rate for acute infection

τ2 treatment rate for chronic carriers

ω successfully immunized proportion

δ unsuccessfully treatment rate

β1 reduced transmission rate relative to acute infection

η1 reduced transmission rate relative to chronic carriers

η2 reduced transmission rate relative to treatment

ρ average probability of failing to clear acute infection

γ2 rate of clearing chronic infection
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Equations of the Existing Model

From the model digram in Figure 3 above, we obtain a system of five (5)

differential equations.



S ′(t) = λ (1− ω) (1− νC)− (β1I + η1C + η2T )S − µ0S,

I ′(t) = (β1I + η1C + η2T )S − (µ0 + γ1 + τ1) I,

C ′(t) = ργ1 + λ (1− ω) νC + δT − (µ0 + γ1 + τ2)C,

T ′(t) = τ1I + τ2C − (µ0 + σ + δ)T,

R′(t) = λω + (1− ρ) γ1I + γ2C + σT − µ0R.

The Extended Model

Based on the fact that hepatitis B vaccination is not completely effective

due to imperfect vaccination, we present a mathematical formulation of a com-

partmental model of hepatitis B virus transmission dynamics using SV ICTR

model with vaccination and treatment as intervention strategies that will also

incorporate imperfect vaccination. We divide the total population N(t) into

six compartments. They include; Susceptible individuals S(t), Vaccinated indi-

viduals V (t), Acutely infected individuals A(t), Chronic carriers C(t), Treated

individuals T (t), Immunized individuals R(t) and obtain a system of six (6)

ordinary differential equations.

Basic Model Assumptions of the Extended Model

In addition to the assumptions made by J. Zhang & Zhang (2018) except

(A1), (A5), (A6) and (A7), we make the following assumptions:

(A1) We assume that vaccination with hepatitis B vaccine can reduce but not

eliminate the susceptibility of infection. We model this by including a fac-

tor ε ∈ [0, 1] in the infection rate to vaccinated individuals when contact

with infected individuals and (1− ε) describes the vaccine efficacy.
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(A2) We assume that immunity acquired by vaccination is not life long, hence

making the vaccine imperfect.

(A3) We take no consideration of vertical transmission from carrier mothers to

unborn babies since it is not a hundred per cent (100%).

(A4) We also consider HBV-induced death (µ1) due to treatment failure, and

infected individuals may die as a result of the disease.

The general process of the extended model is shown in Figure 4 below.

S I C

V

R

T

λ(1− ω) xS

θS ψV

wI

τ2CδT

ργ1I

τ1I

σT

zV

λω

µ0S µ0I (µ0 + µ1)C

µ0R

µ0Tµ0V

λ

Figure 4: The schematic diagram of HBV transmission dynamics in the pres-
ence of regular interventions, where w = (1−ρ)γ1, x = β(I+η1C+
η2T ) and z = β (1− ε) (I + η1C + η2T ).

The remaining parameters and variables are defined in detailed in Table 4

and Table 5 respectively.
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Table 4: State variables of extended model and their description

Variables Description

S Susceptible individuals

V Vaccinated individuals

I Acutely infected individuals

C Chronic carriers

T Treated individuals

R Immunized individuals

Table 5: Parameters of extended model and their description

Parameter Description

λ birth rate

µ0 natural human mortality rate

µ1 HBV-related mortality rate

β transmission rate

σ successful treatment rate

γ1 acute infection progressive rate

τ1 treatment rate of acute infection

τ2 treatment rate of chronic carriers

ω successfully immunized proportion

ρ average probability of failing to clear acute infection

δ unsuccessfully treatment rate

ψ rate of waning vaccine- induced immunity

η1 reduced transmission rate relative to chronic infections

η2 reduced transmission rate relative to treatment

θ vaccination rate of susceptible individuals

ε vaccine efficacy rate
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Equations of the Extended Model

From the model diagram in Figure 4, we obtain a system of six (6) ordi-

nary differential equations that describe hepatitis B virus transmission dynamics

with the vaccination and treatment as control strategies that will incorporate im-

perfect vaccination. We derived the following system of non-linear ordinary

differential equations:

dS

dt
= λ (1− ω) + ψV − [β (I + η1C + η2T ) + (θ + µ0)]S,

dV

dt
= θS − [(µ0 + ψ) + β (1− ε) (I + η1C + η2T )]V,

dI

dt
= β (I + η1C + η2T )S + β (1− ε) (I + η1C + η2T )V

− (γ1 + τ1 + µ0) I,

dC

dt
= ργ1I + δT − (µ0 + µ1 + τ2)C,

dT

dt
= τ1I + τ2C − (δ + σ + µ0)T,

dR

dt
= λω + (1− ρ) γ1I + σT − µ0R.



(3.1)

Reduced System

Since the variable R does not appear in the other equations in system

Eq. (3.1), the equation of R can be discarded, and the reduced system which is

studied has the same dynamical behaviour as the original system in Eq. (3.1).

Hence the reduced form of the model system without the ordinary differential
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equation for R is given as

dS

dt
= λ (1− ω) + ψV − [β (I + η1C + η2T ) + (θ + µ0)]S,

dV

dt
= θS − [(µ0 + ψ) + β (1− ε) (I + η1C + η2T )]V,

dI

dt
= β (I + η1C + η2T )S + β (1− ε) (I + η1C + η2T )V

− (γ1 + τ1 + µ0) I,

dC

dt
= ργ1I + δT − (µ0 + µ1 + τ2)C,

dT

dt
= τ1I + τ2C − (δ + σ + µ0)T.



(3.2)

Basic Model Properties

In this section, we present the positivity and boundedness of solutions of

the extended model.

Positivity of Solutions

For the system in Eq. (3.2) to be biologically meaningful, we need to prove

that all the state variables in the model system are non-negative. Thus, given

any positive initial condition, the solutions of the model equation will remain

positive.

Lemma 1

Given that the initial solutions and parameters of the system in Eq. (3.2) are

positive, the solutions S(t), V (t), I(t), C(t) and T (t) are non-negative for all

t ≥ 0.

Proof. Let us consider

κ = sup{t > 0 : S(t) > 0, V (t) ≥ 0, I(t) ≥ 0, C(t) ≥ 0, and T (t) ≥ 0},
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this implies that

S(t) > 0, V (t) ≥ 0, I(t) ≥ 0, C(t) ≥ 0

and T (t) ≥ 0 ∀ t ∈ [0, κ).

Considering the first equation of the model system in Eq. (3.2), we have

dS

dt
= λ (1− ω) + ψV − [β (I + η1C + η2T ) + (θ + µ0)]S,

it follows that

dS

dt
≥ − [β (I + η1C + η2T ) + (θ + µ0)]S ∀ t ∈ [0, κ).

Separating of variables and integrating, we obtain

S(κ) ≥ S(0) exp

{
− (θ + µ0)κ

−β
(∫ κ

0

I(t)dt+ η1

∫ κ

0

C(t)dt+ η2

∫ κ

0

T (t)dt

)}
> 0.

For the second equation of the model system in Eq. (3.2), we have

dV

dt
= θS − [(µ0 + ψ) + β (1− ε) (I + η1C + η2T )]V,

it follows that

dV

dt
≥ − [(µ0 + ψ) + β (1− ε) (I + η1C + η2T )]V.
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Upon separating variables and integration, we obtain

V (κ) ≥ V (0) exp

{
− (µ0 + ψ)κ

−β (1− ε)
(∫ κ

0

I(t)dt+ η1

∫ κ

0

C(t)dt+ η2

∫ κ

0

T (t)dt

)}
≥ 0.

For the third equation of the model system in Eq. (3.2), we have

dI

dt
= β (I + η1C + η2T )S + β (1− ε) (I + η1C + η2T )V

− (γ1 + τ1 + µ0) I,

it follows that

dI

dt
≥ − (γ1 + τ1 + µ0) I, ∀ t ∈ [0, κ).

Separating variables and integrating gives

I(κ) ≥ I(0) exp [− (γ1 + τ1 + µ0)κ] ≥ 0.

Similarly, the remaining equations give the following

C(κ) ≥ C(0) exp [− (µ0 + µ1 + τ2)κ] ≥ 0,

and

T (κ) ≥ T (0) exp [− (δ + σ + µ0)κ] ≥ 0.

In conclusion, we have prove that the solutions S(t) > 0, V (t) ≥ 0, I(t) ≥ 0,

C(t) ≥ 0 and T (t) ≥ 0 for all t > 0.
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Boundedness of Solutions

Given the initial conditions of the model system in Eq. (3.2) to be S(0) > 0,

V (0) ≥ 0, I(0) ≥ 0, C(0) ≥ 0 and T (0) ≥ 0 and the fact that the model system

we have monitors human population, it follows that the total population is given

by

N(t) = S(t) + V (t) + I(t) + C(t) + T (t).

Hence, the rate at which the total population is changing over some time is given

dN

dt
= λ− µ0N − µ1C. (3.3)

We have the following results on the boundedness of the model system in Eq. (3.2).

Lemma 2

The feasible region Ω is defined by the set:

Ω =

{
(S(t), V (t), I(t), C(t), T (t)) ∈ R+

5|

S(t) + V (t) + I(t) + C(t) + T (t) ≤ λ

µ0

}
.

From Eq. (3.3), we have

dN

dt
+ µ0N ≤ λ. (3.4)

Since Eq. (3.4) is a standard form first-order differential equation, we use the

integrating factor approach to solve it. Hence, the solution for Eq. (3.4) is given

by

N(t) ≤ λ

µ0

+

(
N0 −

λ

µ0

)
e−µ0t,
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where N0 = N(0). Hence, as t → ∞, N(t) → λ
µ0

. So, if N0 ≤ λ
µ0

, the

total population at time t is bounded above by
λ

µ0

. Therefore, for any solution

{S(0) > 0, V (0) ≥ 0, I(0) ≥ 0, C(0) ≥ 0, and T (0) ≥ 0} at

t > 0 of the system in Eq. (3.2) of the total population that begins in R+
5 either

remains in or approaches Ω asymptotically. Similarly, if N0 > 0 then the total

population will decrease and later approaches Ω asymptotically. Hence, the

region Ω is positively invariant and attracting with respect to the model system

in Eq. (3.2).

Model Steady State

In this section, we investigate the equilibrium points of the model. Equi-

librium points are points where the state variables do not change with time.

Hence, at equilibrium, the system in Eq. (3.2) becomes,

λ (1− ω) + ψV − [β (I + η1C + η2T ) + (θ + µ0)]S = 0,

θS − [(µ0 + ψ) + β (1− ε) (I + η1C + η2T )]V = 0,

β (I + η1C + η2T )S + β (1− ε) (I + η1C + η2T )V − (γ1 + τ1 + µ0) I = 0,

ργ1I + δT − (µo + µ1 + τ2)C = 0,

τ1I + τ2C − (δ + σ + µ0)T = 0.

Disease-free Equilibrium (DFE)

At the disease-free equilibrium, we assume that there is no hepatitis B

virus in the population and as a result, there is no transmission of the virus

that will either lead to acute or chronic infection and hence no treatment of

individuals in the population. Therefore, at the disease-free equilibrium, we
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have I? = C? = T ? = 0 so that

λ (1− ω) + ψV ? − θS? − µ0S
? = 0, (3.5)

θS? − µ0V
? − ψV ? = 0. (3.6)

Solving Eq. (3.5) and Eq. (3.6) simultaneously, we obtain

S? =
λ (1− ω) (µ0 + ψ)

µ0 (θ + µ0 + ψ)
,

V ? =
θλ (1− ω)

µ0 (θ + µ0 + ψ)
.

Therefore, the disease-free equilibrium is given as

E0 (S?, V ?, I?, C?, T ?) =

(
λ (1− ω) (µ0 + ψ)

µ0 (θ + µ0 + ψ)
,

θλ (1− ω)

µ0 (θ + µ0 + ψ)
, 0, 0, 0

)
.

Basic Reproduction Number; R0

In this section, we compute the basic reproduction number, R0. The basic

reproduction number denoted by R0 is the average number of secondary HBV

infections caused by an individual infected patient during his/her entire period

of infectiousness (Diekmann & Heesterbeek, 2000). We use the next generation

matrix operator to compute the basic reproduction number. By the next gen-

eration matrix operator, the basic reproduction number is the spectral radius of

the next-generation matrix denoted by π(FV −1); where F is the rate at which

secondary infection increases the infected compartment and V the rate at which

infection progression and recovery decrease the infected compartment.

The basic reproduction number is significant non-dimensional quantity in

hepatitis B virus transmission dynamics as it serves as the threshold in the study
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of the infection both for predicting its outbreak and for evaluating its control

strategies. Thus, whether an infection becomes persistent or dies out in the

entire population depends on the value of the basic reproduction number R0.

Moreover, the stability of both the disease-free and endemic equilibria can be

analysed using R0. If R0 < 1, it means that every infected person will cause

less than one secondary infection and hence the hepatitis B virus will die out

and when R0 > 1, every infected person will cause more than one secondary in-

fection and hence the hepatitis B virus will invades the entire population. From

the model system in Eq. (3.2), we denote Fi to be the rate at which secondary

infection increases the ith infected compartment and by Vi the rate at which in-

fection progression and recovery decrease the ith compartment. It follows that

the epidemic hepatitis B virus model is given as

dx

dt
= Fi(x)− Vi(x).

Hence,

Fi =


β (I + η1C + η2T )S + β (1− ε) (I + η1C + η2T )V

0

0

 and

Vi =


(γ1 + τ1 + µ0) I

−ργ1I − δT + (µ0 + µ1 + τ2)C

−τ1I − τ2C + (δ + σ + µ0)T

 .

Taking the Jacobian of Fi at the DFE, we have
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Fi =


βλ(1−ω)χ
µ0(θ+µ0+ψ)

βλη1(1−ω)χ
µ0(θ+µ0+ψ)

βλη2(1−ω)χ
µ0(θ+µ0+ψ)

0 0 0

0 0 0

 ,

where

χ = (µ0 + ψ) + θ (1− ε) .

Also, taking the Jacobian of Vi at the DFE, we have

Vi =


γ1 + τ1 + µ0 0 0

−ργ1 µ0 + µ1 + τ2 −δ

−τ1 −τ2 δ + σ + µ0

 .

It follows that

R0 = π(F · V−1),

which gives

R0 = R1 + R2 + R3,

where

R1 =
βλ (1− ω) [(µ0 + ψ) + θ (1− ε)]
µ0 (θ + µ0 + ψ) (γ1 + τ1 + µ0)

,

R2 =
βλη1 (1− ω) [(µ0 + ψ) + θ (1− ε)] (ργ1 (δ + σ + µ0) + δτ1)

µ0 (θ + µ0 + ψ) (γ1 + τ1 + µ0) [(µ0 + µ1 + τ2) (δ + σ + µ0)− δτ2]
,
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R3 =
βλη2 (1− ω) [(µ0 + ψ) + θ (1− ε)] (ργ1τ2 + τ1 (µ0 + µ1 + τ2))

µ0 (θ + µ0 + ψ) (γ1 + τ1 + µ0) [(µ0 + µ1 + τ2) (δ + σ + µ0)− δτ2]
.

The basic reproduction number, R0 is observed to be the sum of the reproduction

number for the three infectious compartments. Thus R1 is the average number

of secondary infection from the acutely infected compartment. Similarly, R2 is

the average number of secondary infection from the chronically infected com-

partment whiles R3 represent that of the treatment compartment. This shows

the effect each compartment had on the HBV transmission dynamics. When the

transmission rate is zero (β = 0), then R0 = 0 and no acutely or chronically

or treatment is reproducing any new cases of HBV infection. However, when

no one show any symptoms of chronic HBV infection and no one is undergo-

ing treatment of HBV disease (η1 = 0, η2 = 0); we have the reproduction of

new infection from the acutely infected individuals only. Thus we cannot have

chronic HBV infections without acute infection. Therefore, the reproduction

number for both chronic infection and treatment cannot stand alone.

Endemic Equilibrium (EE)

In this section, we determine the endemic equilibrium point by solving the

system in Eq. (3.2) simultaneously for the state variables. The endemic equilib-

rium points are the steady-state solutions where the hepatitis B virus cannot be

eradicated but remains in the total population. At the endemic equilibrium, the

following equations are satisfied:

λ (1− ω) + ψV ? − [β (I? + η1C
? + η2T

?) + (θ + µ0)]S
? = 0,

θS? − [(µ0 + ψ) + β (1− ε) (I? + η1C
? + η2T

?)]V ? = 0,

β (I? + η1C
? + η2T

?)S? + β (1− ε) (I? + η1C
? + η2T

?)V ?

− (γ1 + τ1 + µ0) I
? = 0,

ργ1I
? + δT ? − (µ0 + µ1 + τ2)C

? = 0,

τ1I
? + τ2C

? − (δ + σ + µ0)T
? = 0.



(3.7)
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Let assume with positive constant

ε0 = λ (1− ω) ,

ε1 = θ + µ0,

ε2 = µ0 + ψ,

ε3 = γ1 + τ1 + µ0,

ε4 = µ0 + µ1 + τ2,

ε5 = δ + σ + µ0.

It follows that

ε0 + ψV ? − β (I? + η1C
? + η2T

?)S? − ε1S? = 0,

θS? − ε2V ? − β (1− ε) (I? + η1C
? + η2T

?)V ? = 0,

β (I? + η1C
? + η2T

?)S? + β (1− ε) (I? + η1C
? + η2T

?)V ?

−ε3I? = 0,

ργ1I
? + δT ? − ε4C? = 0,

τ1I
? + τ2C

? − ε5T ? = 0.



(3.8)

So, making T ? the subject from the last equation of the system in Eq. (3.8),

we obtain

T ? =
τ1I

? + τ2C
?

ε5
. (3.9)

Substituting Eq. (3.9) into the fourth equation of the system in Eq. (3.8) and

make I? the subject, we obtain

I? = φ1C
?. (3.10)
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From Eq. (3.9), we thus have

T ? = φ2C
?. (3.11)

Substituting Eq. (3.10) and Eq. (3.11) into the third equation of the system in

Eq. (3.8) gives

[β (φ1 + η1 + η2φ2)S
? + β (1− ε) (φ1 + η1 + η2φ2)V

? − ε3φ1]C
? = 0.

Here,C? = 0, which corresponds to the DFE determined in the previous section.

The remaining part of the expression gives

βφ3S
? + βφ3 (1− ε)V ? − ε3φ1 = 0,

where

φ3 = φ1 + η1 + η2φ2.

We thus has

S? = φ4 − (1− ε)V ?, (3.12)

where φ4 = ε3φ1
βφ3

.

Substituting Eq. (3.12), Eq. (3.11) and Eq. (3.10) into the second equation

of the system in Eq. (3.8) gives

V ? =
φ7

φ5 + φ6C?
, (3.13)

48

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library





Theorem 1

The model system in Eq. (3.2):

• has a unique positive solution if R0 > 1;

• has two positive equilibria if and only if a1 < 0 for R0 < 1;

• has backward bifurcation phenomenon at R0 = 1;

• otherwise has no positive endemic equilibrium.

We also use numerical simulations to show the stability and existence of

the endemic equilibrium.

Figure 5: Backward bifurcation analysis of the model system in Eq. (3.2) with
the transmission rate β chosen as the bifurcation parameter. The
saddle-node bifurcation occurs at R0 = R?, where the stable endemic
equilibrium node intersects the other unstable endemic equilibrium.

Figure 5 show the bifurcation diagram of the model system in Eq. (3.2).

The infectious population at equilibria against the basic reproduction number

R0 shows a backward bifurcation when R0 = 1, leading to the existence of mul-

tiple endemic equilibria. The lower dashed curve with a negative slope indicates

unstable endemic equilibria and the upper bold curve with a positive slope indi-

cates locally stable endemic equilibria. The diagram shows that when the basic
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reproduction number, R0 is less than one then eradication of the disease depends

on the size of the population under consideration. However, reducing the saddle

node bifurcation value R? called the R0 critical which is obtained by setting the

discriminant of the quadratic polynomial in Eq. (3.15) to zero to gives

R? = 1−
(
a21 + φ10

4a2φ9

)
,

where

Ψ0 = (δ + σ + µ0) (µ0 + µ1 + τ2) [1−Υ] ,

φ9 =
1

µ0 (θ + µ0 + ψ) (γ1 + τ1 + µ0) Ψ0

,

φ10 =
θψ

µ0 (θ + µ0 + ψ)
,

may result in controlling the HBV disease. This condition is guaranteed when

the disease-free equilibrium state is globally asymptotically stable. Thus, an

increase in the vaccine efficacy rate used to vaccinate individuals to a value of

one (ε = 1) will lead to the disappearance of the backward bifurcation curve.

The biological meaning is that with an increase in the efficacy rate which corre-

sponds with the extinction of the backward bifurcation curve, lowering R0 < 1

will be sufficient to eliminate the HBV disease from the population. Hence,

R0 < 1 would be enough to make the disease-free equilibrium globally stable.

Local Stability of the Disease-free Equilibrium

In this section, we determine the local stability of the disease-free equi-

librium by computing the eigenvalues of the linearized Jacobian matrix at the

disease-free equilibrium.

Theorem 2

The disease-free equilibrium of the system in Eq. (3.2) is locally asymptotically

stable if R0 < 1 and unstable if R0 > 1.
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Proof. We use the Jacobian matrix associated with system Eq. (3.2) at the disease-

free equilibrium and obtain

J0 =



w1 ψ −βS? −βη1S? −βη2S?

θ w2 w3 w4 w5

0 0 w6 w7 w8

0 0 ργ1 w9 δ

0 0 τ1 τ2 w10


.

Where

w1 = − (θ + µ0) ,

w2 = − (µ0 + ψ) ,

w3 = −β (1− ε)V ?,

w4 = −βη1 (1− ε)V ?,

w5 = −βη2 (1− ε)V ?,

w6 = βS? + β (1− ε)V ? − (γ1 + τ1 + µ0) ,

w7 = βη1 (S? + V ? (1− ε)) ,

w8 = βη2 (S? + V ? (1− ε)) ,

w9 = − (µ0 + µ1 + τ2) ,

w10 = − (δ + σ + µ0) .

Upon determining the eigen values from the Jacobian matrix J0, we have

(J0 − αI) =



w1 − α ψ −βS◦ −βη1S◦ −βη2S◦

θ w2 − α w3 w4 w5

0 0 w6 − α w7 w8

0 0 ργ1 w9 − α δ

0 0 τ1 τ2 w10 − α


.
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The characteristic equation |J0 − αI| = 0 obtained from the Jacobian

determinant with the eigen values αi (i = 1, 2, 3, 4, 5) is given by

[(w1 − α) (w2 − α)− θψ] [X] = 0, (3.17)

where

X =

∣∣∣∣∣∣∣∣∣∣
w6 − α w7 w8

ργ1 w9 − α δ

τ1 τ2 w10 − α

∣∣∣∣∣∣∣∣∣∣
.

From equation Eq. (3.17), either

(w1 − α) (w2 − α)− θψ = 0 (3.18)

or ∣∣∣∣∣∣∣∣∣∣
w6 − α w7 w8

ργ1 w9 − α δ

τ1 τ2 w10 − α

∣∣∣∣∣∣∣∣∣∣
= 0.

From equation Eq. (3.18), we deduce

α1 = −µ0 < 0,

α2 = − (θ + µ0 + ψ) < 0.

Let

A =


w6 − α w7 w8

ργ1 w9 − α δ

τ1 τ2 w10 − α


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be a sub matrix of det(J0). The characteristic equation |A − αI| = 0 obtained

from the Jacobian determinant with the eigen values αi (i = 3, 4, 5) is given by

α3 + a1α
2 + a2α + a0 = 0. (3.19)

From Eq. (3.19), we have

a1 = %1 + 1− R1,

a2 = %2 −
%3
%4
,

a0 = 1− R0,

where

%1 = µ0 (θ + µ0 + ψ) [(δ + σ + µ0) + (µ0 + µ1 + τ2)] ,

%2 = (γ1 + τ1 + µ0) [(δ + σ + µ0) + (µ0 + µ1 + τ2)]

+ (δ + σ + µ0) (µ0 + µ1 + τ2) ,

%3 = −βλ (1− ω) [(µ0 + ψ) + θ (1− ε)]

× [(δ + σ + µ0) + (µ0 + µ1 + τ2) + ργ1η1 + τ1η2]− δτ2,

%4 = µ0 (θ + µ0 + ψ) .

The coefficients a1 > 0, a2 > 0 and a0 > 0 when R1 < 1, %2 > %3 and R0 < 1

respectively. Also,

a1a2 − a0 = %2 (%1 + 1) +
%3R1

%4
+ R0 −

(
%1%3
%4

+ %2R1 +
%3
%4

+ 1

)
.

Hence a1a2 − a0 > 0 is accomplished when %2 (%1 + 1) + %3R1 +R0 > %1%3 +

%2R1 + %3 + 1.

The Routh-Hurwitz theorem states that the equilibrium state of a system
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will be asymptotically stable if and only if all the eigenvalues of the characteris-

tic equation |J0 − Iα| = 0 have a negative real part. From equation Eq. (3.18),

α1 and α2 of the Jacobian matrix (J0) all have negative real parts. Since a1 > 0,

a2 > 0, a0 > 0 and a1a2 − a0 > 0 when R1 < 1, %2 > %3, R0 < 1 and

%2 (%1 + 1)+%3R1 +R0 > %1%3 +%2R1 +%3 +1 respectively, it follows that, the

DFE state E0 = (S?, V ?, 0, 0, 0) of the model system is locally asymptotically

stable and this complete the proof.

Global Stability of Disease-free Equilibrium

We also apply the approach of (Castillo-Chavez et al., 2002) to prove the

global stability of the disease-free equilibrium. This approach is stated in the

Theorem below.

Theorem 3

If a model system can be written in the form:

dX

dt
= F (X, I),

dI

dt
= G(X, I), G(X, 0) = 0,

where X ∈ Rm denotes the number of uninfected individuals and I ∈ Rn

denotes the number of infected individuals including latent, acute, infectious

e.t.c. U0 = (X?, 0) denotes the disease-free equilibrium of the system. Then,

the conditions (H1) and (H2) below must satisfied to guarantee local asymptotic

stability.

(H1) for dX
dt

= F (X?, 0), X? is globally asymptotically stable.

(H2) G(X, I) = AI − Ĝ(X, 0) ≥ 0 for (X, I) ∈ Ω, where A = D1G(X?, 0)

is a Metzler matrix (the off diagonal elements of A are non-negative) and

Ω is the region where the model makes biological sense and well-posed.
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Then the fixed point U0 = (X?, 0) is globally asymptotically stable equi-

librium of the hepatitis B virus model system in Eq. (3.2) provided R0 < 1.

Theorem 4

The disease-free equilibrium of the model system E0 = (S?, V ?, 0, 0, 0) is glob-

ally asymptotically stable if R0 < 1 and the conditions (H1) and (H2) are

satisfied.

Proof. From the model system in Eq. (3.2), X ∈ R2 = (S, V ) and I ∈ R3 =

(I, C, T ). Hence for condition (H1), we have

F (X, 0) =

λ (1− ω) + ψV − (θ + µ0)S

θS − (µ0 + ψ)V

 .

So, for the equilibrium U0 = (X?, 0), the system reduces to

dS(t)

dt
= λ (1− ω) + ψV − (θ + µ0)S,

dV (t)

dt
= θS − (µ0 + ψ)V.

It follows that

F (X, 0) =

− (θ + µ0) ψ

θ − (µ0 + ψ)

 .

The characteristics polynomial of the system is given by

α2 + α (2µ0 + θ + ψ) + (µ0 + θ) (µ0 + ψ) [1− L] = 0, (3.20)

where

L =
θψ

(µ0 + θ) (µ0 + ψ)
< 1.
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Since all the coefficients of the characteristics polynomial in Eq. (3.20) are pos-

itive, by the Routh-Hurwitz criterion the solutions to the characteristic polyno-

mial have negative real parts. This means that the eigenvalues have negative

real parts. Hence, X? is always globally asymptotically stable. Also, applying

Theorem 3 to the hepatitis B virus model system in Eq. (3.2) gives

G(X, I) = AI − Ĝ(X, I)

=


Θ− (γ1 + τ1 + µ0) Θη1 Θη2

ργ1 − (µ0 + µ1 + τ2) δ

τ1 τ2 − (δ + σ + µ0)



I

C

T



−


β (I + η1C + η2T ) (S? − S)

β (1− ω) (I + η1C + η2T ) (V ? − V )

0

 ,

where Θ = βS?+β (1− ω)V ?. So,A is a Metzler matrix with non-negative off

diagonal elements. Also, it follows from Eq. (3.3) that, as t→∞, (I, C, T )→

(0, 0, 0). Therefore, Ĝ(X, I) ≥ 0 and the disease-free equilibrium is globally

asymptotically stable.

Stability of the Endemic Equilibrium

In this section, we present a stability analysis of the endemic equilibrium

point. However, the system in Eq. (3.2) gave rise to multiple endemic equi-

librium points which shows a bifurcation phenomenon at R0 = 1. When the

disease-free equilibrium is locally asymptotically stable for R0 < 1, then the

endemic equilibrium co-exist with the disease-free equilibrium due to a back-

ward bifurcation phenomenon of the system in Eq. (3.2). Also, when R0 < 1,

the global stability of the disease-free equilibrium ensures that any endemic

equilibrium that exists will be unstable. Therefore, the two endemic equilibria

that exist for the case when R0 < 1 and a0 > 0 are unstable. The occurrence of
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a backward bifurcation plays an important role in the epidemiological control

measures of hepatitis B virus, since an epidemic may persist at a steady-state

even when R0 < 1. So, we are interested to know the properties of an endemic

equilibrium for R0 > 1 by the use of Centre Manifold Theory. We shall estab-

lish the conditions necessary and sufficient on the parameter values that cause

the bifurcation phenomenon to the system in Eq. (3.2) based on the used of

Centre Manifold Theory proposed by Castillo-Chavez & Song (2004).

Theorem 5

Consider the following general system of ordinary differential equations with a

parameter ε such that

dx

dt
= f(x, ε), f : Rn × R 7→ R, and f ∈ C2(Rn × R). (3.21)

Without loss of generality, it is assumed that x = 0 is an equilibrium for the

system in Eq. (3.21) for all values of the parameter ε, (i.e f(0, ε) = 0). We

assume that

(A1) A = Dxf(0, 0) =
(
∂fi
∂xi
, 0, 0

)
is the linearized matrix of the system in

Eq. (3.21) around the equilibrium point x = 0 with ε evaluated at zero

which is the simple eigenvalue of A and all other eigenvalues of A have

negative real parts.

(A2) Matrix A has a non-negative right eigenvector q and a left eigenvector v

corresponding to the zero eigenvalue. Let fk be the kth component of f

and

a =
5∑

i,j,k=1

vkqiqj
∂2fk(0, 0)

∂xi∂xj
,

b =
5∑

i,k=1

vkqi
∂2fk(0, 0)

∂xi∂β
.


(3.22)
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The local dynamics of the system in Eq. (3.21) around 0 are totally determined

by a and b.

(i) In the case where a > 0, b > 0, when ε < 0 with ε close to zero, x = 0 is

unstable; when 0 ≤ ε ≤ 1, x = 0 is unstable and there exists a negative

and locally asymptotically stable equilibrium;

(ii) In the case where a < 0, b < 0, when ε < 0 with |ε| close to zero,

x = 0 is locally asymptotically stable and there exists a positive unstable

equilibrium; when 0 ≤ ε ≤ 1, x = 0 is locally asymptotically stable and

there exists a positive unstable equilibrium;

(iii) In the case where a > 0, b < 0, when ε < 0 with |ε| close to zero,

x = 0 is unstable and there exists a locally asymptotically stable negative

equilibrium; when 0 ≤ ε ≤ 1, x = 0 is locally unstable and a positive

unstable equilibrium occurs;

(iv) In the case where a < 0, b > 0, when ε < 0 changes from negative to pos-

itive, x = 0 changes its stability from stable to unstable. Correspondingly

a negative unstable equilibrium becomes positive and locally asymptoti-

cally stable. Particularly, if a > 0 and b > 0, then a backward bifurcation

occurs at ε = 0.

Application of Centre Manifold Theory to Local Stability of Endemic Equi-

librium

To apply the stable Centre Manifold Theory to the model system in Eq. (3.2),

we change the state variables by letting x1 = S(t), x2 = V (t), x3 = I(t),

x4 = C(t) and x5 = T (t) so that the total host population N(t) = S(t) +

V (t) + I(t) + C(t) + T (t) becomes N(t) = x1 + x2 + x3 + x4 + x5. Further-

more, by using vector notation, x = [S(t), V (t), I(t), C(t), T (t)], the system
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can be written in the form

dx

dt
= (f1, f2, f3, f4, f5) as follows;

dx1
dt

= f1 = λ (1− ω) + ψx2 − [β (x3 + η1x4 + η2x5) + (θ + µ0)]x1,

dx2
dt

= f2 = θx1 − [(µ0 + ψ) + β (1− ε) (x3 + η1x4 + η2x5)]x2,

dx3
dt

= f3 = β (x3 + η1x4 + η2x5)x1 + β (1− ε) (x3 + η1x4 + η2x5)x2

− (γ1 + τ1 + µ0)x3,

dx4
dt

= f4 = ργ1x3 − (µ0 + µ1 + τ2)x4 + δx5,

dx5
dt

= f5 = τ1x3 + τ2x4 − (δ + σ + µ0)x5.

The Jacobian matrix evaluated at the disease-free equilibrium

E0 = (S?, V ?, 0, 0, 0) with β = β? is given as

J1 =



−ε1 ψ −βS? −βη1S? −βη2S?

θ −ε2 −w3 −w4 −w5

0 0 w6 w7 w8

0 0 ργ1 −ε4 δ

0 0 τ1 τ2 −ε5


,
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where

w3 = β (1− ε)V ?,

w4 = βη1 (1− ε)V ?,

w5 = βη2 (1− ε)V ?,

w6 = βS? + β (1− ε)V ? − ε3,

w7 = βη1 (S? + V ? (1− ε)) ,

w8 = βη2 (S? + V ? (1− ε)) .

Choosing β as the bifurcation parameter and solving for β = β? when R0 = 1,

we obtain

β? =
µ0 (θ + µ0 + ψ) (γ1 + τ1 + µ0) Ψ0

Ψ5 [Ψ0 + η1 (ργ1 (δ + σ + µ0) + δτ1) + η2 (ργ1τ2 + τ1 (µ0 + µ1 + τ2))]
,

with

Ψ0 = (δ + σ + µ0) (µ0 + µ1 + τ2) (1−Υ) ,

Υ =
δτ2

(δ + σ + µ0) (µ0 + µ1 + τ2)
< 1,

Ψ5 = λ (1− ω) [(µ0 + ψ) + θ (1− ε)] .

The Jacobian matrix J1 of the linearized system has a simple zero eigen-

value and all other eigenvalues have negative real parts. Hence, the Centre Man-

ifold Theory can be used to analyse the stability dynamics of the model system

in Eq. (3.2). For the case when R0 = 1, it can be shown that the Jacobian ma-

trix J1 has a right eigenvector q = (q1, q2, q3, q4, q5)
T corresponding to the zero
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eigenvalue obtain by solving



−ε1 ψ −βS? −βη1S? −βη2S?

θ −ε2 −w3 −w4 −w5

0 0 w6 w7 w8

0 0 ργ1 −ε4 δ

0 0 τ1 τ2 −ε5





q1

q2

q2

q4

q5


=



0

0

0

0

0


. (3.23)

Solving Eq. (3.23) simultaneously for q1, q2, q3, q4 and q5 in terms of q4, we

have

q1 =

[
βλ (1− ω) [Ψ0 + Ψ1 + Ψ2 + Ψ3]

µ0 (θ + µ0 + ψ) [ργ1 (δ + σ + µ0) + δτ1]

]
q4,

q2 =

[
βλ (1− ω) [Ψ0 + Ψ1 + Ψ2 + Ψ4]

µ0 (θ + µ0 + ψ) [ργ1 (δ + σ + µ0) + δτ1]

]
q4,

q3 =

[
Ψ0

ργ1 (δ + σ + µ0) + δτ1

]
q4,

q5 =

[
ργ1τ2 + τ1 (µ0 + µ1 + τ2)

ργ1 (δ + σ + µ0) + δτ1

]
q4,

we let q4 = 1,
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and

Ψ0 = (δ + σ + µ0) (µ0 + µ1 + τ2) (1−Υ) ,

Ψ1 = η1 (ργ1 (δ + σ + µ0) + δτ1) ,

Ψ2 = η2 (ργ1τ2 + τ1 (µ0 + µ1 + τ2)) ,

Ψ3 =
[
(µ0 + ψ)2 +

[
(θ + µ0) (1− ε) + (θ + µ0)

2 (µ0 + ψ) (1− ε)
]]
,

Ψ4 = [(µ0 + ψ) + (θ + µ0) (1− ε)] .

Similarly, the components of the left eigenvectors of the Jacobian matrix J1

corresponding to the zero eigenvalue is given by v = (v1, v2, v3, v4, v5)
T and

can be obtain from

(
v1 v2 v3 v4 v5

)


−ε1 ψ −βS? −βη1S? −βη2S?

θ −ε2 −w3 −w4 −w5

0 0 w6 w7 w8

0 0 ργ1 −ε4 δ

0 0 τ1 τ2 −ε5


=



0

0

0

0

0


.

Solving the system above simultaneously for v1, v2, v3, v4 and v5 in terms

of v3, we obtain

v1 = v2 = 0,

if and only if

θψ [1− ν?] = 0,

where

ν? =
(θ + µ0) (µ0 + ψ)

θψ
,
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and

v4 =

[
βΨ5 [η1 (δ + σ + µ0) + η2τ2]

µ0 (θ + µ0 + ψ) Ψ0

]
v3,

v5 =

[
βΨ5 [δη1 + η2 (µ0 + µ1 + τ2)]

µ0 (θ + µ0 + ψ) Ψ0

]
v3,

we let

v3 = 1 .

Computation of a and b

From the transformed system, the associated non-zero partial derivatives

of f evaluated at DFE which we need in the computation of a are given as

∂2f3(0, 0)

∂x1∂x3
=

∂2f3(0, 0)

∂x3∂x1
= β,

∂2f1(0, 0)

∂x1∂x3
=
∂2f1(0, 0)

∂x3∂x1
= −β,

∂2f3(0, 0)

∂x1∂x4
=

∂2f3(0, 0)

∂x4∂x1
= βη1,

∂2f1(0, 0)

∂x1∂x4
=
∂2f1(0, 0)

∂x4∂x1
= −βη1,

∂2f3(0, 0)

∂x1∂x5
=

∂2f3(0, 0)

∂x5∂x1
= βη2,

∂2f1(0, 0)

∂x1∂x5
=
∂2f1(0, 0)

∂x5∂x1
= −βη2,

∂2f3(0, 0)

∂x2∂x3
=

∂2f3(0, 0)

∂x3∂x2
= β (1− ε) ,

∂2f3(0, 0)

∂x2∂x4
=

∂2f3(0, 0)

∂x4∂x2
= βη1 (1− ε) ,

∂2f3(0, 0)

∂x2∂x5
=

∂2f3(0, 0)

∂x5∂x2
= βη2 (1− ε) ,
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∂2f2(0, 0)

∂x2∂x3
=

∂2f2(0, 0)

∂x3∂x2
= −β (1− ε) ,

∂2f2(0, 0)

∂x2∂x4
=

∂2f2(0, 0)

∂x4∂x2
= −βη1 (1− ε) ,

∂2f2(0, 0)

∂x2∂x5
=

∂2f2(0, 0)

∂x5∂x2
= −βη2 (1− ε) ,

and all the other second-order partial derivatives are equal to zero.

From

a =
5∑

i,j,k=1

vkqiqj
∂2fk(0, 0)

∂xi∂xj
, it follows that

a = v3

5∑
i,j=1

qiqj
∂2f3(0, 0)

∂xi∂xj
.

Hence,

a = 2v3

{
βq1q3 + βη1q1q4 + βη2q1q5 + β (1− ε) q2q3

+βη1 (1− ε) q2q4 + βη2 (1− ε) q2q5

}
.

By substitution, we obtain

βq1q3 =
2β2λ (1− ω) [Ψ0 + Ψ1 + Ψ2 + Ψ3] Ψ0

µ0 (θ + µ0 + ψ) [ργ1 (δ + σ + µ0) + δτ1]
2 ,

βη1q1q4 =
2β2η1λ (1− ω) [Ψ0 + Ψ1 + Ψ2 + Ψ3]

µ0 (θ + µ0 + ψ) [ργ1 (δ + σ + µ0) + δτ1]
,
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βη2q1q5 =
2β2η2λ (1− ω) [Ψ0 + Ψ1 + Ψ2 + Ψ3] [ργ1τ2 + τ1 (µ0 + µ1 + τ2)]

µ0 (θ + µ0 + ψ) [ργ1 (δ + σ + µ0) + δτ1]
2 ,

β (1− ε) q2q3 =
2β2 (1− ε)λ (1− ω) [Ψ0 + Ψ1 + Ψ2 + Ψ4] Ψ0

µ0 (θ + µ0 + ψ) [ργ1 (δ + σ + µ0) + δτ1]
2 ,

β (1− ε) η1q2q4 =
2β2η1 (1− ε)λ (1− ω) [Ψ0 + Ψ1 + Ψ2 + Ψ4]

µ0 (θ + µ0 + ψ) [ργ1 (δ + σ + µ0) + δτ1]
,

βη2 (1− ε) q2q3 = 2β2η2 (1− ε)λ (1− ω)

[Ψ0 + Ψ1 + Ψ2 + Ψ4] [ργ1τ2 + τ1 (µ0 + µ1 + τ2)]

µ0 (θ + µ0 + ψ) [ργ1 (δ + σ + µ0) + δτ1]
2 .

Therefore, a > 0.

From the transformed system, the associated non-zero partial derivatives

of f evaluated at DFE which we need in the computation of b are given as

∂2f3
∂x3∂β

=
Ψ5

µ0 (θ + µ0 + ψ)
,

∂2f3
∂x4∂β

=
Ψ5η1

µ0 (θ + µ0 + ψ)
,

∂2f3
∂x5∂β

=
Ψ5η2

µ0 (θ + µ0 + ψ)
.
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From

b =
5∑

i,k=1

vkqi
∂2fk(0, 0)

∂xi∂β
, it follows that

b = v3

5∑
i=1

qi
∂2f3(0, 0)

∂xi∂β
.

Hence,

b = v3

[
q3
∂2f3(0, 0)

∂x3∂β
+ q4

∂2f3(0, 0)

∂x4∂β
+ q5

∂2f3(0, 0)

∂x5∂β

]
.

By substitution, we obtain

b =
Ψ5η1

µ0 (θ + µ0 + ψ)

+
Ψ5Ψ0

µ0 [ργ1 (δ + σ + µ0) + δτ1] (θ + µ0 + ψ)

+
Ψ5η2 [ργ1τ2 + τ1 (µ0 + µ1 + τ2)]

µ0 [ργ1 (δ + σ + µ0) + δτ1] (θ + µ0 + ψ)
.

Hence, b > 0.

Since a > 0 and b > 0 holds when R0 = 1 as stated in Theorem 5 above,

then the model system in Eq. (3.2) undergoes a backward bifurcation at R0 = 1

and has a negative unstable endemic equilibrium point (E?) which becomes pos-

itive and locally asymptotically stable when R0 = 1. Thus, multiple equilibria

exist. This means that R0 < 1 does not guarantee the disease will die out but

much effort should be done to keep the R0 < 1 more below unity. Otherwise, the

system will exhibit a forward bifurcation. That is the disease-free equilibrium

becomes unstable and the endemic equilibrium becomes locally asymptotically

stable as R0 changes values from less than one to values slightly greater than

one. The cause of backward bifurcation in the model is as a result of the imper-

fect vaccination. Imperfect vaccination, just like reinfection of any infectious
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disease produces three categories of protection with different susceptibilities to

the hepatitis B virus disease which may, in turn, lead to the backward bifurcation

phenomenon.

Chapter Summary

In this chapter, we looked at the model formulation of hepatitis B virus

transmission dynamics by extending the model proposed by J. Zhang & Zhang

(2018) to incorporate imperfect vaccination, perfect vaccination and treatment

as control strategies. The basic model assumptions together with the model

flowchart and the various state variables, parameters and their description were

given in detailed. Since the model system monitors human population, we

proved that all the state variables and their solutions are non-negative at all-

time t and bounded above by a certain limit λ
µ0

above which the human popula-

tion cannot exceed. The system in Eq. (3.2) has two non-negative equilibrium

points which include; the disease-free equilibrium (DFE) denoted by E? and

the endemic equilibrium (EE). The two steady states influence the behaviour of

the disease transmission dynamics in a community. Even though there could

be infinitely many different initial distributions of hepatitis B virus disease in a

community, these equilibrium points are the final reachable states. We also de-

termine the stabilities of these equilibrium points using the basic reproduction

number, R0. Stability analysis from the model system shows that the disease-

free equilibrium is both locally asymptotically stable by the Routh-Hurwitz cri-

terion and globally asymptotically stable using the Castillo-Chavez, Feng and

Huang approach. We conclude the chapter by using the Centre Manifold The-

ory to proved that the model system has a backward bifurcation phenomenon as

a result of the imperfect vaccination.
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CHAPTER FOUR

RESULTS AND DISCUSSION

Introduction

In this chapter, numerical simulations of the hepatitis B virus model dy-

namics in the presence of regular interventions were considered and discuss the

results obtained. Parameter values from literature and some estimated parame-

ter values were used for the spread of the hepatitis B virus disease. Numerical

simulations were conducted using Matlab. The objective is to verify the analyt-

ical results and also to demonstrate the model solutions that were obtained in

Chapter THREE. This will help in determining future trends of hepatitis B virus

disease transmission dynamics and its preventive measures.

Sensitivity analysis of the model system in Eq. (3.2) was also performed

for the following parameters: transmission rate β, successful immunized pro-

portion rate ω, rate of waning vaccine-induced immunity ψ, the vaccination

rate of susceptible individuals θ, vaccine efficacy rate ε, reduced transmission

rate relative to chronic infections η1, reduced transmission rate relative to treat-

ment η2, acute infection progressive rate γ1, unsuccessfully treatment rate δ,

successful treatment rate σ, treatment rate of acute infection τ1, treatment rate

of chronic carriers τ2, natural death rate µ0, HBV-induced death rate µ1 and the

average probability of individuals failing to clear an acute infection rate ρ to

know which parameter contributed most towards the hepatitis B virus transmis-

sion.

Numerical Analysis

The mathematical analysis of the hepatitis B virus epidemic model with non-

linear ordinary differential equations is presented. To observe the effects of the

parameters used in this hepatitis B virus model dynamics in Figure 3.2 leads to

several numerical simulations by varying the values of the parameters given in
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Table 6 which also result in the variability of the values R0 < 1 and R0 > 1

respectively. The initial conditions of the state variables are given to be S(0) =

500, V (0) = 450, I(0) = 350, C(0) = 250, T (0) = 200 and the rest of the

parameters and their values are presented in Table 6 below.

Table 6: Parameters and their values

Parameter Standard value/year Source

λ 0.0096 (J. Zhang & Zhang, 2018)

µ0 0.0096 (J. Zhang & Zhang, 2018)

µ1 0.025 (Desta & Koya, 2019)

β 0.017 (Desta & Koya, 2019)

σ 0.06 ≤ σ ≤ 0.6 (J. Zhang & Zhang, 2018)

γ1 4 (Zhao et al., 2000)

τ1 0.0576 (J. Zhang & Zhang, 2018)

τ2 0.0936 (J. Zhang & Zhang, 2018)

ω 0.65 (J. Zhang & Zhang, 2018)

ρ 0.885 (Hahné et al., 2004)

δ 0.2323 (J. Zhang & Zhang, 2018)

ψ 0.1 (Edmunds et al., 1996b)

η1 0.4002 (J. Zhang & Zhang, 2018)

η2 1.7352 (J. Zhang & Zhang, 2018)

θ 0.4 (Desta & Koya, 2019)

ε 0 ≤ ε ≤ 1 (Magpantay et al., 2014)

Numerical Results in the Presence of Perfect Vaccination

Figure 6 demonstrate how the reproduction number, R0 is evolve with a

vaccination rate θ = 0.4, treatment rate σ = 0.6 and a strong vaccine efficacy

rate ε = 1. With other parameter values stated in Table 6 above, we observe

that the model system settles at the disease-free state with R0 = 0.3122. At

the disease-free state, all the infective (acutely infected, chronic carriers and

treatment) compartments tend to zero, but because of the constant recruitment

70

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



of new individuals into the susceptible population, the susceptible compartment

shows a downward sloping curve that decreases, attain minimum and contin-

ues to approach the x-axis asymptotically because of individuals moving to the

vaccination compartment while the vaccination compartment approaches the x-

axis asymptotically due to the presence of individuals being vaccinated. Figure

6 has also confirmed the local and global stability of the hepatitis B virus model

at the disease-free equilibrium state. The biological meaning is that the hepatitis

B virus disease will die out of the total population in the short-run period, say

three years.

Figure 6: Numerical Simulation of SVICTR Model for R0 > 1.

To further investigate the evolution of the reproduction number with the

vaccination rate θ, treatment rate σ and vaccine efficacy rate, ε, we vary the

values of these three parameters (θ, σ and ε). The results are shown in Figure

7. The graph in Figure 7 above also shows the model system 3.2 attained the

endemic equilibrium state with the reproduction number, R0 = 8.7022 base

on the parameter values in Table 6. The susceptible compartment started to

decrease at the initial stage, attain minimum and tend to increase at a constant

rate which depicts the presence of hepatitis B virus disease on the susceptible
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individuals’ population as shown in Figure 7 below. Similarly, the presence of

the hepatitis B virus has increased the number of individuals in the infective

compartments as depict in Figure 7 below.

Figure 7: Numerical Simulation of SVICTR Model for R0 > 1.
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Effect of Perfect Vaccination on Acutely Infected and Chronic Carriers

Population

In Figures 8 and 9 below, we have noticed that as we increase the vacci-

nation rate from 0.6 to 0.9 with a vaccine efficacy rate, say ε = 1, there is a

corresponding decrease in both the acutely infected and chronic carriers popu-

lations. This implies that the majority of the individuals in the susceptible com-

partment have been vaccinated causing a reduction in the number of individuals

who get infected with the hepatitis B virus disease. The simulation results in

Figures 8 and 9 below demonstrate the important role perfect vaccination play

in controlling the spread of hepatitis B virus disease in the population.

Figure 8: Simulation Results showing the Effect of varying the Vaccination rate
( θ = 0.6, θ = 0.9) with Vaccine Efficacy rate, ε = 1 on the Acutely
Infected population. The rest of the parameter values, as stated in
Table 6.
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Figure 9: Simulation Results showing the Effect of varying the Vaccination rate,
( θ = 0.6, θ = 0.9) with Vaccine Efficacy rate, ε = 1 on the chronic
carriers population. The rest of the parameter values, as stated in
Table 6.

Effect of Imperfect Vaccination on Acutely Infected and Chronic Carriers

Population

In Figures 10 and 11 below, we noticed that as we increased the vaccina-

tion rate from 0.6 to 0.9 with a weak vaccine efficacy rate, say ε = 0.1, there

is a small corresponding decreased in both the acutely infected and chronic car-

riers populations. This implies that, though the majority of the individuals in

the susceptible compartment have been vaccinated with the hepatitis B vaccine,

only a small percentage of these individuals vaccinated are protected against the

hepatitis B virus. Hence, a small reduction in the number of individuals who

get infected with hepatitis B virus disease. The simulation results in Figures

10 and 11 below demonstrate the important role imperfect vaccination play in

preventing the spread of hepatitis B virus disease in the population.
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Figure 10: Simulation Results showing the Effect of varying the Vaccination
rate ( θ = 0.6, θ = 0.9) with Vaccine Efficacy rate, ε = 0.1 on the
Acutely Infected population. The rest of the parameter values, as
stated in Table 6.

Figure 11: Simulation Results showing the Effect of varying the Vaccination
rate (ie θ = 0.6, θ = 0.9) with Vaccine Efficacy rate, ε = 0.1 on
the Chronic Carriers population. The rest of the parameter values, as
stated in Table 6.

Effect of Treatment on Acutely Infected and Chronic Carriers Population

It was observed in Figures 12 and 13 below that as the treatment rate, σ increases

from σ = 0.6 to σ = 0.9, there is a corresponding decreased in both acutely in-
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fected and chronic carriers population sizes respectively. This demonstrates that

the treatment of acutely infected and chronic carriers individuals has an impact

on eradicating the hepatitis B virus disease. Hence, the general public should

be educated on the importance of seeking medical treatment when infected with

the hepatitis B virus to help eliminate the disease.

Figure 12: Simulation Results showing the Effect of varying the Treatment rate
(ie σ = 0.6, σ = 0.9) on the Acutely Infected population. The rest
of the parameter values, as stated in Table 6.
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Figure 13: Simulation Results showing the Effect of varying the Treatment rate
(ie σ = 0.6, σ = 0.9) on the Chronic Carriers population. The rest
of the parameter values, as stated in Table 6.

Effect of Waning Vaccination on Susceptible, Acutely Infected and Chronic

Carriers Population

Figures 14, 15 and 16 below depicts the effect of individuals waning off

their vaccine. This further justifies the important role vaccination plays in re-

ducing the incidence of hepatitis B virus infection in the population. It was

noticed that when the waning rate increases from 0.1 to 0.9, the chance of an

individual been infected with the disease also increases as depicted in Figure 14

below. Similarly, an increase in the rate at which individuals wane their vac-

cine leads to a higher probability of being acutely infected as depicted in Figure

15 below. Furthermore, an increase in the rate at which individuals wane their

vaccine leads to a higher probability of progressing to chronic carrier stage as

depicted in Figure 16 below. More precisely, as the waning rate increases the

number of susceptible individuals who become infected as well as individuals

who were acutely infected progressing to chronic carrier stage increases.
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Figure 14: Simulation Results showing the Effect of varying the Waning Immu-
nity rate (ie ψ = 0.1, ψ = 0.9) on the Susceptible population. The
rest of the parameter values, as stated in Table 6.

Figure 15: Simulation Results showing the Effect of varying the Waning Immu-
nity rate (ie ψ = 0.1, ψ = 0.9) on the on Acutely Infected popula-
tion. The rest of the parameter values, as stated in table 6.
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Figure 16: Simulation Results showing the Effect of varying the Waning Immu-
nity rate (ie ψ = 0.1, ψ = 0.9) on the on Chronic Carriers popula-
tion. The rest of the parameter values, as stated in Table 6.

Effect of both Vaccination and Treatment on Acutely Infected and Chronic

Carriers Population

Figures 17, 18, 19 and 20 below shows the effect of combining both treatment

and vaccination with a high vaccine efficacy rate as control strategies of HBV

infection. The main aim was to determine the best control strategy. Figure 17

demonstrates the prevalence of HBV infection with no control parameter. That

is no vaccination; (θ = 0), treatment; (σ = 0) and vaccine efficacy; ε = 0.

We notice that the HBV infection decreases at a constant rate. This means that

without any control strategy, HBV disease cannot be eradicated. However, with

a high vaccination rate of 0.6 and vaccine efficacy rate of 1 without treatment

parameter (σ = 0), it will take a longer time, say 7 years to eradicate the HBV

disease as depicted in Figure 18. It was observed that a high treatment rate of

0.6 with no vaccination parameter (θ = 0) will only reduce the number of in-

fections but cannot eradicate the HBV infection as depicted in Figure 19. This

is because most infected individuals are not aware of their infection and do not

seek any medical treatment. Figure 20 also demonstrates a decreasing preva-

79

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



lence of hepatitis B virus infection with a high vaccination rate (θ = 0.9), high

vaccine efficacy rate (ε = 1) and a high treatment rate (σ = 0.8) combined as

control strategies. We notice that all the infective compartments (both acutely

infected and chronic carriers) population turn to zero in a short time. This means

that the disease can be eradicated within the shortest possible time. Thus, this

study reveals that a combination of treatment and vaccination with a high vac-

cine efficacy rate as a control strategy is the most effective way of controlling

and eradication of hepatitis B virus disease.

Figure 17: Simulation Results showing the Effect of no control measures such
as Vaccination rate (θ = 0), Vaccine Efficacy rate (ε = 0) and Treat-
ment rate (σ = 0) on acutely infected and Chronic Carriers popula-
tion. The rest of the parameter values, as stated in Table 6.
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Figure 18: Simulation Results showing the effect of high Vaccination rate (θ =
0.6), strong Vaccine Efficacy rate (ε = 1) and no Treatment rate
(σ = 0) on Acutely Infected and Chronic Carriers population. The
rest of the parameter values, as stated in Table 6.

Figure 19: Simulation Results showing the Effect of no Vaccination rate (θ =
0), strong Vaccine Efficacy rate (ε = 0) and a high Treatment rate
(σ = 0.6) on Acutely Infected and Chronic Carriers population. The
rest of the parameter values, as stated in Table 6.
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Figure 20: Simulation Results showing the Effect of a very high Vaccination
rate (θ = 0.9), strong Vaccine Efficacy rate (ε = 1) and a very high
Treatment rate (σ = 0.8) on Acutely Infected and Chronic Carriers
population. The rest of the parameter values, as stated in Table 6.

Sensitivity Analysis on the Basic Reproduction Number

The basic reproduction number R0 is a function of the parameters β, λ, ω, µ0,

µ1, ψ, ε, θ, ρ, γ1, δ, σ, τ1, τ2, η1 and η2. To control the outbreak of a disease, it is

important to control the parameter values that will make R0 < 1. This is because

these parameters contribute most toward the spread of the disease. Hence, we

are interested in determining the rate of change of R0 as the parameter values

changes. The rate of change of R0 for a change in the value of a parameter, say

k can be estimated from a normalized sensitivity index defined as follows:

SI(k) =
∂R0

∂k
, (4.1)

where k represents the parameter. Also, when there are changes in the param-

eter, the relative change in the state variables can be measured using the sen-

sitivity indices. Hence, using the normalized sensitivity index in Eq. (4.1) to

determine the effects of each parameter on R0, we obtain the following partial
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derivatives:

∂R0

∂β
=

λ (1− ω) [(µ0 + ψ) + θ (1− ε)] [Ψ0 + Ψ1 + Ψ2]

µ0 (θ + µ0 + ψ) (γ1 + τ1 + µ0) Ψ0

≥ 0,

∂R0

∂λ
=

β (1− ω) [(µ0 + ψ) + θ (1− ε)] [Ψ0 + Ψ1 + Ψ2]

µ0 (θ + µ0 + ψ) (γ1 + τ1 + µ0) Ψ0

≥ 0.

The rest of the parameters can be shown in a similar way to determine

their sensitivity status with the basic reproduction number, R0. The results are

summarized in Table 7 below.

Table 7: Parameters and their relationship with R0

Parameter Relationship

λ +

β +

σ -

η1 +

η2 +

θ -

ρ +

ω -

ε -

µ0 -

µ1 -

τ1 +

τ2 -

δ +

ψ -

γ1 +
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Discussions

Hepatitis B virus disease is a dangerous health problem in the world. Therefore,

HBV control is always a globally public health concern. J. Zhang & Zhang

(2018) provide a model that explains the complex transmission dynamics of

HBV with vaccination of newborn babies and treatment of infected patients as

control strategies. That is susceptible newborn babies are vaccinated while those

who progress either to both acutely and chronically infected compartments are

treated.

In this thesis, we extended their analytical analysis to incorporate imper-

fect vaccination and investigated the parameter space that gave rise to the ob-

served patterns of hepatitis B virus transmission dynamics. The increasing use

of the hepatitis B vaccine and treating of infected persons has shown a signifi-

cant impact on the rates of HBV infection and future HBV-related deaths. For

the model with the control strategies of vaccination and treatment that incorpo-

rate imperfect vaccination presented in this work, a detailed stability and persis-

tence analysis are investigated. Numerical simulations are also performed using

parameter values obtained from standard published articles. Analysis from the

model system shows that the qualitative behaviours of the model are completely

determined by the magnitude of the basic reproductive number R0. More pre-

cisely, when R0 < 1, the endemic status of the hepatitis B virus disease will

naturally settle to the disease-free equilibrium and for that matter, the disease

will die out from the entire population. Otherwise, the disease will be uniform

persistence and remain to invade the entire population.

Numerical results from the model show that when we increase the propor-

tion of individuals who are vaccinated and the proportion of individuals seeking

treatment, the basic reproduction number can be reduced below unity. Hence,

R0 is a decreasing function concerning the vaccination rate and treatment rate

indicating that vaccination and treatment are very useful in controlling and total
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eradication of the hepatitis B virus infections. The model system studied in this

thesis, however, indicated that the basic reproduction number R0 which forms

the threshold is not enough to completely eradicate the spread of hepatitis B

virus infection. This is because the result of the stability analysis investigated

show that the model exhibit local asymptotic stability under certain conditions at

the disease-free equilibrium provided R0 < 1 while the stability of the endemic

equilibrium examined using the centre manifold theory proved the existence of

a backward bifurcation phenomenon under certain conditions.

Sensitivity analysis performed on the parameters in the basic reproduc-

tion number show that parameters; λ, β, ρ, η1, η2, δ, τ1 and γ1 has a positive re-

lationship with R0 while parameters; θ, σ, ω, ε, µ0, µ1, ψ and τ2 has a negative

relationship with R0. It was also noticed that the model system settles at the

disease-free equilibrium state with a very strong vaccine efficacy rate, ε = 1

and both the vaccination rate, θ and treatment rate, σ having values 0.4 and 0.6

respectively. Thus, vaccination of susceptible individuals and treatment of in-

fected individuals play an important role in controlling the hepatitis B virus dis-

ease. Although total eradication of the hepatitis B virus disease remains a global

problem, base on the finding of these studies, we suggested that a combination

of massive vaccination and treatment of infected individuals to the highest level

should be included in government hepatitis B virus control programmes. How-

ever, vaccines with a very strong vaccine efficacy rate should be used to help

eradicate this deadly disease.

Chapter Summary

In this chapter, numerical simulations of the model were performed us-

ing literature values and some estimated parameter values for the spread of the

hepatitis B virus disease and discuss the results obtained. The numerical simula-

tions were performed using Matlab. It was shown that vaccination of susceptible

individuals using a vaccine with a strong vaccine efficacy rate and treatment of
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infected individuals play a key role in controlling hepatitis B virus transmission

dynamics with the combination of the two strategies being the best.

Also, sensitivity analysis of the model system was perform for the model

parameters to determine the relationship with the basic reproduction number;

R0. It was shown that, the parameters; λ, β, ρ, η1, η2, δ, τ1 and γ1 has a positive

relationship with R0 while parameters; θ, σ, ω, ε, µ0, µ1, ψ and τ2 has a negative

relationship with R0.
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CHAPTER FIVE

SUMMARY, CONCLUSIONS AND

RECOMMENDATIONS

Overview

A mathematical model for the transmission dynamics of hepatitis B virus

disease has been presented in this study. Imperfect vaccination was incorporate

to examine its impact on hepatitis B virus transmission dynamics. The analyti-

cal and numerical results of this model were discussed. It was suggested that the

combination of a high vaccination rate and a high treatment rate with a strong

vaccine efficacy rate is the best control strategy to reduce the spread of the dis-

ease. The results obtained from the model presented in THREE and FOUR are

summarised below.

Summary

A mathematical model of hepatitis B virus transmission dynamics with

vaccination and treatment that will incorporate imperfect vaccination as control

strategies were studied. Hence, using analytical techniques we were able to

determine when the disease will die out of the population or persist to invade

the entire population. These will depend on the value of the basic reproduction

number, R0. That is when R0 < 1 an infected person cannot transfer the disease

to any susceptible individual in the population and the disease will die out. But,

if R0 > 1 then an infected person can transfer the disease to more than one

susceptible individuals in the population and for that matter, the disease will

invade the entire population. However, when R0 is less than unity (R0 < 1),

the eradicating of the hepatitis B virus disease will depend on the size of the

population under consideration due to the backward bifurcation phenomenon

when R0 = 1.

Using numerical techniques, we predicted the types of control strategies

that should be adopted in other to control the hepatitis B virus disease. That is
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the combination of vaccination with a high vaccine efficacy rate and treatment of

infected individuals to the highest level is the best control strategy. The results

of this study, therefore, provide a framework that should be taken into consider-

ation by the government, health practitioners and decision-making bodies when

formulating policies to control the hepatitis B virus disease.

Conclusions

A mathematical model for the transmission dynamics of the hepatitis B

virus by J. Zhang & Zhang (2018) was modified to incorporate imperfect vacci-

nation. The model was derived with the aid of a schematic diagram in Figure 4

while the model parameters are given in Table 5. The proposed model is mathe-

matically well-posed and biologically meaningful since all the model solutions

were proved to be both positive and bounded. The disease-free and the multi-

ple endemic equilibria state of the model were also determined. Vaccination of

susceptible individuals and treatment of infected individuals were incorporated

to know their impact on the hepatitis B virus transmission dynamics using the

sensitivity index of the model parameters.

The model was also solved numerically using ode45 in MATLAB and the

result from the numerical simulations indicates that increasing the vaccination

rate, treatment rate and using a vaccine with a high vaccine efficacy rate will

reduce both the acute infection and chronic carriers populations. Therefore,

most of the limited resources that will be used to control hepatitis B virus disease

should be geared toward the reduction of these two (acutely infected and chronic

carriers) populations through vaccination and treatment.

Furthermore, sensitivity analysis was performed on the basic reproduc-

tion with all the model parameters, from which we notice that the most sensitive

parameters are the θ, σ, ω, ε, µ0, µ1, ψ and τ2. These parameters need high at-

tention when considering measures to control hepatitis B virus disease. Hence,

the incorporation of the imperfect vaccination helps in determining an optimal
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control strategy to reduce the transmission dynamics of the hepatitis B virus

disease.

Recommendations

Based on the findings in this study, we give the following recommenda-

tions:

(a) The Governments, stakeholders and policymakers should consider using

both effective vaccinations with strong vaccine efficacy rate and treatment

of infected individuals as control strategies on hepatitis B virus control

programmes.

(b) Although Vaccination of all susceptible individuals against the hepatitis B

virus disease and treatment of every individual chronically infected with

the hepatitis B virus disease may be impossible due to limited resources,

this study has given threshold values for a vaccination rate of 0.9 and

treatment rate of 0.8 with a high vaccine efficacy rate of 1 to be used to

obtain optimal results.

(c) Individuals should minimize the amount of alcohol intake to prevent HBV

disease.

(d) Individuals should take drug recommended by medical doctors.
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Trépo, C., Chan, H. L., & Lok, A. (2014). Hepatitis B virus infection. The

Lancet, 384(9959), 2053–2063.

Tsiang, M., Rooney, J. F., Toole, J. J., & Gibbs, C. S. (1999). Biphasic clearance

kinetics of hepatitis B virus from patients during adefovir dipivoxil

therapy. Hepatology, 29(6), 1863–1869.

97

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Tsung-Tang, S., Yuan-Rong, C., Zhi-Quan, N., Jian-Hua, L., Fei, H., Zheng-

Ping, N., . . . Guo-Ting, L. (1986). A pilot study on universal immu-

nization of newborn infants in an area of hepatitis B virus and primary

hepatocellular carcinoma prevalence with a low dose of hepatitis B

vaccine. Journal of Cellular Physiology, 129(S4), 83–90.

Venters, C., Graham, W., & Cassidy, W. (2004). Recombivax-HB: perspectives

past, present and future. Expert Review of Vaccines, 3(2), 119–129.

Wang, X. J., Zhang, R. Z., Hu, Y. S., & Liang, X. F. (2004). Analysis on epi-

demic status of viral hepatitis in China: the report from Chinese Cen-

ter for Disease Control and Prevention. Dis Surveillance, 19, 209–2.

Watashi, K., & Wakita, T. (2015). Hepatitis B virus and hepatitis D virus

entry, species specificity, and tissue tropism. Cold Spring Harbor

Perspectives in Medicine, 5(8), a021378.

Wiah, E., Makinde, O., & Adetunde, I. (2015). Optimal control of hepatitis B

virus disease in a population with infected immigrants. Engineering

Mathematics Letters, 2015, Article–ID.

Williams, R. (2006). Global challenges in liver disease. Hepatology, 44(3),

521–526.

Wilson, J. N., Nokes, D. J., & Carman, W. F. (1998). Current status of HBV

vaccine escape variants–a mathematical model of their epidemiology.

Journal of Viral Hepatitis, 5, 25–30.

World Health Organisation. (2014). Hepatitis (Governing body documents).

Geneva: World Health Assembly, 67.

World Health Organization. (2001). Introduction of hepatitis B vaccine into

childhood immunization services : management guidelines, includ-

98

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



ing information for health workers and parents. World Health Or-

ganization. Retrieved from https://apps.who.int/iris/

handle/10665/66957

World Health Organization. (2002). Department of communicable diseases

surveillance and response. hepatitis B; 2002 report (Tech. Rep.).

WHO/CDS/CSR/LYO. Retrieved from http://www.who.int/

emc

World Health Organization. (2008). Hepatitis B. world health

organization fact sheet no. 204 (Tech. Rep.). Retrieved

from http://www.who.int/mediacentre/factsheets/

fs204/en/index.html

World Health Organization. (2015). Guidelines for the prevention care and

treatment of persons with chronic hepatitis B infection. (Tech. Rep.).

Geneva: World Health Organization.

World Health Organization. (2017). Hepatitis B. world health

organization fact sheet no. 204 (Tech. Rep.). Retrieved

from http://www.who.int/mediacentre/factsheets/

fs204/en/index.html.

Yan, H., Zhong, G., Xu, G., He, W., Jing, Z., Gao, Z., . . . others (2012). Sodium

taurocholate cotransporting polypeptide is a functional receptor for

human hepatitis B and D virus. Elife, 1, e00049.

Zeuzem, S., Robert, A., Honkoop, P., Roth, W. K., Schalm, S. W., & Schmidt,

J. M. (1997). Dynamics of hepatitis B virus infection in vivo. Journal

of Hepatology, 27(3), 431–436.

99

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library

https://apps.who.int/iris/handle/10665/66957
https://apps.who.int/iris/handle/10665/66957
http://www.who.int/emc
http://www.who.int/emc
http://www.who.int/mediacentre/factsheets/fs204/en/index.html
http://www.who.int/mediacentre/factsheets/fs204/en/index.html
http://www.who.int/mediacentre/factsheets/fs204/en/index.html.
http://www.who.int/mediacentre/factsheets/fs204/en/index.html.


Zhang, J., & Zhang, S. (2018). Application and optimal control for an HBV

model with vaccination and treatment. Discrete Dynamics in Nature

and Society, 2018.

Zhang, S., & Zhou, Y. (2012). The analysis and application of an HBV model.

Applied Mathematical Modelling, 36(3), 1302–1312.

Zhang, T., Wang, K., & Zhang, X. (2015). Modeling and analyzing the trans-

mission dynamics of HBV epidemic in Xinjiang, China. PloS One,

10(9).

Zhao, S., Xu, Z., & Lu, Y. (2000). A mathematical model of hepatitis B virus

transmission and its application for vaccination strategy in China. In-

ternational Journal of Epidemiology, 29(4), 744–752.

Zhien, M., & Jia, L. (2009). Dynamical modeling and analysis of epidemics.

World Scientific.

Zou, L., Zhang, W., & Ruan, S. (2010). Modeling the transmission dynam-

ics and control of hepatitis B virus in China. Journal of Theoretical

Biology, 262(2), 330–338.

Zuckerman, A., Sun, T., Linsell, A., & Stjernsward, J. (1983). Prevention of

primary liver cancer-report on a meeting of a WHO scientific group.

Lancet, 1(8322), 463–465.

100

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library


	DECLARATION
	ABSTRACT
	KEY WORDS
	ACKNOWLEDGEMENTS
	DEDICATION
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Background to the Study
	Life Cycle of Hepatitis B Virus
	Stages and Spectrum of Liver Disease after HBV Infection
	Testing for Hepatitis B Infection
	Hepatitis B Vaccine
	Hepatitis B Vaccine Exception
	Statement of the Problem
	Significance of the Study
	Research Objectives
	Delimitation
	Limitation
	Organisation of the Study
	Chapter Summary

	LITERATURE REVIEW
	Introduction
	Infectious Diseases
	Mathematical Model
	Empirical Review of Related Literature on Hepatitis B Virus Infection
	Vaccination as a Control Strategy of HBV Infection
	Treatment of Chronic HBV Infection as a Control Strategy
	Role of Imperfect Vaccination in Controlling HBV Infection
	Chapter Summary

	RESEARCH METHODS
	Introduction
	The Existing Model
	The Extended Model
	Basic Model Properties
	Positivity of Solutions
	Boundedness of Solutions
	Model Steady State
	Disease-free Equilibrium (DFE)
	Basic Reproduction Number; R0
	Endemic Equilibrium (EE)
	 Local Stability of the Disease-free Equilibrium
	Global Stability of Disease-free Equilibrium
	Stability of the Endemic Equilibrium
	Application of Centre Manifold Theory to Local Stability of Endemic Equilibrium
	Chapter Summary

	RESULTS AND DISCUSSION
	Introduction
	Numerical Analysis
	Numerical Results in the Presence of Perfect Vaccination
	Effect of Perfect Vaccination on Acutely Infected and Chronic Carriers Populations
	Effect of Imperfect Vaccination on Acutely Infected and Chronic Carriers Population
	Effect of Treatment on Acutely Infected and Chronic Carriers Population
	Effect of Waning Vaccination on Susceptible, Acutely Infected and Chronic Carriers Population
	Effect of both Vaccination and Treatment on Acutely infected and Chronic Carriers Population
	Sensitivity Analysis on the Basic Reproduction Number
	Discussions
	Chapter Summary

	SUMMARY, CONCLUSIONS AND RECOMMENDATIONS
	Overview
	Summary
	Conclusions
	Recommendations

	REFERENCES



